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A Generalization of cp -conditional Expectation
Operator Valued Weight

By

Masataka HIRAKAWA*

Abstract

Let M be a von Neumann algebra and N a von Neumann subalgebra of M. For any n.f.s.
weights cp and ^ on M and N, respectively, we construct a normal map E: M+ -»N+, which is
the (p -conditional expectation if \l/ = cp\N, and is the operator valued weight if a? = af\N (Vt 6 R).

Introduction

Let M be a von Neumann algebra with a normal faithful semifinite (n.f.s.)
weight (p, and N be a von Neumann subalgebra of M with an n.f.s. weight
\l/. The conditional expectations or the operator valued weights from M to
N have been studied by several authors.

In [7], Takesaki showed that there exists a faitheful normal norm 1 projec-
tion (which is also called a conditional expectation) E which satisfies cp = cp o E
if and only if <p\N is semifinite and of(N) = N (W e R).

In [3], Haagerup showed that there exists an n.f.s. operator valued weight
E which satisfies cp = \l/ o E if and only if af\N = of (Vt e R).

In another direction, when \l/ = q>\N, Accardi and Cecchini constructed in
[1] the normal completely positive map E which satisfies

Vx l 5 x2
E IV Vy1? j > 2 e n ^ .

This map E is called the <p -conditional expectation and is a norm 1 projection
if (p satisfies of (N) = N W e R.

In this paper, we generalize this Accardi and Cecchini's construction to
the case that i// is not necessarily equal to q>\N. And we show that if (p and
\l/ satisfy of \N = of, Vt e R, then the constructed map is the operator valued
weight.
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Notations

Throughout this paper, M will denote a von Neumann algebra and N
a von Neumann subalgebra of M. We also assume that (M, §, JM, &M) and
(N, ft, JN, 0*N) are standard forms and <p and \j/ are n.f.s. weights on M and
JV, respectively.

Then we can define the linear map x e n^ i-> ̂ (x) e § canonicaliy, and the
linear map x e m^ H-> 0v(x) e Mt as 09(y*z) = ^/MMy),jM^(z) for y, zee^. The
map 0^(x) has the following properties.

( i ) 0<x=>0<^(x) .

(ii) / eMj , f<9=*f=0(p(x) (3xem,nAf + ) .

(iii) <p(x) = sup{<x, 0,()0>; y e m, n M+5 ||y || < 1} (Vx e M+) .

The analogous objects rj^y), 6^(y) for JV are defined with respect to \j/.
Let N+ be the extended positive part of N [3]. An N -weight on M is

a map T: M+ -> N<+ which satisfies the following conditions:

(i) T(Ax) - AT(x) (A > 0, x e M+) .

(ii) T(x + y) = T(x) + T(y) (x, yeM+).

Moreover, we say that T is an operator valued weight if

(iii) T(a*xa) = a* T(x)a , (x e M + , a e JV).
We put

n r= {xeM;T(x*x)eJV+},

mr = nr*nr = span{x*y; x, y e nr} .

We say that T is normal if

7 T(x) (xt, X G M + ) .

T is faithful if T(x*x) = 0 implies x = 0, and T is semifinite if mr is cr-weakly
dense in M.

§1. A Generalization of f -conditional Expectation

For <p and \j/9 we put

= {a e M; there exists A > 0 such that <p(y*a*ay) < A^(J*J;) for any y e JV} .

SR = 5W^ = Span{b*a eM;a,be W^} .

Since 5R is a left ideal, there exists a projection e = e9t ^ e M such that
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Lemma 1.1. (i) 91N a 91, AT9KJV c 2R.
(ii) 9ln^ c nv, nJSKn^ c m^.
(iii) e^eN'nM.

Proof, (i) and (ii) are immediate.
(iii) For each unitary w e N and each x e 2 R n M + , w*xMe90 f lnM+ from

(i), hence we have u*eVtlf/u < e9^ and ue^^u* < e^^. Therefore for each uni-
tary ueN, we have u*e9^u = eVt^9 this implies e^eN'nM Q

Example 1.2, (i) // cp\N < ty for some A > 0, t&en e^ = 1.
(ii) // of(y) = af(y)(My e AT, W 6 R), tten ^, ^ = 1.

Proof, (ii) By [3], there exists a unique n.f.s. operator valued weight
F: M+ -» N+ such that q> = \l/oF. For any a e nF, we have

cp(y*a*ay) = ils(F(y*a*ay)) = ijj(y*F(a*a)y) < \\ F(a*a) || il/(y*y) (Vy e N) .

Hence % c 91, this implies e9^—\. D

The weight (^ is said to be ^-absolutely continuous in [4] if M = N, cp 4- \//
is semifinite, and Ker(D^; D((^> + ^))-j/2

 = 0. The next Proposition shows that
if M = AT and M is a factor, then eq>^ = I is equivalent to cp < A^ for some

Proposition 1.3. If M = N and ev^ = 1, t&en the following statements are
satisfied.

