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Asymptotic Completeness for Four-Body Schrodinger
Operators with Short-Range Interactions

By

Hideo TAMURA*

§ 0. Introduction

The present work is a continuation to the previous one [15] in which the
author has studied the problem of asymptotic completeness in the case of three-
body systems with short-range pair interactions with a view to making trans-
parent the proof of asymptotic completeness in the remarkable work by Sigal-
Soffer [13] which deals with the case of general TV-body systems. The proof
in [15] has been in principle based on the same idea as in [13] but several
new ingredients have been added to the techniques developed there. In par-
ticular, the proof does not have required a phase space partition of unity with
the property that the boundaries of its support lie in the classically forbidden
region. The construction of such a phase space partition of unity is one of the
most essential steps in the original proof by [13], The aim of this work is to
develope further the argument used in [15] to prove the asymptotic completeness
for four-body systems with short-range pair interactions. The author hopes
that the previous and present works reveal the difficulties to be overcome in
the future study towards proving the asymptotic completeness for general N-
body, 7V;>5, systems.

The precise formulation of the obtained result requires several complicated
but basic notations and definitions in many-body scattering theory.

For notational brevity, we here consider only a simple system of four
particles with identical masses normalized by nij=l, l^j'^4, moving in the
three-dimensional space Rz. For such a system, the configuration space X in
the center of mass frame is given by

C=^r=tri, r2, ra, .,
*• 3 —

with the usual scalar product

(0.1) r-f=SJ-irr^
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and also the energy Hamiltonian H (Schrodinger operator) takes the form

(0.2) H = -~A+V on L\X),

where A denotes the Laplacian on X and the interaction V(r) is given by a
sum of pair potentials;

The real-valued pair potential Vjk(y\ y<=R3, is assumed to have the following
decaying property :

(V) Vjk(y}\<C(l+\y\Yt> for some p>l.

We may assume that l<p<2. Throughout the entire discussion, the constant
p is used with the meaning ascribed above and also assumption (V) is always
assumed to be satisfied. Under this assumption, the operator H formally de-
fined by (0.2) admits a unique self-adjoint realization in L2(X). We denote it
by the same notation H.

Let a={Clt •" , Ci}, 2^/^4, be a cluster decomposition of the set {1, 2, 3, 4}
into non-empty disjoint subsets. For pair (/, &), l^/<&^4, we write jak if
j and k are in the same cluster and ^jak if they are in different clusters.
For given cluster decomposition a, we further define the configuration space
Fa of the internal motion within the clusters Ck in a by

(0.3) Ya={r^X: 2*=cjkr,=0 for

and the configuration space Za of the relative motion of the clusters in a by

(0.4) Za = {r^X: Tj=rk for pair (/, k) with jak}.

We denote by #(a) the number of clusters in a. The spaces Ya and Za are
identified with the /*a-dimensional and the ya-dimensional Euclidean spaces with
jtfa=3x(4— #(a)) and ya=3x(#(fl)— 1), respectively, and also the space X is
decomposed as the orthogonal sum of spaces Ya and Za with respect to the
scalar product (0.1); X=Ya@Za.

Let a be again a cluster decomposition with 2g#(a)^4. Then we define
the truncated Hamiltonian Ha by

(0.5) Ha=Ka®Id+Id®Ta on L\X}=L\Y a)®L\Za) ,

Id being the identity operator, where the Hamiltonian Ka acting on L2(Fa) is
defined by

and Ta — — (1/2)A acting on L2(Za) is the kinetic energy operator of the center
of mass motion of the clusters in a. If #(a)=4, then we define Ya as Ya = C
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(scalar field) and Ka as zero, so that Ta=#0— — (1/2)A becomes the free Hamil-
tonian acting on L2(Za)=L2(Z).

We further introduce notations. Let ma, 0^ma^ + °°, be the number of
bound state energies of Ka considered on the space Lz(Ya) with repetition accord-
ing to the multiplicities. Such a bound state energy is called a threshold energy
of the Hamiltonian H. Under assumption (V), we know ([7]) that Ka has no
positive bound state energies and that the set of all threshold and bound state
energies of H is closed and countable. A pair a— (a, m), l<m<ma, is called a
channel. With the channel a, we associate the following notions: (0) sa<Q,
bound state energy of Ka] (i) <I)a^L*(y a), normalized eigenstate corresponding
to sa; (H) Ha = ea + Ta, channel Hamiltonian on Lz(Za) ; (iii) Ja : L2(Za)->L2(Z) ;
jau — (j)a(g)u, channel identification operator; (iv) Q% : L2(Za) — > L2(X), channel
wave operator, defined by

$a=s-lim exp(#/0/« exp(— itHa) .

