A Continuity Principle for the Bergman Kernel Function

By
Klas Diederich* and Takeo Ohsawa**

§0. Statement of the Results

Let $D \subset \boldsymbol{C}^{n}$ be a bounded domain with C^{∞}-smooth pseudoconvex boundary, and let $p \in \partial D$ be any point. By a two-sided bumping family of D at p we mean a family of smoothly bounded pseudoconvex domains $\left\{D_{t}\right\}_{-1 \leq t \leq 1}$ satisfying the following properties:

1) $D_{0}=D$,
2) $D_{t_{1}} \subset D_{t_{2}}$ if $t_{1}<t_{2}$,
3) $\left\{\partial D_{t}\right\}_{-1 \leq t \leq 1}$ is a C^{∞}-family of real hypersurfaces in \boldsymbol{C}^{n},
4) for any neighborhood U of p in C^{n} there exists a $t_{0}<0$ such that $D_{t_{0}} \backslash D_{-t_{0}} \subset U$.

Remark. A two-sided bumping family of D at p exists, of course, if ∂D is strictly pseudoconvex at p. Recently, it was shown by Cho [Ch], that such a family also exists, if ∂D is of finite type at p.

By a peak function at p we mean a continuous function f on \bar{D} which is holomorphic on D and satisfies $f(p)=1$ and $|f(z)|<1$ on $\bar{D} \backslash\{p\}$. By $K_{D}(z, w)$ we denote the Bergman kernel function of D and we put $K_{D}(z)=K_{D}(z, z)$. Finally, we write $d s_{D}^{2}$ for the Bergman metric of D.

Our goal is to prove continuity results in the parameter t of a bumping family for the Bergman kernel, the Bergman metric and related functions. Namely, we will show the following theorems:

[^0]Theorem 1. Let $D \subset \mathbb{C}^{n}$ be a bounded domain with C^{∞}-smooth pseudoconvex. boundary and let $\left\{D_{t}\right\}_{-1 \leq t \leq 1}$ be a two-sided bumping family of D at some point $p \in \partial D$ where ∂D is strictly pseudoconvex. Then there is for any $\varepsilon>0$ and any neighborhood U of p a number $t_{0} \in(0,1)$ such that

$$
\left|K_{D}(z) K_{D_{t}}^{-1}(z)-1\right|<\varepsilon
$$

for all $t \in\left(-t_{0}, t_{0}\right)$ and $z \in D \backslash U$.
This theorem and the analogous result for the Bergman metric will be consequences of the continuity principle for so-called maximizing functions. We define:

Definition 1. Let D be a bounded domain in \mathbb{C}^{n} and $w \in D$ an arbitrary point. We denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, fix an $\alpha \in \mathbb{N}_{0}^{n}$ and put

$$
H_{(\alpha)}^{2}(D, w)=\left\{g \in H^{2}(D):\left(\frac{\partial}{\partial z}\right)^{\beta} g(w)=0 \forall \beta \in N_{0}^{n} \text { with }|\beta| \leq|\alpha|, \beta \neq \alpha\right\}
$$

By $B_{D}^{(\alpha)}(z, w) \in H_{(\alpha)}^{2}(D, w)$ we denote the (unique) function satisfying

$$
B_{D}^{(\alpha)}(w, w)=\max \left\{\left|\left(\frac{\partial}{\partial z}\right)^{\alpha} g(w)\right| \text { for } g \in H_{(\alpha)}^{2}(D, w) \text { with }\|g\|_{D}=1\right\}
$$

and we write $B_{D}^{(\alpha)}(w)=B_{D}^{(\alpha)}(w, w)$.
We will show
Theorem 2. Let $D, p \in \partial D$ be as in Theorem 1 and fix $\alpha \in \mathbb{N}_{0}^{n}$. Then there exists for any $\varepsilon>0$ and any neighborhood U of p a number $t_{\alpha} \in(0,1)$ such that

$$
\left|\frac{B_{D}^{(\alpha)}(w)}{B_{D_{t}}^{(\alpha)}(w)}-1\right|<\varepsilon
$$

for all $t \in\left(-t_{\alpha}, t_{\alpha}\right)$ and $w \in D \backslash U$.
As an immediate consequence one obtains
Corollay. Under the assumptions of Theorem 1 there exists for any $\varepsilon>0$ and any neighborhood U of p a $t^{\prime} \in(0,1)$ such that

$$
(1-\varepsilon) d s_{D}^{2} \leq d s_{D_{t}}^{2} \leq(1+\varepsilon) d s_{D}^{2}
$$

on $D \backslash U$ for all $t \in\left(-t^{\prime}, t^{\prime}\right)$.

