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§0. Introduction

In [Y2], we carried out the program of realizing the crossed product by a
groupoid action as the left von Neumann algebra of a left Hilbert algebra
naturally attached to the given "covariant system". As a consequence, it was
shown, as in the case of group actions, that, for each faithful normal positive
functional q) on the algebra on which the groupoid is acting, there always exists a
faithful normal semifinite weight cp on the crossed product, called the dual
weight of (JP. (To avoid difficulty, we dealt with a positive functional only, not
with a weight). Several expected results were established such as the fact that
the modular automorphism group of q> extends that of cp. It is naturally expected
at this stage that this dual weight construction could be done also by exhibiting
an operator valued weight of the crossed product to the original algebra, as
Haagerup showed in [H4]. The purpose of this paper is to show that this
philosophy is indeed the case. The main strategy to achieye our goal can be
found in [H4]. However, since we know little about Fourier analysis (or harmonic
analysis) on a measured groupoid, we need to provide ourselves with relevant
information in this direction. For example, to the best of author's knowledge, no
one has ever intensively studied the "Plancherel weight" of a measured groupoid.
Thus, naturally, little is known about what functions must be qualified to be
called positive definite. Moreover, it should be remarked that the unitary operator
A(y) itself, where A(-) is the regular representation of a measured groupoid %
has no meaning in the crossed product M x^ by an action a of ̂  (it is not even
a member of M x^), while, in the group case, it is a typical kind of operators
that generate the crossed product. This fact makes our argument more difficult
than the one in the case of group actions. For example, because of this situation,
we need to adopt an approach in §4 which is different from, but still as
interesting as, the ones taken in [H4] or [E&S].
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Now we would like to describe the plan of the paper. In §1, we fix a number
of notations used throughout this note. We also recall several facts on the
groupoid algebra of a measured groupoid. In §2, we study the "Plancherel
weight" of a measured groupoid in detail and establish several results that will
be made use of in the following sections. We should remark that these results
themselves are of great interest. They will be treated in more detail elsewhere.
The section 3 is concerned with construction of an operator valued weight Ta of
the crossed product by a groupoid action a to the algebra on which the groupoid
is acting. The approach taken here is related to [E&S]. Roughly speaking, the
idea of how to construct Ta is to "slice" the dual coaction a by the Plancherel
weight q)^ of the groupoid <%\ Ta=(i*^(pg)°a. In §4, we prove that the dual
weight obtained through the method of [Y2] can be captured by composing the
originally given functional with the operator valued weight Ta. As we mentioned
above, the approach taken here is new. The key observation is Proposition 4.1,
which itself is of interest. Note that, in [Y2], we dealt with only the dual weights
of faithful positive functional . However, the result of this paper suggests that it
should be possible to extend the construction of [Y2] from positive functional to
weights.

§1. Notations

In this section, we fix notations used in the following sections. We shall also
recall several facts on a left Hilbert algebra constructed from a measured
groupoid.

Throughout this paper, we fix a standard Borel groupoid <% once and for all.
We assume that all relevant maps and sets that are related to the groupoid
structure of ̂ 'are Borel. We denote the source (resp. the range) of an element y
of the groupoid by s(y) (resp. r(y)). The unit space of <§, which is the image of
the groupoid under the source (or the range) map, is denoted by X. For every
x E.X, W (resp. <&x) designates the inverse image of the range (resp. the source)
map r~l(x) (resp. s~i(x)). By a measured groupoid (S, we mean that <% admits a
faithful proper transverse function {kx}x^x an^ a transverse measure A with a
module 6. If a system (<§, {A*}, A, <5) is measured, then there canonically exists
a a-finite measure ^ on the unit space X (see [Cl]). Using the measure ju, we can
obtain a cr-finite measure v on ^ given by v= $xk

xdiJi(x). We let Xx (x^X) and
v~l be the measures on <§ defined by

for any positive Borel function /on <S, where /(y) =f(y~l) (yE^). It is known
that v is equivalent to v"1, and that the Radon-Nikodym derivative dvldv~l is
the module d. Let 2£ be the abelian von Neumann algebra LX(X, p). Then the
Hilbert space L2(% v) admits two natural ^-module structures; one is derived



DUAL WEIGHTS ON CROSSED PRODUCTS 655

from the representation /z£3£'->M(/zor), and the other comes from the repre-
sentation /zE3£i->M(/z°s), where M(/) denotes the multiplication operator by
/eL°°(«, v). We write ^L2^, v) (resp. L2(% v)a) for L2(<S, v) when the
former (resp. the latter) 2£-module structure is specifically considered on L2^, v).
We define D(^L2(^, v), IJL) to be the set of all ^-bounded vectors in L2(^, v)
relative to the action h»-»M(h ° r) of 2£ with the faithful normal semifinite trace
/i. We refer readers to [C2] for the definition of a (^-bounded vector. We also
define D(L2(^, v)g, //) similarly for the other action. By Lemma 2.1 of [Yl], £ is
in DfeL2^, v), ji) if and only if A(| £|2) E LX(X, //), where A(/) is a function on
JST defined by A(/)(*) = J/(y)dA*(y) for any Borel function/on CS. On the other
hand, £ is in D(L2(^, v)a, M) precisely when A'(| £|2) E LX(X, //), where A'(/) is
a function on ^ given by A'(/)(*) = J/(y)dA*(y) with dA_i= cWAr.