Under assumption (V), we know ([12]) that the channel wave operators Q*
exist and that their ranges are orthogonal to each other. If <p is in Range £?«,
then by definition it follows that there exists 0*eL2(Za) such that the state

behaves like

(0.6) exp(— itH)<])^ exp(— z7sn)</>a®exp(— #J/a)0* as f -» ±00.

Let Pn : L\X}-* LZ(X) be the eigenprojection of H associated with point
spectrum. Roughly speaking, the problem of asymptotic completeness is to
study the asymptotic behavior as t->±oo of the scattering state exp(— ##)0
with ^e Range (Id—Pn). The following main theorem says that such a scat-
tering state behaves like superpositions of the states as in (0.6) as £— >±oo.

Theorem (asymptotic completeness). Let the notations be as above. Assume
(V). Then one has

Range (Id-PH)=@a Range fl* .

Besides the work [13], there are many works dealing with the problem of
asymptotic completeness for many-body systems. An extensive list of related
references can be found in [2] and [13]. In the case of three-body systems,
the most general result has been obtained by Enss [5], including the case of
long-range interactions. However, there does not seem to be so many works
dealing with the case of N-body, A^4, systems. For example, Hagedorn [8]
has proved the asymptotic completeness for four-body systems with a certain
class of pair potentials falling off faster than \y\~v, v>2, by use of the Faddeev
equation method. We also note that in the recent work [10], Kitada uses the
argument based on the work by Enss [6] to prove the asymptotic completeness
for general TV-body systems under an additional assumption that all subsystem
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Hamiltonians have only a finite number of bound state energies.

§ 1. Reduction to the Main Lemma

We here explain the strategy of proof briefly. The proof is based on the
same idea as in the previous work [15] and is done by reducing it to the proof
of the main lemma below (Lemma 1.1).

We first fix an energy E arbitrarily,, Assume that E is neither a threshold
energy nor a bound state energy of H. Since the set of such threshold and
bound state energies is closed and countable, we can take a small open interval
F around E avoiding the threshold and bound state energies of H. Let gQ^
C~CT) be a non-negative smooth function with support in F such that g0=l
in a small neighborhood of E,

We now follow the standard argument as in Section 2 of [13]. Assume
the asymptotic completeness for two- and three-subsystem Hamiltonians. Let
<^eRange(/d — P//). Then the main theorem follows, if it can be proved that
for any e>0 small enough, there exist (f>a,s^Lz(X] such that

(1.1) lim||exp(--if/f)£0(ff)0- 23
£-,±00 f *ca)=2

where || • |Lr denotes the L2 norm in L\X] and the summation S#ca)=2 is taken
over all two-cluster decompositions a. We shall prove this for the case E>Q
and t— >co only. The other cases can be dealt with in a similar way.

1.1. To prove (1.1), we first introduce a partition of unity on X. We fix
a coordinate system on X arbitrarily and write it as x=(xl9 x2, *3) with Xj(=R\
l^S/^3. Let S be the unit sphere in X. Let a be a two-cluster decomposition.
Then we define the closed subset Sa in S by

(1.2) Sa={(0=((0i, a>2, ft>3, 0)4)^8: a)3=a)k for (j, k) with jak] .

By definition, it follows immediately that the sets Sa and Sb, a=£b, with #(a)=
#(b)=2 do not intersect each other.

We now introduce a non-negative smooth partition of unity on X,
{/a(*)}#ceo=2, with the following properties: (/.O) 23#ca)-a/a(*)=l on X; (/.I)
For x >1, ja(x) has support in a conical neighborhood of Sa (and hence the
gradient Vxja vanishes in a small conical neighborhood of S t t); (/.2) For any
multi-index a, |3S/a(x)| ^

(j.3) ja(x) vanishes on Ya

for |^|>1, Ya being defined by (0.3). It is not difficult to see that such a
partition of unity really exists.

1.2. Let gQ<=C™(F) be as above and let gi^C^(F) be also a non-negative
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function such that gi=l on the support of gQ, so that gigQ=g0. By property
(/•I), ja(gi(fT)-gi(HJ): L*(X}->L\X) is compact and, by property (/.2), the
commutator [gi(#tt), /a] is also compact. The state Qxp(—itH)g0(H')(/} is weakly
convergent to zero as t— »oo and hence

where

The above term <f>a(t) can be rewritten in the integral form

^a(t) = gi(Ha)ja

where

ds

and

<f>a = f gidfa) exp (isHJ [#0, /«] exp (-zsH)gQ(H)</> ds ,
Jo

//o=— (1/2)A being the free Hamiitonian on A".