§1. The Maximizing Functions

From now on, unless explicitly stated otherwise, we always suppose, that D
and $p \in \partial D$ satisfy the hypothesis of Theorem 1. Furthermore, we fix an $\alpha \in N_{0}^{n}$ and let $B_{z}(w)=B(w, z)=B_{D}^{(\alpha)}(w, z)$ be the corresponding maximizing function as defined in Section 0. The first crucial tool for the proof of the theorems is the following

Lemma 1. For any $\varepsilon>0$ and any neighborhood U of p there exists a $t_{1} \in$ $(-1,0)$ such that

$$
\left\|B_{z}\right\|_{D \backslash D_{t}}^{2}<\varepsilon
$$

for all t such that $t_{1}<t<0$ and for all $z \in D \backslash U$.
Proof. We may assume $\varepsilon<1$. Let f be a peak function of D at p. Since $\sup _{D \backslash U}|f|<1$ there exists an integer m such that $\sup _{D \backslash U}|f|^{m}<\varepsilon / 4$. Therefore one can find a $t_{1} \in(-1,0)$ such that

$$
\sup _{D \backslash D_{t}}\left|1-f^{m}\right|<\frac{\varepsilon}{4}
$$

for all t such that $t_{1}<t<0$.
Let $z \in D \backslash U$ be any point and put

$$
\psi_{z}=\left(1-f^{m}(z)\right)^{-1}\left(1-f^{m}\right) B_{z} .
$$

Then we have

$$
\left(\frac{\partial}{\partial w}\right)^{\beta} \psi_{z}(z)=\left(\frac{\partial}{\partial w}\right)^{\beta} B_{z}(z),
$$

for all $\beta \in N_{0}^{n}$ with $|\beta| \leq|\alpha|$. Therefore $\left\|\psi_{z}\right\|_{D} \geq 1$.
On the other hand, one has

$$
\begin{aligned}
\left\|\psi_{z}\right\|_{D}^{2} & =\left(1-\frac{\varepsilon}{4}\right)^{-2}\left\|\left(1-f^{m}\right) B_{z}\right\|_{D}^{2} \\
& <\left(1-\frac{\varepsilon}{4}\right)^{-2}\left\|B_{z}\right\|_{D_{t}}^{2}+\frac{\varepsilon^{2}}{16}\left(1-\frac{\varepsilon}{4}\right)^{-2}\left\|B_{z}\right\|_{D \backslash D_{t}}^{2} \\
& =\left(1-\frac{\varepsilon}{4}\right)^{-2}-\left(1-\frac{\varepsilon^{2}}{16}\right)\left(1-\frac{\varepsilon}{4}\right)^{-2}\left\|B_{z}\right\|_{D \backslash D_{t}}^{2} .
\end{aligned}
$$

Hence we get

$$
\left\|B_{z}\right\|_{D \backslash D_{t}}^{2}<\left\{1-\left(1-\frac{\varepsilon}{4}\right)^{2}\right\}\left(1-\frac{\varepsilon^{2}}{16}\right)^{-1}<\varepsilon .
$$

This finishes the proof.

§2. An Approximation Lemma

The second technical lemma needed for the proof of the theorems deals with uniform approximation on bumping families. For this we fix such a family $\left\{D_{t}\right\}_{-1 \leq t \leq 1}$ of D at p. We can choose a corresponding $C^{\infty}-$ family $\left\{\rho_{t}\right\}$ of defining functions, i.e. a C^{∞} function $\rho_{t}(z)=\rho(t, z)$ on $[-1,1] \times \mathbb{C}^{n}$ such that $D_{t}=$ $\left\{z \in \mathbb{C}^{n}: \rho_{t}(z)<0\right\}$ and $d \rho_{t} \neq 0$ on ∂D_{t} and such that the functions $\rho_{t}(z)$ are strictly plurisubharmonic in a neighborhood of $\overline{D_{1} \backslash D_{-1}}$. With this we put $r_{t}=2 \rho_{0}$ $-\rho_{t}$ and $U_{t}=\left\{z \in D: r_{t}(z)<0\right\}$.