In [Y2], we associated a left Hilbert algebra 93 / with a given measured
groupoid ((S, {A*}, A, 5). It was defined to be the set of all functions / in
D^L2^, v), n)nD(L2(<8, v)2, /i) such that / is Abounded and ||/||/<°°,
where ||.||/is given by ||g||7 = max{||A(|g|)U ||A'(|g|)|U}- Refer to [Ha] for the
definition of <3-boundedness. It is shown in §1 of [Y2] that 93 / is a left Hilbert
algbera (in fact, a Tomita algebra) in L2(^, v) with the usual convolution * as
product and/#(y) = 5(y)~1/(y~1) as ^-operation. The modular operator A and
the modular conjugation / are given by

= <5(y)/(y) (/e$B,) {//}(y) = 6(y)-1/2/(y-1).

The |?-operation is/b(y) =/(y x). We denote by JT€ (resp. Jir} the left (resp. the
right) multiplication of the Tomita algebra 93/. Namely, ftt(f)g = f*g=nr(g)f
for/, gE 93/. We may extend % (resp. jrr) to the left bounded vectors (resp. the
right bounded vectors). The left von Neumann algebra of 93/ is called the
groupoid von Neumann algebra <3l(<8) derived from the measured groupoid ((S,
{A*}, A, (5). It is known that this von Neumann algebra is equipped with a
££-module structure via the *-isomorphism h E 3£ •-» M(h ° r). We sometimes write
3£/? for the image of £E under this isomorphism, but we identify <3LR with ^ most
of the times. The image ^s of 2£ under the other isomorphism hE.(^L^'M(hos}
is contained in the commutant of 9l(^). Let qag denote the faithful normal
semifinite weight on 91 (<§) associated with 93/. We call (ptg the Plancherel weight
of CS. Besides the Tomita algebra 2?/, we would like to introduce a subset $}x of
58/ that is defined by 9?* = »/n L30^, v). The set 2?* is contained in all the
relevant spaces such as L2(^, v), L00^, v), D(^L2(^, v), JM) etc., and yet it is
"sufficiently large'1, as you will see in a moment. So 93^ can be regarded as a
"good" substitute in the measure-theoretic setting for 3{(^), the set of all
continuous functions with compact support, in the topological setting. 937 turns
out to be a #-subalgebra of 93/. Indeed, if/, g E 937, then we have that ||/*g||oc ^
ll^d/l2)!!-2!!^^!2)!!-2 by Schwarz inequality; so/*gE»?. A vector / is da-
bounded if and only if/# is ^-bounded; so/E 937<^/# E 937- Moreover, by the
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same argument as in Lemma 1.7 of [Y2], we may prove that 337 is a left Hilbert
algebra (in fact, a Tomita algebra) equivalent to 33 / (namely, 335°)" = 33/).
Accordingly, the left von Neumann algebra of 33^ is 91(CS). It should be remarked
that all the results established in [Y2] involving the left Hilbert algebra 33, still
hold valid even if we substitute 337 for ^/ in the proofs or discussion. For
example, in the definition of ^(M) (see §2 of [Y2]), the condition (Fl) can be
replaced as follows: (Fl)' /flE L°°(% v), ||/J,<«> and A(/,2), K(fi}^L™(X, M),
where fa(y) = ||0(y)||. Let us denote by &*(M) (or simply by &%) the set of all
such «'s. Then all the arguments in §2 of [Y2] work even for SF*. Moreover, the
crossed product M x^ by a groupoid action a is generated by elements of the
forms a®^l (a EM) and (M® A)(/) (/E»7) (see Theorem 2.14 of [Y2]).

For a weight ^ on a von 'Neumann algebra 8P, we use the conventional
notations as follows:

mx = nxnx = span [x*y :x, y E nx} .

For an operator valued weight £" from 9 onto a von Neumann subalgebra 2., we
put

= span {x"y : x, y E

Important results on operator valued weights can be found in the literatures
[H2] and [H3].

Finally, we refer readers to [SI] for fundamental facts on relative tensor
products of Hilbert spaces and von Neumann algebras over an abelian von
Neumann algebra.

§2. The Plancfaerel Weight q><$

In this section, we investigate the Plancherel weight <pg in great detail. Then
we establish a result (Proposition 2.7) that will be used in the next section. In
the course of discussion, we introduce a set, denoted by 9>((S), which is connected
with "positive definite functions". This set will play an important role in the
following sections.

Let 9 and 21 be von Neumann algebras acting on Hilbert spaces (X1 and $£2>
respectively. We assume that these algebras are both ^-modules. We form the
(2£-)fiber product SP%a on the relative tensor product ^C1®^2-

 For normal
positive linear functional a>i and o>2 on 2P and a, respectively, satisfying
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a normal positive function (DI *^ co2, called the ^-product of o^ and a)2, on 3> % a
was defined in Proposition III. 4 of [SI], where dcoi/d^L (i = 1, 2) are the Radon-
Nikodym derivatives of the restrictions of o>/'s to 2E with respect to \i. If o)/'s are
vector functional of the form co, = a)% ( £,- G 3C,- (z = 1, 2)) with & E D(Wh p) =
the set of ^-bounded vectors in 3C/, then the condition (*) is automatically
satisfied and 0)1*^0)2 turns out be the vector functional cogi®u^. This fact will
be often used hereafter in our discussion.

Next we introduce a concept of a ££-weight (Definition III. 10 of [SI]). A
weight 0 on a von Neumann algbera 91 with a ££-module structure is called a
££-weight if <t>(uxu) = (f)(x) for any x e 91+ and any unitary u E 3£. Let $> and a
be as above. Suppose that £P admits a HE- weight 0. We define

>+:o)(x)<<t>(x) for all JtE9>+}.