1.3. To analyze the term 0a(0» we further introduce a non-negative smooth
partition of unity on /21, {/jJJ^i, with the following properties: (/.O) 2)-i/?=l
on jR1;

(f.l) supp/iCC-oo, -V2E/3), A = l on (-co, -V2E/2] ;

(f.2) supp/2c(-V2E/2, V2"E~(l-Jc)), /2=1 on [-V2F/3, V2F(l-2/c)] ;

(f.3) supp/sC(V2E(l~2/c), M), /3=1 on [V2F(1-*), M/2] ;

(f.4) supp/4C(M/2, oo), /4=l on [M, oo),

where £, 0</u<l, and J\f, M>1, are taken sufficiently small and large, res-
pectively.

As in [13], we now define the operator y as

(1.3) r=-

with

It is known (Theorem 3.2, [13]) that the operator ? is self-adjoint in L\X)
with its natural domain $(r)={u<^Lz(X) : ru^Lz(X)}. According to property
(/.O), we decompose the term $a(t) under consideration into

where
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(1.4) 0/a= *i(ff«) exp(*s#a)//r)
2[#o, ;«] exp(-«ff)*o(ff)f& ds .

The following two lemmas imply (1.1) for the case E>Q and £-»

Lemma 1.0. Le£ $ja(t), 0^/^4, &e as afow. Then one has the following
statements :
( i ) <j>ja(t}, 0^y^2, strongly converges in LZ(X) as £— »oo.
( i i) If M is chosen large enough, then 04a(0 also strongly converges as t-^oo.

Lemma 1.1. For any s>0 small enough, there exist <f>aeS^Lz(X) such that

In the previous work [15], we have already proved Lemma 1.0 in the case
of three-body systems. The arguments there apply without any essential
changes also to the case of four-body systems in question. Thus the proof of
main theorem is reduced to that of Lemma 1.1.

The remaining sections are devoted to proving Lemma 1.1. This lemma
is proved through the study on the behavior as t-^oo of the outgoing state
f(r)exp(—itH)g0(H)<f> with f^C^R1) supported in (0, oo). The analysis for
such an outgoing state occupies the most essential part of the proof of asymp-
totic completeness in our approach.

§2. Non-Propagation Estimate

The most important result on which the proof of the main lemma is based
is the non-propagation estimate in the classically forbidden region for the pro-
pagator exp(— #/f) which has been obtained by [3] and [13] for general N-
body systems, including the case of long-range interactions.

2,1. The precise formulation of the result requires many notations.
We first introduce the following function space :

(2.1) Sm(#»={/eC-(/?I): |3?/| ^Ca<^>m- 'a |}.

Let Ya and Za be defined by (0.3) and (0.4), respectively, and denote by X' ',
Y'a and Z'a the spaces dual to X, Ya and Z0, respectively. For given symbol

Z'a), we define the pseudodifferential operator F(Da) by

(2.2)

where v is the space dimension of Za and u(qa] is the Fourier transform of u

fi(^a) = (2^)"1;/*\exp( — IZ0'^o)MUo)^o,
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the integration with no domain attached being taken over the whole space.
This abbreviation is often used throughout the discussion in the sequel.

We further introduce notations. For given cluster decompositions a and b,
we use the notation bda to indicate that b is a refinement of a. Let the
Hamiltonian Ka acting on L2(Fa) be as in (0.5). We know ([7]) that Ka has
no positive bound state energies. Denote by Aa the set of all (non-positive)
bound state energies of Ka. If #(a)=4, then Aa is defined as Aa—{Q}> We
further define the set Aa by -/la = U&Ca Ab and Ia(E) by

(2.3) Sa(E)={V2(E=Xj: X^A

for fixed energy E>Q. By definition, a^-^2E for
Let 5 be again the unit sphere in X. For given cluster decomposition a,

we define the subset Sa in S by

o)j~o)k if jak, a)j^cok if

If #(a)=2, then the set Sa defined above coincides with the set defined by
(1.2). Let coeS. Then we can determine a cluster decomposition a uniquely
so that a)^Sa. Hence the unit sphere S is decomposed into the disjoint sum
of Sa. We can easily see that if a)^Sa for some a, then all points in a small
neighborhood of a) on S lie in Sb with b(Za.