We show:
Lemma. There exists a constant C such that for any $\varphi \in H^{2}(D)$ and $t \in[0,1]$ one can find $\varphi_{t} \in H^{2}\left(D_{t}\right)$ satisfying

$$
\left\|\varphi-\varphi_{t}\right\|_{D} \leq C\|\varphi\|_{U_{t}}
$$

and

$$
\left\|\varphi_{t}\right\|_{D_{t}} \leq\|\varphi\|_{D}+C\|\varphi\|_{U_{t}} .
$$

Proof. We put $h_{t}=\rho_{t}^{-1} r_{t}$. Then

$$
\begin{align*}
\partial h_{t} & =-h_{t} \rho_{t}^{-1} \partial \rho_{t}+\rho_{t}^{-1} \partial r_{t} \tag{1}\\
& =-\left(h_{t}+1\right) \rho_{t}^{-1} \partial \rho_{t}+2 \rho_{t}^{-1} \partial \rho_{0} .
\end{align*}
$$

Note that there exist constants C_{0} and C_{ε} (for any $\varepsilon>0$) such that

$$
\begin{equation*}
\partial \rho_{0} \bar{\partial} \rho_{0} \leq C_{0} \partial \rho_{t} \bar{\partial} \rho_{t}+C_{\varepsilon}\left|\rho_{t}\right|^{2-\varepsilon} d s_{e}^{2} \text { on } D \tag{2}
\end{equation*}
$$

where $d s_{e}^{2}$ denotes the eulidean metric.
Let $d s_{t}^{2}$ be the metric on D_{t} defined by

$$
d s_{\varepsilon}^{2}=d s_{e}^{2}+c_{0} \partial \bar{\partial} \log \left(-\rho_{t}\right),
$$

where $\partial \bar{\partial} \log \left(-\rho_{t}\right)$ stands for the complex Hessian of $\log \left(-\rho_{t}\right)$, and c_{0} is a sufficiently small positive constant, so that $d s_{t}^{2}$ is a metric for all t. Let $|\cdot|_{t}$ denote the pointwise length with respect to $d s_{t}^{2}$. Then, combining the strict plurisubharmonicity of ρ_{t} with (1) and (2), we obtain an estimate

$$
\begin{equation*}
\left|\partial h_{t}\right|_{t}^{2} \leq-2 c_{0}\left(h_{t}+1\right)^{2}+C_{\varepsilon}^{\prime}\left|\rho_{0}\right|^{2-\varepsilon} \rho_{t}^{-1} \text { on } D \tag{3}
\end{equation*}
$$

for all $\varepsilon>0$. Here C_{ε}^{\prime} may depend on ε.
Note that $U_{t}=\left\{z \in D_{t}:-1<h_{t}(z)<0\right\}$. Hence

$$
\left|\rho_{t}\right|=\left|h_{t}^{-1} r_{t}\right| \geq\left|r_{t}\right| \geq 2\left|\rho_{0}\right|-\left|\rho_{t}\right| \text { on } U_{t} .
$$

Therefore, one has on U_{t}

$$
\left|\partial h_{t}\right|_{t}^{2} \leq-2 c_{0}+C_{\varepsilon}^{\prime}\left|\rho_{0}\right|^{1-\varepsilon} .
$$

In particular, we obtain on U_{t} for some constant C_{1}

$$
\begin{equation*}
\left|\partial h_{t}\right|_{t}^{2} \leq C_{1} . \tag{4}
\end{equation*}
$$

Let $\chi: \boldsymbol{R} \rightarrow[0,1]$ be any C^{∞}-function satisfying $\chi=0$ on $(-\infty,-1]$ and $\chi=1$ on $[0, \infty)$. Given any function $\varphi \in H^{2}(D)$ and $t \in[0,1]$ we put

$$
u_{t}=\bar{\partial}\left(\chi\left(h_{t}\right) \varphi\right) \wedge d z_{1} \wedge \cdots \wedge d z_{n}
$$

By (4) there exists a constant C_{2} independent of t such that

$$
\left\|u_{t}\right\|_{t} \leq C_{2}\|\varphi\|_{U_{t}}
$$

where $\|\cdot\|_{t}$ denotes the L^{2}-norm with respect to $d s_{t}^{2}$. Since the potential function $\|z\|^{2}-c_{0} \log \left(-\rho_{t}\right)$ of $d s_{t}^{2}$ has a bounded gradient with respect to $d s_{t}^{2}$, with the bound C_{3} being independent of t, in virtue of the L^{2}-vanishing theorem of Donnelly-Fefferman [D-F] there exists an ($n, 0$)-form v_{t} on D_{t} satisfying

$$
\bar{\partial} v_{t}=u_{t} \quad \text { and } \quad\left\|v_{t}\right\|_{D_{t}} \leq C_{3}\left\|u_{t}\right\|_{t},
$$

where we note that the L^{2}-norm of v_{t} does not depend on the choice of Hermitian metrics since v_{t} is of type $(\mathrm{n}, 0)$. Let us now define $\varphi_{t} \in H^{2}\left(D_{t}\right)$ by

$$
\varphi_{t} d z_{1} \wedge \cdots \wedge d z_{n}=\chi\left(h_{t}\right) \varphi \wedge d z_{1} \wedge \cdots \wedge d z_{n}-v_{t}
$$

Then we obtain

$$
\left\|\varphi-\varphi_{t}\right\|_{D} \leq\left(1+C_{2} C_{3}\right)\|\varphi\|_{U_{t}}
$$

and

$$
\left\|\varphi_{t}\right\|_{D_{t}} \leq\|\varphi\|_{D}+C_{2} C_{3}\|\varphi\|_{U_{t}} .
$$

Thus the constant $C=1+C_{2} C_{3}$ satisfies the requirement.