It is well-known that 0(jc) = sup {a)(x) : co e O ,̂} for any x E. &+• If # is a normal
positive functional on a with dx/d^ bounded, then we put

0*1**= SUP a*nX.
(D^Q^

If x is in at with dx/d^L not necessarily bounded, then we choose a faithful
normal semifinite trace T on 3£ with dx/dr bounded, and set

It is shown in [SI] that this definition is independent of the choice of r with dx/dr
bounded. In any case, the weight 0*^ turns out to be a normal weight on
9*% a. These are the notions necessary for our later argument.

Now we begin to make a close investigation on the Plancherel weight of a
measured groupoid.

Lemma 2.1. The algebra ^R is contained in the centralizer of <p$.

Proof. Recall that the modular operator A of 3?/ is defined by

Then it follows that AirM(h ° r) A~lt = M(h ° r) for any h e ^ and t e R. Q.E.D.

Lemma 2.2. TTzere e#wfs a unique faithful normal semifinite operator valued
weight T from 3i(^) onto ^R such that qx$ = u° T.

Proof. By the previous Lemma, we have of* = id = af on 2E(= 2E/?), where
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a? denotes the modular automorphism of a faithful normal semifinite weight x
on a von Neumann algebra. The assertion now follows from Theorem 5.1 of
[H3]. Q.E.D.

Lemma 2.3* The weight cp^ is a ^-weight on yi((S).

Proof. Let wE3£ be a unitary. Then, due to the preceding Lemma, we
have

for any a e St(<§)+. Q.E.D.

We define a set So(^) to be the set of vectors h G L2(% v) satisfying

(2.4)

for all Borel functions /E 33/. Several remarks on %(^i} are in order. Firstly,
Fubini's theorem tells us that the left-hand side of (2.4) equals \\Jt€(f)h |2.
Meanwhile, the right-hand side is equal to ||/ |2, which, by definition, equals
<Ps(^(/V %(/))• Consequently, inequality (2.4) is equivalent to \\jit(f)h\\2 <
||/||2. Thus the set SfyCS) coincides with the set of all right bounded vectors h
with ||jrr(/z)|| <1. Secondly, we assert that

(2.5) QVii

In fact, if /zE9i
0(cS), them, for any left bounded vector/, we have

It follows that a)h(a) < q^(a) for any a£9l(c§)+. Conversely, suppose that
euefi^. Since (91(<S), L2(^, v)} is a standard representation, there exists a
vector h G L2^, v) with w = a)/,. Then, for any /£ s^/, we compute

Thus /zES^oC^). Therefore (2.5) follows. From (2.5), it results that, for each
ae9l(£S)+, we have

fl : h
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However, a more powerful identity holds true as you shall see below. Before we
state the identity, we introduce a new set. We put

DfeL2e§, v), p).
This set will play a central role in the discussion that follows.

Remark 2.6. From the above remarks on S^oC^), it follows that a vector h
in L2^, v) belongs to $>(<§) if and only if h is a right bounded vector in

% v), p

Proposition 2.7. For every a&(3l(¥t}+, we have

Proo/. Due to (2.5), it suffices to show that the right-hand side of the
assertion majorizes the other. Before we proceed further, we make one obser-
vation. Let /E*/ and gES^). Since / is in DfeL2(^, v), //), there is a
positive number C such that ||M(A:°r)/||2< C^\k(x)\2dfj,(x) (fcEn^). Then,
for any k E n^, we have

\ \ M ( k ° r ) j T ( ( f ) g \ \ 2 = \ \ M ( k ° r ) j t r ( g ) f \ \ 2

The second equality is guaranteed by the fact that M(k°r} commutes with nr(g).
The third inequality is due to the remark on SPoC®)- The computation means that
the vector %(/)g belongs to D(%L2(^, v), p). Since 23/ is a Tomita algebra,
every element in 8J/ is right bounded; so the vector %(/)g=/*g is also right
bounded. Moreover, we have ||^r(/*g)|| = ||^r(g)^r(/)|| - ||-^r(/)||- It follows
from Remark 2.6 that the vector ;r€(/)g lies in &(<3) if g E g>0(<S) and /E 33/ with

Now we move on to the proof of the assertion. Let a E Sft(c§)+ and g E
First we assume that a112 E n^. Namely, a172 is of the form 01/2 = jt€(p) for some
left bounded vector p. Since jrr(9?/) is a cr-strongly dense *-subalgebra of the
commutant S/l((S)', it follows from Kaplansky's density theorem that there exists
a net {£} in SS/ such that ||jrr(/i)|| ^ 1 and the net {nr(fi)} converges a-strongly
to 1. Due to the first paragraph, vectors Jr€(/})g are in ^(^). Moreover,

lim (oni(fi)g(a) = lim \\Jt€(p)jt€(fi)g\\2



660 TAKEHIKO YAMANOUCHI

This implies

c

Thus, by (2.5), we have

Next we would like to show that the quantity sup (0^(0) : h ES?>((S)} is
infinite if «1 / 2€nV f . Suppose that it were finite when a1/2£n^f. Without any
loss of generality, we may assume that sup {(Dh(d) : h E 2P((S)} = 1. Since {h E s$/ :
||jrr(A)|| < 1} CSP^S), it results that

for any h E 2?/. By this inequality, the equation

defines a continuous linear map £from Jrr(33/) into L2(% v). So we may extend
£ to a bounded linear map, denoted by £ again, from the uniform closure ^4r of
jrr(3?/), which is a (nondegenerate separable) C"-algebra. For any /z, &E3?/, we
have

= aU2(k*h)