2.2. We are now in a position to formulate the non-propagation estimate
in question. The statement is fairly lengthy.

Proposition 2.1. Let energy E>Q and o>eS be fixed. Assume a) to be in
Sb for some cluster decomposition b. Then one has the following statements :

( i ) Let T be defined by (1.3). Assume that :
(a) <7>0 is not in Ib(E).
(b) /eC^C/fc1) has support in a small open interval U of a avoiding all the
points in S»(E).
(c) Q(x)^S°(X) has support in

(2.4) Cone(o>, d)={r(=X: r >1, r/\r -CD <d} .

Then one can take d, 0<5<1, interval IJ around a and interval F around

E so small that

where Er(H} denotes the spectral resolution of H onto P.
(i i) Let /3, 0</3<1, and <7>0 be fixed. Let Q(x) be as above. Assume that:

(a) /eC'Jt/Z1) has support in a small open interval 77 of a.
(b) FeS°(Z£) has support in {qb^Z'b: \qb—ao)\>^}, a)^Sb being identified
with a point in Z'b.
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Then one can take d, 0<d<l, interval II around a and interval F around
E so small that

(iii) The same estimates as in ( i ) and (ii) remain true for the truncated
Hamiltonians Ha.

Remark. We may say that the operators <*>-1/2Q(*)/(r) and <*>-1/2QO)
xF(Db)f(T) as in the proposition are //-smooth (or Ha -smooth) on F.

The statements (i) and (ii) follow as a special case from Propositions 6.7
and 6.11 of [3], respectively.

2.3. We end this section by making a brief comment on the above pro-
position. As stated above, the non-propagation estimate has been obtained by
[3] for general AT-body systems, including the case of long-range interactions.
However, this estimate has been proved under the additional assumptions that :

(2.5) OO^V^X-A+l)-1, 0>1, is bounded on

(2.6) (yVy)
zVjk(-A+irl is bounded on L8(/Z»).

The above restrictions have been essentially used to guarantee that the limiting
absorption principle holds ([11]) : <xy-P(H-(Jl±iKy)-l<xyP, j8>l/2 : L*(X) — >
LZ(X) is bounded uniformly in K, 0</e<l, and Ae/7, F being an interval avoid-
ing all threshold and bound state energies of H. By the smoothness theorem
([9]). this implies immediately that the multiplication operator <#>~^, j8>l/2,
is //-smooth on F;

Recently, this principle has been improved by [1] and [14] to remain true only
under assumption (V) in the case of short-range interactions. Thus we should
note that the non-propagation estimate as in Proposition 2.1 is true without
(2.5) and (2.6).

§3. Commutator Calculus

In this section we make a brief review of the commutator calculus de-
veloped by [3] which is used as a basic tool to prove the main lemma. For
details, see [3] (Section 5) or [5] (Section 2).
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3.1. We begin by introducing several new notations. Let B : LZ(X)— >LZ(X)
be a bounded operator. We denote by \\B\\ the operator norm of B. Let Xpi
0W-»<;t>^0W be the multiplication operator by <#>£. For given operator B
(not necessarily bounded) on L2(X), we say that B is of class 0 «^'>m), if
X-m+kBX-k extends to a bounded operator on L2(X) for any real k. We also
write B^Bz+O^y™), if the difference 51-£2 is of class

3.2. Lemma 3.1 (Proposition 5.1 ([3])). Let r be defined by (1.3). Assume
that: (a) /eC^R1); (b) geC^tf1); (c) FeS°(ZS, S° being defined by (2.1).
Then one has the following statements: (i) /(r)eO«x>0); (ii) g(/OeO«x>°);
(iii) F(Da)^0((xy0), w;/zer0 F(Z?a) is defined by (2.2) and is considered as an
operator acting on LZ(X) as well as on L2(Za).

Lemma 3.2 (Proposition 5.1 ([3])). Let f and g be as in Lemma 3.1.
Assume that Q(x)^Sm(X). Then:

( i ) C/(r),

( i i) COW,

(iii) COW,

Remark. The truncated Hamiltonian /fa has the same properties as in the
lemmas above.

Lemma 3.3. Let f, g and Q be as in Lemmas 3.1 and 3.2. Assume that
'a). Then:

( i ) COW,

(ii)

Proof. Statement (i) follows again from Proposition 5.1 ([3]). We shall
sketch a proof of statement (ii) only.