§3. The Proof of the Continuity Principle

In order to avoid hiding the essentials behind technical details, we will prove here in detail Theorem 2 for the case $\alpha=0$. Theorem 1 is an immediate consequence of this. At the end we will then indicate, how the proof has to be modified in order to give Theorem 2 for general α.

Let $D,\left\{D_{t}\right\}_{-1 \leq t \leq 1}, p \in \partial D$ and the neighborhood U of p be given so as to satisfy the conditions of Theorem 1 , take $z \in D \backslash U$ and let $B_{z}=B_{D}^{(0)}\left({ }^{\circ}, z\right)$ be the corresponding maximizing function. Choose a smooth family of defining functions ρ_{t} for the bumping family as in Section 2. By applying the approximation lemma we obtain functions $B_{z, t} \in H^{2}\left(D_{t}\right)$ for $0<t \ll 1$ such that

$$
\left\|B_{z, t}-B_{z}\right\|_{D}^{2} \leq C\left\|B_{z}\right\|_{U_{t}}^{2} \quad \text { and } \quad\left\|B_{z, t}\right\|_{D}^{2} \leq 1+C\left\|B_{z}\right\|_{U_{t}}^{2} .
$$

Here U_{t} is as before and C is a constant independent of t. Hence we obtain

$$
\begin{equation*}
\left|B_{z, t}(z)-B_{z}(z)\right|^{2} \leq C\left\|B_{z}\right\|_{U_{t}}^{2} K_{D}(z) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{D_{t}}(z) \geq\left(1+C\left\|B_{z}\right\|_{U_{t}}^{2}\right)^{-1}\left|B_{z, t}(z)\right|^{2} . \tag{6}
\end{equation*}
$$

Combining (5) and (6) we obtain

$$
K_{D_{t}}(z) \geq\left(1+C\left\|B_{2}\right\|_{U_{t}}^{2}\right)^{-1}\left(1-C\left\|B_{z}\right\|_{U_{t}}^{2}\right) K_{D}(z) .
$$

Since $K_{D_{t}}(z) \leq K_{D}(z)$ we have

$$
\lim _{t \rightarrow+0} K_{D}(z) K_{D_{t}}^{-1}(z)=1
$$

by Lemma 1. On the other hand it follows directly from Lemma 1, that

$$
\lim _{t \rightarrow-0} K_{D}(z) K_{D_{t}}^{-1}(z)=1
$$

Thus the proof of Theorem 2 for $\alpha=0$ and of Theorem 1 is finished.
The proof of Theorem 2 for arbitrary α is completely similar except that we must have approximating functions $B_{z, t}^{(\alpha)} \in H_{(\alpha)}^{2}\left(D_{t}, z\right)$ for $B_{D}^{(\alpha)}(\cdot, z)$. In order to realize this additional restriction one only has to replace the use of DonnellyFefferman's vanishing theorem by that with weight functions of the form N $\log |z-w|^{2}(N \gg 1)$. For such a modification of Donnelly-Fefferman's vanishing theorem the reader is referred to Ohsawa-Takegoshi [O-T].

In order to see, that the Corollary on the Bergman metric follows from Theorem 2, we only have to recall, that

$$
d s_{D}^{2}(X, X)=\sup \left\{|X g(z)|^{2} K_{D}^{-1}(z):\|g\|_{D}=1 \quad \text { and } \quad g(z)=0\right\}
$$

for any $z \in D$ and any tangent vector X at z.

References

[Ch] Cho, S., Extension of complex structures on weakly pseudoconvex compact complex
manifolds with boundary, Preprint 1991.
[D-F] Donnelly, H. and Fefferman, Ch., L^{2}-cohomology and index theorem for the Bergman metric, Ann. Math., 118 (1984), 593-619.
[O-T] Ohsawa, T. and Takegoshi, K., Hodge spectral sequence on pseudoconvex domains, Math. Z., 197 (1988), 1-12.

[^0]: Communicated by K. Saito, July 22, 1991.
 1991 Mathematics Subject Classifications: 32 H 10

 * Fachbereich 7 Mathematik, Bergische Universität GHS Wuppertal, Gauss Str. 20, D-5600 Wuppertal 1, Germany.
 ** Department of Mathematics, Nagoya University, 464-01 Nagoya, Japan.