= amnr(h)k

= jtr(h)a1/2k

=

Thus continuity of £ yields

for any 6A, b2^Ar. Let {w,z}n>i be a countable approximate identity for Ar.
Then we have that || £(un)\\ < 1 for any /i > 1. Since the unit ball of L2(^, v) is
weakly compact, there exists a subsequence of { £(«„)} that converges weakly to
an element p0 in L2(^, v). Without loss of generality, we can assume that
itself converges weakly to p0- Then, for any A:, ^! E 33/, we have
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Thus we obtain Ttr(k}p^ = all2k (/cG9?/). It follows that p0 is a left bounded
vector with jr^(p0)

 = «1/2
? which is a contradiction. Consequently, the quantity

sup{a)h(a) :h^9(^}} is infinite if a^SEn^. Since <pcg(0) = 3° if a1/2€n^, we
get the desired identity . Q . E . D .

As a consequence of Proposition 2.7, we obtain the equality:

sup f(/**/)(y)(/z*fcb)(y)<My) = f|/(y)|2<My)
=<>< J J

for any left bounded vector / in L2^, v). However, we can prove a much
stronger identity as below.

Proposition 2.8. Suppose that f is a Borel function on <§. Then we have

sup J(/**/)(y)(/z*^)(y)dv(y) = J|/(y)|2dv(y).

The above quantity may be infinite.

Proof. First we assume that /EL2(^, v). Then, as we noted before, the
desired identity can be written as

SUp ||jrr(/0/l|2=l"112

Since ||jrr(/z)|| <1 for any /zG9 i(cS) by Remark 2.6, it follows that
\\Jir(h)f\\2^ \\f\\2. Recall that {AE9?,: \\nr(h)\\ < 1} is a subset of <3>(<S). Thus,
by Kaplansky's density theorem, there exists a net {/z/} in 9i(cS) such that {jrr(A/)}
converges cr-strongly+ to 1. Hence

sup
1 /zGSP(^)

Therefore we obtain the assertion.
Now we assume that /is not in L2(% v). It suffies to show that the left-hand

side of the desired identity is infinite, but we suppose that it were bounded by a
positive number M. Then, by Fubini's theorem, we have that f*h E L2(% v) for
any AeSP^). Since {h E9?,: \\Jrr(h)\\ < 1} CSP^), it follows that, for any
fcEa?/,/*/iEL2((8, v) and

By arguing like the previous Proposition, we may obtain a bounded linear map £
from the C^-algebra Ar, the uniform closure of flrr(83/), into L2(^, v) charac-
terized by the equation
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We observe that, for any h, & E 3?/, we have

%(nr(h*k)) =f*h*k

Thanks to the continuity of £, we deduce that

for any 0, b^Ar. Let us fix an element &E33/. Then we define a linear
functional y>k on Ar by

<pk(a) = (Z(a)\k) (aEAr),

which is bounded, because £ is continuous. Again, by arguing like Proposition
2.7, we can assume that the sequence {£(M,I)},Z>I converges weakly to an
element gEL2^, v) if {«„} is a countable approximate identity for Ar. Then,
for any a E Ar, we have

%(fl) = Urn ^(flwn) = lira ( %(aun)\k)

This shows that

(£(«)!*) =

for any a^Ar. Upon replacing a by jrr(/x) (^GS3?/), we get

for any A E 33/. Let /z, /: E 33/. Then, by Fubini's theorem,

This shows that

for every p E 33/ . Since the unit ball of 2?/ is dense in that of L2^, v), we have

which is a contradiction. Q.E.D.
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§3. Construction of the Operator Valued Weight Ta

This section is concerned with construction of a faithful normal semifinite
operator valued weight of the crossed product by a groupoid action to the
algebra on which the groupoid is acting.

Throughout this section, we fix an action (^, {M(x)}x^xi {^y}ye^} of c§-
Let %C(x) be the canonical L2-space of M(x) in the sense of Kosaki [K]. We set

f® fe
,= M(x)dp(x), Ht =

JY ->x

We denote by w(y) the canonical unitary from %t(s(y)) onto ^(r(y)) imple-
menting the *-isomorphism ar that is, aY = Adu(y) (see [HI]). From this
action, we construct the crossed product algebra Mxa^i. We refer readers to
[Yl], [Y2] for its construction and the details. On M x^SS, we have a coaction a
of <§, called the dual coaction. Since we will deal with the dual coaction intensively
in this section, we first recall how we constructed it in [Yl]. The crossed product
Mxa<8 acts on the relative tensor product ^ = ̂ i®^^L2{^, v), which is the
direct integral Jf^O) <g> L2(<S*, ^)d^(x). Note that we can identify
3C ®^L2((8, v) with the set of all functions 77 from <S into Ux^x 9€(jt) such that
(i) ij(y) e3C(r(y)), (yG«); (ii) the function ^e^^J/m,,(r)(^,h(y))^(y)
is measurable for any m, rcGN, where {£„}„>! and {/m}m>i are fundamental
sequences of measurable fields for (3€(jc)} and {L2(^, Ar)}, respectively; (iii)
J||??(y)||2dv(y)<oo. The norm of such a function rj is defined by

I = (Jlk(r)l|2^Hy))1/2. Next we consider the Hilbert space f -^® M

, v)®M^L2((S, v). In terms of a direct integral.decomposition, we have

; Jv

Note that we may identify the Hilbert space 2C with the set of all functions r/
from ^€(2) into /I^jr a^(jc) such that (i) ^(y1? y2) ̂ 3€(K7i)) for anY (7i> 72> in