Define the operator <Z)> acting on LZ(X) by

and write

Then the commutator in statement (ii) of the lemma is written as

(3.1) [/(r),
By Proposition 5.1 ([3]), [/(r), F(JDtt)<JD>-1]eO«^>-1) and also it is easy to
see that <D>g(#a)eO(<;c>0). Thus the first term on (3.1) is of class O«^>~1)

We shall show that the second term is also of class 0«^>~1). To see
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this, we write [/(r), <Dyg(Ha)~] as

The last term is of class OCO)'1). Since the commutator [j, CDXT/a+z)"1] is
written as

it follows from assumption (V) that this commutator is of class O«j>"1) and
hence we have by Lemma 5.3 ([3]) that

[/GO, <Z?>(fffl+f)-1]eO«x>-1).

This proves that the second term on (3.1) is of class O^)'1) and the proof
is complete. D

3.3. Lemma 3.4. Let g^C~(Rl), Q(x)^S\X) and a)(=S. Assume that: (a)
a)^Sb for some cluster decomposition b; (b) Q has support in Cone(cu, d) for
<5>0 small enough, Cone(<y, d) being defined by (2.4). // b is a refinement of
a cluster decomposition a, then

for p as in (V).

Proof. The lemma is easy to prove. By assumption (V), Ha—Hb=0(\x\'p)
as |jc|-»oo on the support of Q. This implies the lemma at once. D

§4. Proof of the Main Lemma

We are now in a position to prove Lemma 1.1. The proof is very long
and is divided into several steps.

Proof of Lemma 1.1. In many situations of the proof, we use without
further references the basic fact that the multiplication operator X - p , /3>l/2,
is //-smooth or //a-smooth on interval F avoiding the threshold and bound
state energies of H.

We begin by recalling the notations in Section 1. Let E>0 be fixed. Let
F be a small open interval around E, so that F avoids all the threshold and
bound state energies of H. Let gQ and gi^C^(F) be non-negative functions
satisfying the relation g1gQ=gQ.

4.1. Lemma 4.1. Let {/a(#)}#(co=2 be the partition of unity on X as in Section
1. Assume that: (a) /eC^/?1); (b) o>eS6 for some cluster decomposition b; (c)
FeS0(Z&); (d) Q(x)^S*(X) has support in Cone(w, d) for some d>Q small enough.
If b is a refinement of a two-cluster decomposition a, then one has
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with the bounded operator

B=Xlfzgl(Hb)iHQ, ja-]gQ(Hb)Xl(z: L\X)-^L\X).

Proof. If we take account of the fact that F(Db) and g(Hb) commute with
each other, the lemma is proved by making repeated use of the commutator
calculus in Section 3. D

4.2. Let a)<=S be fixed. Assume o> to be in Sb for some cluster decomposi-
tion b. Let Ib(E) be defined by (2.3). Recall the representation (1.4) for the
term 03a(0 under consideration. Then, by Proposition 2.1 and Lemma 4.1, we
see that it suffices to prove the lemma for a term 7}a(t; <o) of the form

where non-negative functions Q, f and F have the following properties : (Q)
Q^S°(X) has support in Cone(o>, d) for some S>0 small enough; (/) f^C^R1)
has support in a small neighborhood of a, a^V2E, for some a in £b(E); (F)
FeS°(Zft) has support in {qb^Zb: \qb—aa)\<$} for some /3>0 small enough,
a being the same as in (/).

Here we should note that the supports of Vxja and Q(x ; w) intersect with
each other only for a two-cluster decomposition a such that b is a strict re-
finement of a; £ca and b^a. Thus we may assume that #(b) takes the
values 3 or 4 only. If, in particular, #(b)=4., then we may also assume that
x/\x\&S6 for all x in the support of Q, because 56 with #(&)=4 is an open
set in 5.

4.3. We now introduce a non-negative smooth function XfieS°(^), /?>!,
with the following properties: (i) Z/e has support in {x^X: \x >R} and
X*=l for \x\>2R; (ii) 19?^! ^C a<x>- ' f f | for C« independent of /?. Define
QR(x; co) as QR=ltRQ(x; (o) and ^oBtf; ft>) as

, /a] exp(-i

Then the difference ^ a(^; (t))—^aR(t', CD) is strongly convergent in L2(^) as
^-^oo. Therefore, to prove the lemma, it suffices to show that

(4.1) l imsup| |S#ca)=2exp(— i tHa)r]a R( t; w)\\x—o(l) as R

4.4. By the construction of {/aW}#ca)=2,
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and hence it follows that

where

xF(Db)QR(x ; aO/<r)[ffo, /a]

If 6 is not a strict refinement of a, then QR(x ; a/) vanishes on the support of
Vzja, as remarked above, and hence we can easily prove that for such a two-
cluster decomposition a,

uniformly in £^0. Thus we have only to consider the term ^aR(t\ a)} with two-
cluster decomposition a such that b is a strict refinement of a. Recall the
property (/.3) in Section 1 that ja(x) vanishes on Ya for \x >1. Hence, we
may further assume that

(4.2) QR(x ; o>) vanishes on Fa

for two-cluster decomposition a as above.
We now fix p close enough to 1/2 as follows:

(4.3) max(0, 3/2-

Then we have

Jo

as R-*oo. Therefore, (4.1) follows immediately, if it can be proved that

(4.4)

uniformly in ^0 and /?>!, where ^a«tf, s; o>), O^s^^, is defined by

In the following two sections, we will prove (4.4) separatedly according as
=3 or #(fr)=4.

§ 56 Four-Cluster Case

In this section we prove (4.4) in the case that b is the four-cluster decom-
position b— {1, 2, 3, 4} . For notational brevity, we fix a two-cluster decomposi-
tion a as follows:

a={l , (2 ,3 ,4)} f
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so that b is a strict refinement of a. By (0.5), the truncated Hamiltonian Ha

takes the form

on

and also we have

where K0=—(l/2)A is the free Hamiltonian on Lz(Ya).

5.1. We introduce the coordinates za on Za by

(5.1) Za=V3/4{r1-(r1+r,+r4)/3}

with the normalization constant V3/4 and we denote by qa^-Z'a the coordinates
dual to za. As is easily seen, Za^O on Fa only. By (4.2), <a does not lie on
Ya and hence the projection of co onto Z'a never vanishes. Thus we can find
a non-negative symbol F0eS°(Za) such that F0 has support in {<?aeZ'a: l/d<
\qa\<d} for some rf>l and that F(qb)—F(qb}FQ(qa). By construction, we have

QR(x;

Lemma 5.1. Let F0 be as above. Then, for any p>l/2, one lias

Proof. By commutativity, we can write

Since the multiplication operator <za>~y, v>l/2, is Ta-smooth, the lemma follows
at once. D

By making use of an argument similar to that in the proof of Lemma 5.1,
we see that it suffices to prove (4.4) for the term 0aR(t, s; o>), 0<Js^, defined
by

with L=QR

5.2. We calculate the difference

exp(— isKa)— exp(i(/— s)/f0) exp(— ft

Taking into account the relation

Ka-KQ=^^j<k^Vjk(rj- rk) ,

we represent this difference in the integral form;
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S t

o

and hence we have

s)/r0^

We analyze the operator exp(irKQ)Vjkt r^O. For brevity, we consider only
the operator with the pair (2,3). To do this, we introduce the coordinates

ya=(yi, yl) on Ya by

and denote by pa=(Pi, Pl}^Y'a the coordinates dual to Ya. In the above co-
ordinate system, the potential V23 is represented in terms of the coordinates
yl only;

and also we have

where KQj= — (l/2)A, l^/^2, is represented in terms of the coordinates y£.
As is easily seen, the coordinates yl

a never vanish on the support of QR and
hence we can find a non-negative symbol F1<=SQ(RGxR3) such that Fl has
support in

1a\/<za>, pi\, yi-Pi/\yi

for some d>l and that

(5.2) QR(x ; a))F(qb)=QR(x ; aWqdF^yi, za, pl
a} .

With the above symbol Flf we associate the pseudodifferential operator

(5.3) F^yl za, Dl
y)u = ( 2 7 L r s / 2 P ( i y 1 a ' P 1 a ) F 1 ( y l za,

za being regarded as parameters. By relation (5.2), the standard calculus of
pseudodifferential operators yields that

(5.4) QRF(Db)g1(HQ)=gl(H0)QRF(Db)Fl(yk} za, D^+0«xy>) .

Lemma 5.2. Let KQ1=—(l/2)A be again the free Hamiltonian in the coor-
dinates yl

a<^R*. Let Fl be as above. Then, for any &^0, one has

where \\ - \\ denotes the uniform operator norm when considered as an operator
acting on the L2 space over the ya-space.
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Proof. The lemma is easy to prove. We give only a sketch for the proof.
We write explicitly the term on the left side of the inequality in the lemma
by use of the Fourier transform. If we take account of the fact that the
outgoing free particle with initial state (yi, pi) in the support of Flf za being
regarded as parameters, is in the region { y ^ i \yi\ >C(l+r+\za\)} at time
r^O, the lemma is proved by making repeated use of partial integration. D

5.3. We now complete the proof of (4.4). Recall the representation for
the term aaR(t, s; tu). By (5.4), Lemma 5.2 with k — p, p being as in (V),
implies that

with v=p^rjLt— 1— s>l/2, s>0 being fixed small enough. This, together with
Lemma 5.1, proves (4.4) for the case #(6) =4.