); (ii) the function given by

is measurable for k, I and m G N, where {/„}„>! and { ̂ m}m>i are as before; (iii)
J l l ^ C y i j y2)||2^v1(y1, y2)<°°. Here v1 is the Borel measure on the standard
Borel space

determined by the integral

f /(ft, y2)^v1(7l, 72) =H f/(ft,
J^(2) J J J
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where /is a positive Borel function on 3€(2). The norm of a vector rj is given by
lkll = (J lk(yi> 72)H2^n(7i3 72))

1/2. Similarly, we may identify the Hilbert
space 3^ = 9€ <8^L2(% v)a ®^L2(% v) with the set of functions f from (S(2)

into nx^xW(x) such thatJi^fCy,, y2) E^(s(7l)), ((yx, y2)ec§(2)); (ii) the
function: * E J f - > J J/A,,(7i)//,,(r2)(^,,| t(7i, 72)W(7l)^(y2) is

measurable for any k, I and mEN, where {fn}n^ and {£m}msl are as
above, and / is the modular conjugation of 93/; (iii) £ is v2-square-integrable:
Jl l£(7i , 72)||

2^v2(y1? y2)<oc. The measure v2 is the Borel measure on the
standard Borel space ^(2) defined by the integral

The norm of such a function £ is || £|| = (J| |£(yi, rz)||2rfv2(n, 72))1/2- It
shown in Lemma 4.3 of [Yl] that there exists a unitary W^ from X onto
defined by

{WfcijKtt, y2) = n(yi)>(yi, 7i72) (»?£*, (71, 72)

The inverse is given by

We need to introduce one more unitary to define the dual coaction. Note that
there is a 2£ action on 3£ given by h E 3£ ^ 1 ® <%M(h°s). Let us write X^ for X if
this action is particularly considered. The above action commutes with that of
Mxa<3. So we may form the relative tensor product of X^ and &L2(<3, v).
Suppose that £e ft and/E D(<%L2(<$, v), ju). We denote by ^0^/the elementary
tensor of ^ and / in ^(g^L2^, v). Then it is observed in [Yl] that the
equation

defines a unitary from X^ ®^^L2(^, v) onto 9^. Now, since the ^ action on X^
commutes with that of Mx^, it makes a perfect sense to form y®%l on
3fcr®,1,2:L2((S, v) for jEJix^^. (We hereafter write y ®21 for the above
tensor product so as to distinguish it from the relative tensor products on
fg = ^ ®AiaL

2(cS, v)). We define a ^-isomorphism S from Mxa<$ into SE(^) =
the set of all bounded operators on X by

This morphism a serves as the dual coaction of ^ on the crossed product M x a<&.
Set ̂ s(f ) = 2(3C) H {1 ®o^M(/io5) : h E3E}'. For any Y E ̂ s(f ), we put

where the operator Y®$1, of course, denotes the relative tensor product of Y
and 1 on ̂  ®AI<ZL2((8, v). Then His a *-isomorphism from <§^s(^) into
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We note that the restriction of II to the crossed product M xa<g is nothing but
the dual coaction a of CS. We now consider the von Neumann subalgebra
£(W) ^L00^, v) = &z(3K) ®sLQO((§, v) of ̂ s(^), where £fcg(3K) = £(3€) n 2' =
the set of all decomposable operators on %£ = J®^(j

Lemma 3.1. WzY/z f/ie 0Z>ove notations, we have

for any Y0(E£(W} *aL
ao(<S, v).

Proof. Let r= Jf T(x}d^(x} E£z(3K) and KELT'S, v). Then, for any
, v), ^) and any (yl5 y2)E^(2), we have

, y2)

, y2)

We also have

1, y2)

These calculations show that /J(r®^ M(fc)) - T®^ Af(*) ®2 1. Thus we obtain
the desired identity. Q.E.D.

In what follows, we let ^ + (9i) denote the extended positive part of a von
Neumann algbera 2P in the sense of Haagerup [H2].

For each Ye^s(i)+, we define a map S(Y) on ^(i),+ by

- sup

Then it is easy to see that S(Y) in an element of cg + ( 2 ( ) ) . We note that 5 is
additive, homogeneous and normal. Moreover, due to Lemma 3.1, we have

(3.2)

for any l^E^^^L30^, v) and YE^s(^). Indeed,
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)= sup
h£.g>C&

= sup
/zes?^

= sup

Let P be a unitary from 3€<8^L2C§, v)a onto 3€ defined by

Here 3C ®JUL2(CS, v)^ is regarded as a set of functions ry from <§ into /IreA-3C(jc)
satisfying 77 (y) E 2E(s(y)) and some other conditions (see fYl]). We note that P
is a ^-module map from 3C ®^L2(^, v)a onto ^. Hence P"^(^)P is the set
of all decomposable operators on 3€ ®ML2(^, v)a. Let ^ = J® riitXdfji(x) (i = 1, 2)
be Abounded vectors in 3€®^L2(% v)^ = Jf 3€(*) ® L2(^, AiJrf^jc). For
each *eX, we denote by t^^x) the operator of rank one given by

®L2(<8,, A;)).

It is easy to see that the family {^^C* )}*£;* is a bounded measurable field of
operators. Thus it defines a decomposable operator t^jJb on StO^L2^, v)s by

f
^i,»fe = JJx

We write tn for tn „. Set

^ = span{^ ^ : ry/'s are as above.}.

Then J> is a a- weakly dense two-sided ideal in the set of decomposable operators.
Consequently, P$P^ is a a-weakly dense two-sided ideal of ^(3^). If rj is a
vector in D(3C®AXL2(«, v)2, JM), then, for any ^E3«®AiL

2(% v)a, we have

Thus the operator Pr^P* acts on 3^ in the following manner:

for any ^e^.