§ 6. Three-Cluster Case

The present section is devoted to proving (4.4) for the remaining case
^(6)=3. The proof is done by making use of the same argument as in the
previous case. For notational brevity, we take the three-cluster decomposition
b as

b={l, 2, (3, 4)}

and fix a two-cluster decomposition a again as

fl={l,(2,3,4)}

so that b is a strict refinement of a.
In the above situation, the truncated Hamiltonians Ha and Hb take the forms

on Lz(X)=Lz(Ya)®Lz(Za), where T0 =— (1/2)A is represented in terms of the
coordinates za defined by (5.1).

6.1. We first look at the difference Ka—Kb. To this end, we introduce
the coordinates ya=(yi, yZ) on Ya by

(6.1) ;vi

so that

(6.2) r2-r3=V3723>?-VI7234, r2-r4=

In the above coordinate system, the Hamiltonian Kb acting on Lz(Ya) has the
representation
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where #02— — (1/2)A is represented in terms of the coordinates y\ and also the
two-body subsystem Hamiltonian

(6.3) #i=-yA+7M(V2]yJ)

is represented in terms of the coordinates y\ only. Thus the difference in
question is written as

(6.4) Ka-Kb=V2S(r2-rs)+V24(rz-r*)

with the coordinates rz— rB and r2— r4 represented in terms of ya through rela-
tion (6.2).

6.2. Next we analyze the operator QR(x; <o)F(Ddg\(Hd. Let qa^Z'a be
again the coordinates dual to za. We denote by pa=(Pa, pl)^Y'a the coor-
dinates dual to ya defined by (6.1). Then we can take qb=(p%, qa) as a coor-
dinate system on Z'b. If co^Sb with b={l, 2, (3, 4)} and if we represent a) in
terms of the coordinates qb, co being identified with an element in Z'bt then the
/^-component of a) never vanishes and it follows from (4.2) that <?a-component
also never vanishes. Recall the property (F) in Section 4 that F^S°(Zb) is
supported in a small neighborhood of ao) for a, <7^V2£, in Ib(E}. Hence
there exists d>l such that

suppFc{<?6=(£i, ?a): l/d<\pl\, \qa\<d\.

Let K1 be defined by (6.3). Then we have Hb=-(l/2)A+Klt where A is
the Laplace operator in the coordinate system zb=(yl, za). Recall that g^
C~(F) has support in a small neighborhood of E>0 and that \qb\

2/2>E— d for
^>0 small enough on the support of F. Thus we can write the operator
QRF(Db)g1(Hb) under consideration as follows :

za,

where the non-negative functions Fj} 0^/^2, and g have the following prop-
erties: (F0) FQ^S°(R3) has support in {qa ; l/dQ<\qa <d0} for some d0>l',
(FO F^SQ(RG) has support in {(ji, z f l); l ^ a l < ^ i < ^ a > } for some di>0 small
enough; (F2) F2<=S°(RGXR^ has support in

for some d2>l; (f) g^C^R1) has support in (—00, off/2), rfx being the same
as in (Fi). Here the pseudodifferential operator Fz(yl, za, D%) with symbol
F2(yl, za, pa) is defined as in (5.3) and also we may assume that di is so
small that
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(6.5)

Lemma 6.1. Let KQZ= — (1/2)A be again the free Hamiltonian in the coor-
dinates yl. Let F2 be as above. Denote by I(\yl\<d(zay} the characteristic
function of the indicated region in the yl-space. Then one has

*, za,

for any 7V>1, where \\-\\ denotes the uniform operator norm when considered as
an operator acting on the Lz space over the yl-space.

Proof. The lemma is proved by the same reasoning as in the proof of
Lemma 5.2. We have only to note that the outgoing free particle with initial
state (yl, pi} in the support of Fz never pass over the region {yl; \yl\<

(l/2)d2l(T+<za>)} at time r^O. D

6.4. Lemma 6.2. Let Kl be defined by (6.3). Let Fl and g be as above.
Then, for |zj>l, one has

with p as in (V), where \\ • \\ denotes the uniform operator norm when considered
as an operator acting on the L2 space over the yl-space.

A similar result has been already proved by Enss [4], although the for-
mulation of the result there takes a slightly different form. For completeness,
we will prove the lemma above in the last section.

6.5. We proceed with the argument, accepting Lemma 6.2 as proved. As
n the case #(&)=4, we represent the difference

exp(— isKa)— exp(i(f— s)#6)exp(— itKa}

in the integral form. By (6.4), this difference is written as

S t
exp(i(f— s)^6){F23+T/

24}exp(— irKa}dr.

We now recall the relation (6.2). If \yl Xl^d^dr-s +<za» and |;yi|<
) with ( d l t d*) as in (6.5), then

and hence \VZZ ^C<^I>~'° for (yl, yl) as above; similarly for F24. Thus,
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Lemmas 5.1, 6.1 and 6.2 enable us to follow the same argument as in the case
#(fe)=4 and we can prove (4.4) for the remaining case #(b)=3 also. Thus the
proof of the main lemma is now complete, although it remains to prove
Lemma 6.2.

§7. Non-Propagation Property in Two-Body Systems

In this section we prove Lemma 6.2. As stated in Section 6, a similar
result has been already obtained by Enss [4], including the case of long-range
interactions. The idea of proof is essentially the same as in [4], although the
proof in the case of short-range interactions is much more simplified.

We begin by rewriting the statement of Lemma 6.2 in the more simplified
form. Consider the two-body Schrodinger operator

T=— -A+t; on L\Rl},

where the real potential v(y), y^R3, is assumed to have the following decaying
property :

(7.1) \v(yy{£C(l+\y\rp, /o>l .

Let g^C™(Rl) be a non-negative function with support in (—00, A2/2), ^>0, and
denote by %(• ) the characteristic function of the indicated region in the ;y-space.

Proposition 7.1. Let the notations be as above. Assume (7.1). Denote by
|| • || the uniform operator norm when considered as an operator acting on LZ(R*).
Then one has

P(|;y|>(l+3Xtf+JO)exp(-iY^

uniformly in t^Q and /?>! large enough, where d, 0<d<l, is fixed arbitrarily
but small enough.

Proof. The proof is done through a series of steps.
(i) Let T0=-(1/2)A be the free Hamiltonian on L2(fiJ). Let g^C°^(Rl)

be a non-negative function with support in (—00, ^2/2) such that g=l on the
support of g. For notational brevity, we set

Ft=Z(\y
Since

(7.2)

it suffices to prove that

(7.3)

with another
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(ii) We can write the term on the left side of (7.3) in the integral fo ;m;

F££(T0) exp (-it
(7.4) „

-i\ Ftg(
JO

Define the multiplication operator Bt, ^0, by

(7.5)

and decompose g(T) as

g(T}=Btg(T)+(Id-Bt}g(T*)+(Id-Bt)(g(T}-g(TQ)).

Lemma 7.2. One has the following estimates :

(a) \\Ftzxp(-iTT0)g(TQ)Bt\\^CN(l+t+RrN, O^r^t, for N»l.

(b) \\(Id-Bt)g(TM\y\<R}\\CN(l+t+RrN for N>1.

(c)

Proof, (a) The term under consideration can be explicitly represented
by making use of the Fourier transform. By definition, the free particle with
energy in [0, >l2/2) starting from the support of Bt at time r=Q never reach
the support of Ft at time r, 0^r<^. Hence the standard argument using in-
tegration by parts proves (a), (b) This is an immediate consequence of Lemma
2.2 ([4]). (c) This follows from (7.2) at once. D

By Lemma 7.2, we see that the first term in (7.4) obeys the desired estimate.
(iii) We study the second term in (7.4). We first decompose the potential

v as

where

(7.6) Ui=vFfg(TJ, Ut=vFMd-g(Tty), Ut=v(Id-FT}.

According to the decomposition above, we write the second term in question
as fSj-iLj, where

Li= \ ' F«£(T,) exp (-«Xf-T)T.X/Xr) exp (-iYT)sCT)Z( | y \ <R)dT .
JO

By Lemma 7.2, (a), the first term Ll is evaluated as

(7.7) 11^11=0(1) sup ||Fr^(T0)exp(-irT)^(T)«|^| <R)\\

as /?->oo uniformly in fj>0. The second term L2 is also easy to evaluate
Write
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By (7.2), we have

This, again together with Lemma 7.2, (a), implies that

(7.8) ||

Lemma 7.3. For any Af>l, one has

The lemma above is verified in the same way as in the proof of Lemma
7.2, (a).

Let £73(r) be as in (7.6). If we write

U>(T)=Btv(Id-Fv)+(Id-Bt)v(Id-Fr)9

it then follows from Lemmas 7.2 and 7.3 that

(7.9) ||I,||£C(l+f+/?)-'.

Thus, combining (7.7)~(7.9) proves the lemma. D
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