Lemma 3.3. Ler ?y be as above. Then, for any £e3€, we have
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Proof. Let A^ denote the operator defined by the right side of the above
assertion. For any £e^, /eD(sL

2(<S, v), //) and (yi, y2)e2e(2), we compute

We also have

l5 y2)

It follows that W^V^(PtrlP"^l)=AriW^V^. Therefore n(Ptr,P*)=Ari.
Q.E.D.

Proposition 3.4. The map S is a normal operator valued weight from &<%
onto ^^sL^CS, v).

Proo/. Let r]<^D(W®^L2(^, v)2, JM), ̂ E and Ae^(«). Then, by
Lemma 3.3 and Fubini's theorem, we get

,Yi)

(yi> yz)

where <7(y) = ({P^}(y)| ?(y)) (yG^). By Proposition 2.8, we have

5(Frt)JP
i)K) = |k#(y)|2rfv(y) = |6(y)|({P77}(y)l^(y))|2rf

It follows from (3.2) that, for any fcEL"^, v) with \k\ = 1, we have
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= S(Ptr]P

Hence S(P^P*) is affiliated with {C®2ELac(«, v)}' = 2(3C)*2L
30(«, v) (c.f.

Definition 1.8 of [H2]). Since the set of operators P^P* is the positive part of
the cr-weakiy dense two-sided ideal P^P* in ̂ s(^), every YE3ks(3t)+ can be
written as the limit of an increasing net of elements of the form P^P*. It follows
from the normality of S that 5(Y) is affiliated with #(3€) *^L°°(CS, v) for every
ye<So£s(^)+. So the map 5 is a normal operator valued weight from ,2^(3^)
onto#(3€)*«zL

3C((S, v). Q.E.D.

In order to obtain a faithful normal semifinite operator valued weight from
M x^ to M ®^C, we just restrict the map 5 to the crossed product. It is not so
difficult to show that the restriction is faithful and normal, except that it is
semifinite. For semifiniteness, we need to prepare a few lemmas.

Let/E 23, and £<E £ Then we consider that vector /®M £ in L2(<8, v)s ®^ W.
Since the operation of taking relative tensor products of Hilbert spaces is
associative and commutative, the space L2(% v)^®^3€ can be identified with
3£i. (In other words, there exists a ^-module unitary from L2(^, v)<$ ®At^ onto
^i). We denote by fx^ % the vector /®^ § in ^x under this identification.

In what follows, we will consider the operator (M® A)(g) (gE9J/) on 3C,
which is a typical element in the crossed product. We refer readers to Lemma
2.10 of [Y2] for the notation (u ® A)(g). It is shown in Lemma 4.4 of [Yl] that
2((M®A)(g)) = (M®A®A)(g) , where ( w ® A ® A ) ( - ) is the integrated form of
the representation u(y) ® A(y) ® A(y) of ^ on the Hilbert bundle

Lemma 3.5. Ler /E »* anJ ^G t. Then

/or flny ngfe bounded vector hED(^L2(^S, v), //).

Proof. Let /c E L2^, v) and 17 be an element in 2£ such that the function /^
defined by /^(y) = ||^(y)|| (yE^) belongs to $}/. Note that the set of such
vectors r\ is dense in 3t. By Fubini's theorem, we get
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(3.6) (5((w

where p(y) - J (^r)£(r~Vi)N(ri))dAr(r)(yi). We claim that the function f-p

belongs to L2^, v). Indeed, we have

where /|(y) = || £(y)||. Then, due to Schwarz inequality and Fubini's theorem,

dv(y)

Suppose that / is 5fl-bounded. Then

Thus we have

This shows that f-p eL2^, v). It follows that (3.6) can be written as

(3.7)

Meanwhile, the vector W^fx^^) falls in 3f. If o denotes the unitary from
L2(W(2\ vi) onto itself induced by the rule (yi, y2) £ 3^(2) •-* (y2, n) E 3e(2), then
(1 ®acr) W^(/xA,|) still lies in 3€. Fubini's theorem then yields the identity

(3.8) ((l®aa)H£(/xM£)|7,®,,*) = (/.p|*)

for rj, /: as before. Let us take a sequence {hn}n>l in 93 / with ||;rr(ft/z)|| < 1 such
that {jrr(/z/z)} converges a-strongly to 1. It follows from (3.7) and (3.8) that
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(3.9) U

Let ge53/. In view of (3.7) and (3.9), we have

v a) W^(fx^) \ rj ®^

II— »

= lim S(«

The fourth equality is due to commutativity of operators a((u® A)(/)) and
1 ®£ jrr(/i). The computation shows that

The assertion of the lemma is an easy consequence of this identity. Q.E.D.

Lemma 3.10. Let f and | be as in the previous lemma. Then

sup ||£((M<8>A)(/))(£®Mfc)||2= f A'(|/|2)
J

Proo/. We first note that

Thus the assertion is equivalent to

sup

However, thanks to Remark 2.6 and Lemma 3.5, the quantity on the left-hand
side is majorized by the one on the right.

To show the reverse inequality, we introduce a linear map £ from jrr(3?/)
into 3? given by

= a((u ® A)(/))(§®Mfc) (/i E SB,).



DUAL WEIGHTS ON CROSSED PRODUCTS 671

Since nr is one-to-one, the map is well-defined. It is also continuous by Lemma
3.5. So it can be extended to a bounded linear map, denoted by £ again, from
Ar = the uniform closure of Jrr(

s3?/) into 9€. If ft, &£$?/, then

Thus continuity of £ implies that (1 ®s«) £(fc) = £(ab) (a, b£Ar). Let {/!„}„> i
be the sequence that appeared in the proof of Lemma 3.5. We remark that
{jtr(hn)} is an approximate identity for Ar. By Lemma 3.5, {^(jtr(hn))} is
bounded; so, by considering its subsequence, we may assume that { £(rtr(hn))}
converges weakly to an element £o^^- Then, for any aE:Ar, we have

The calculation shows that the functional a ̂ Ar^> ( £(a)\ £0) extends to a normal
positive functional q)% on ^l(c§)'=the weak closure of Ar. Since (2ft(c§)',
L2(% v)} is a standard representation, there exists a vector ^EL2(^, v) such
that (/?£ = o>|. For any /z E SS/, we obtain

= Urn ( £

W n,(hn)))

Since || §||2 = sup {|| ̂ */z| |2
:/ze 9?/ with ||^r(^)llsl}5 it follows from the above

calculation that

< sup

Hence it suffices to show || £0||
 = ||/X §||- Recall that £0 is the weak limit of the
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sequence {a((u® A)(/))(£®M /!„)}„>!- This fact together with (3.9) shows that
£o is nothing but (1 ®^ o) W^(/x^ £). Since both 1 ®^ a and W^e are unitaries,
we obtain the desired identity || Co I = ||/x/u £||- Q.E.D.

Theorem 3.11. The restriction Ta of the map S to the crossed product M X a <§
is a faithful normal semifinite operator valued weight of Mxa^ onto M ®^ C.

Proof. Since the restriction of the morphism U to the crossed product is
the dual coaction 5, we have

Ta(Y)(oJ)=(S(Y), a *„({%)= sup

for any YE. (M xa
cS)+ and <wE (,/M, xa<$)+. Then Ta is a normal, homogeneous,

additive map from (M *«<&)+ to ¥>+(M xa<S). In view of (3.2), we have

Let us fix an element YE:(Mxa
<&)+ and consider the spectral resolution of

Ta(Y) (see [H2]):

a(Y)=lJo

From Proposition 3.4, it follows that operators e^ (AE [0, »)) and /? belong to
the algebra (M x^) n (C ®2L

ac((8, v))'. Thus we have

for any k E L00^, v). Now we can follow the argument of the proof of Theorem
2.6 of [Y3] in order to conclude that e^ p in fact belong to JKS^C. Hence
Ta(Y) lies in ^+(J/l(8)^C). Thus we have shown that Ta is a normal operator
valued weight from M xa<$ to Jt ®^C.

Suppose that Ta(Y*Y) = Q for some YeJ/lx^. This means that, for any
£E3€, we have to have

- sup
h^<3>(<§

= sup

It follows that £(y)(£(8>At/z) = 0 for any £E ft and h G 9)(CS). Since 2?>((S) is total
in L2(% v), the operator a(Y) must be 0, which implies that Y = 0. Hence F^ is
faithful.

It remains to show semifiniteness of Ta. Let /E33f. Then

for any /zG^C'S) and £e. By Lemma 3.10, we have
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£ = sup

This shows that T«((u® A)(/#*/)) - A'(|/|2) ®21. It follows that the operator
(/G93f) belongs to the left ideal nTfl. Accordingly, the *-algebra
) is contained in nrn. Since n^n is a two-sided module over J/KS^C,

it also contains the *-algebra generated by M®^C and (u® A)(s3?f), which is
a-weakly dense in J/lx^. Therefore, the operator valued weight Ta is semi-
finite. Q.E.D.

§4. Construction of Dual Weights

In [Y2], we showed that, to each faithful normal positive functional cp on M,
there corresponds a faithful normal semifinite weight <p on the crossed product
M x^, called the dual weight of cp. Meanwhile, we may define, for a given cp, a
faithful normal semifinite weight <p on Mxa<3 by ^=(p°I~loTa, using the
operator valued weight Ta, where Ia is the canonical injection of M into M ®^C.
Our aim in the following discussion is to show that the dual weight <p coincides
with $5. Thus the dual weight construction introduced in [Y2] can be extended by
making use of the operator valued weight Ta, as in the case of group actions.

Let (CS, {Jl(;t)}, {#y}) be an action of <8. In what follows, we keep all the
relevant notations introduced in the preceding sections. Let us fix a faithful
normal positive functional cp on M. We consider a direct intergal decomposition
<P= J® <Pxdf*(x) relative to M = J® M(x) dft(x) (see [Su]). We may assume that
each cpx is a faithful normal positive functional on J/t(jc); so we may identify %C^
(resp. 3C), the Hilbert space obtained by GNS construction from cpx (resp. cp),
with the canonical L2-space ^C(jc) (resp. 3£) of M(x) (resp. J/L). In [Y2], we
constructed, from the given system, a left Hilbert algebra 91 ̂  whose left von
Neumann algebra coincides with the crossed product. Let Ay be the modular
operator associated with 91 .̂ (See Lemma 2.6 of [Y2] for Av). Since A^ com-
mutes with the canonical ^-action on 3C, A®&l makes sense on 9£. We set

Proposition 4.1. WzYA ^/i^ notations as above, we have

Proo/. First we note that [Z'J, 1 ®^ M(h°s)] = 0 for any t GR and A e 2E.
This fact can be easily verified due to Lemma 2.6 of [Y2]. Thus ^®^1 makes
sense on ^^^^L2^, v). (Recall the notation ®<% introduced in §3). For any
£e^ and/E9J/, consider the vector |<§>M/in 3ea®Ma:L

2(cS, v). (See §3 again
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for ®At). Then we have

, y2).

The above equalities are due to the fact that {WiV^(^®Ai/)}(yi, y2) =
£(y!). Hence we have shown that W^V^(A^§)^1) = (4£®21) W^. From
this, it follows that, for any Y^M x^, we have

Therefore, we obtain the desired identity. Q.E.D.

Lemma 4.2. TTie weight cp is o^ -invariant. Namely ,

Froo/. Let cwE (H x^^)^ and ye(jRxa^)+ . Then w is of the form
co = cc>£ for some £E 3€. It follows from the definition of T^ and Proposition 4.1
that

) = sup
/ie9>(<S

- SUp
/ze^(^

= sup

= Ta(Y)(co°of)

= of°Ta(Y)(a>).

This shows that Ta(of(Y}) = of ° rff(Y). Since TJY) lies in «+(it®sC) and
since aj(a ®% 1) = of (a) ®<% 1 for any a £ jM, by Lemma 2.16 of [Y2], we have
that o?°Ta(Y} = Ia°o?°I-l°Ta(Y). Consequently, we obtain Ta(of(Y)) = Ia°
af°I~l°Ta(Y). From this, it follows that
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This completes the proof. Q . E . D .

Lemma 4.3. Let a e 3F£ n ($^)# and £ e 3C. Then the function ax^% given
by (flx^Xn, r2)-«(ri)"(ri)§(rr1r2) ((n, y2)e^(2)) 6e/ongs to f. More-
over, w

/or 0ny rig/tf bounded vector ftGD^L2^, v), ^).

. Define functions /„ and/ sby/ f l(y)= ||a(y)||,/£(y)= ||§(y)||. Then

tt, y^ll^ViC/!, y2) <

Thus a x^ § belongs to 36.
The idea of proving the second assertion is the same as that of Lemma 3.5.

Let h £ D(^L2(<S, v), ,u) be right bounded and fc e L2(c§, v). Suppose that rj is in
%. such that /,,£«/(/,,( y) = ||r/(y)||). Then it follows from Fubini's theorem that

(4.4)

where p(y) = («(y)w(y)^(y~1y1)|?7(y1)(iAr(r)(y1). We assert that the function
p belongs to 12C§, v). In fact, it is easy to see that |p| </ f l- (/,,*/!). By the
argument similar to the one in Lemma 3.5 where we showed that/-/? G L2(^, v),
we can prove that p G L2(^, v). Hence (4.4) is equivalent to

(4.5)

It is a straightforward calculation to check

(4.6)

Once we have obtained these identities (4.5) and (4.6), we can easily show by
following the discussion in Lemma 3.5 that

From this, the second assertion follows. Q.E.D.

Corollary 4.7. Let a and % be as in Lemma 4.3. Then
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sup \\S(0(Aa))(^IAh)\\2=\\ax

The idea of the proof is quite the same as that of Lemma 3.6. Hence we
leave the proof to readers as exercise.

Let q be a nonnegative Borel function on ^ such that Jg(y)^A r(y) = 1 for
all *E X. The existence of such a function is guaranteed by Lemma 3 of [Cl].
Let us take increasing Borel subsets {Xn}n>i of X with X = U*=i A^, [t(Xn) < °°.
We define qn(n>l) by ̂ (y) - l^(r(y)) V^(r). Then 9nEL2(«, v). In fact,
g;i belongs to D(^L2(^, v), JM). Let coGJ/C. Since {Jl, 3€} is standard, there
exists a vector £ in 5^ such that <y = o^. The functional ^®i/<7n can be viewed as
elements in (M ®^C)^. Then we have the following lemma.

Lemma 488. W/fA /Ae notations as above, we have

Froo/. Since A(|^;I
 2) = lXfi ^ \xm = Mkm|2) for anY « ~ m> ^ follows that

for any a£Jt and n<m. Thus w^ < g ) ( ^ j <(w^<g, H ^ n («<m) as functional in
)f. Moreover,

7I|
2)fl £|a £)

Therefore, we get the desired indentity. Q.E.D.

Theorem 4.9* The dual weight <p coincides with (p= q}°I^ioTa.

Proof. We write y as cp=a)^ for some vector fe2C. We consider the
decomposition ^ = J® £r^A*(jc) relative to the direct integral 3€ = Jf (X,(x)dfA(x).
Then we have that co^ = <^. for a.e. x. We take the functions {qn} introduced as
above. Let 0 e 9?* n (3?*)*. Then, by Corollary 4.7, we have

= sup ($(&(Aay<P(Aa)), cot® q® h)
htEW^)

= sup \\
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Thus it follows from Lemma 4.8 and Lebesgue dominated convergence theorem
that we have

Meanwhile, (p(&(AaY <P(Aa)) is, by definition, equal to

= J %(y> ° *y ̂ (y)' «

(See §2 of [Y2] for notations Av, ^v(v)oa-i and ^l(v),<pT(v)o^-i). This shows that
the dual weight <p coincides with ^ on the *-algebra {<P(Aa) :a^^n (^^)#}5

which is a a- weakly dense, cr^-invariant *-subalgebra of m^. From Proposition
5.9 of [P&T] and Lemma 4.2, it follows that ^= ^. Q.E.D.

Thanks to Theorem 4.9, the following definition is consistent with the one
given in [Y2].

Definition 4.10. For any faithful normal semifinite weight cp on J/t, the
equation

defines a faithful normal semifinite weight on the crossed product Mxa<$. We
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call it the dual weight of cp.
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