( i ) cp + if/ is an n.f.s. weight.
(ii) cp is ^-absolutely continuous.
(iii) // M zs a factor, then there exists /I > 0 SMC/I that <p < Ai//.

Proof, (i) From Lemma 1.1, 9ln^ c n^nn^ = n<p+^.
(ii) Let d = (Di/^; D(<p + ^))-i/2 and assume rf^ = 0, £ e §. We choose a

sequence {xn}W6JV c n<p+lA such that Hmw^00^+lA(xJ = J£ (J = JN = JM). Then

Mm i ( x j = lim J d J r i + ( x n ) = Jd£ = 0 .

Since, if a e 91, there exists A>0 such that ||^(flxn)||
2 < ^^^(x^)!!2, we have

that lim^^axj = 0.
Consequently, for any a e 91,

= lim \\>ip(axn)\\
2 + lim ||fj^(axn)||2 = 0 .

n->ao n-*oo

Since eVt^ = 1, this implies f = 0.
(iii) By (ii), d has the inverse. Hence we have

Jd^Jri^y) (Vj; e n^
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Let / e 91 be a nonzero projection. Then there exists a A > 0 such that

\\fJd~i Jr,^y)\\2 = II W/»il2 < (1 + m^(y)\\2 (Vj; E n,+,) .

It follows from above that fJd~lJ is bounded. Let (Jd~lJ)* = vh be the polar
decomposition, then h is affiliated to M', for Jd~lJ is affiliated to M'. Thus
we have /*/ =3 /ft. Moreover, from

fh=fhv*v=fJd~1Jv

we have that /ft is bounded, so that fhf(^fh) is bounded. Hence if ft = JjudE M

is the spectral decomposition, then fhf = j ^(fE^f) and there exists /i0 > 0
such that /(I — £Mo)/ = 0. On the other hand, since M is a factor, the induc-
tion x e M'\-+fxf efM'f is isomorphic. Hence, 1 — £Mo = 0. This means that
h is bounded, so that Jd~lJ is bounded.

Consequently, there exists A > 0, such that

9(y*y) < ll

Since 9ln^ c n^+^, it follows that (p(y*y) < k\l/(y*y) for any y e n^. D

For each a E 91, we have a unique bounded linear map Va\ H -> § which satisfies

It is easy to see that

xVay = Fxfly (Vx e M, Vy e N, Va e 91) .

Lemma L4. If a, be 91,

. If y e n^, then

Since ^ ( n ) is dense in

hold for any £ 6 ft. D

From the above Lemma, it is easy to see that if a*a = b*b (a, b e 91), then
Q)jMya£ = o}jMVb^ on M for any £ e ft. Moreover we see that

is upward directed for any £ e ft.
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For each £ e 51, let <p5 be a normal weight on M such that

q>e(x) = sup{a}jMVaii2jNs(x) : a e m n M+ , || a || < 1} (Vx e M+) .

Lemma 1.5. I f ^ r j e f t , £/ien

G>S = cty on N => <p5 = p, .

Proof. Note that there exists a partial isometry M' e AT such that w'£ = r\.
Indeed, we can define ur by u'y£, = yr\ for Vy e N and w'f = 0 for

VC e [A^]1.
Let u = JNu'JNEN. Then for any ae$RnM + , ||a|| < 1, we have

^MK ll2JNn = ^/MK 1/2uJrf = 0>JMFa 1/2UJrf = WJM^aM)1/2« ^ <P« '

Hence, <pn< <p^ so that <pn = q>^. D

For any coeAT^, there exists a £ef t such that 60 = ^. We shall put

<Pa, = 9t'

By the above Lemma, this definition does not depend on the choice of £.

Lemma L60 For any x e M+, there exists an element E(x) e N+ such that

Proof. Since for any x e M+ and a e 50! n M+ the map

£ e ft^a>jMFai/2jjv,(x)

is continuous, it follows that

£ e fth-»c(x) = s u p G } j K j ( x ) ; a 6 50!

is a lower semicontinuous positive quadratic form. Hence there exists a positive
operator h on ft such that \\h1/2£\\2 = cp^x) V£ 6 ft.

Since for any unitary u' e N', we have

where w = JNu'JN, it follows that t^ = ^ (Vf e ft). Therefore ft = £(x) is affili-
ated to N. n

Theorem 1.7. For given cp and i//, there exists a normal N-weight E: M+ ->
N+ such that

(i) <£(*), fl^(y)> = <0,(x), y^^> (Vx e m^ n M+, Vy e m^ n AT+),
(ii) ^o£ = s u p { < p ( y ) ; y e m ^ n N + , ||y|| < 1} < (p.

Proof, (i) Let E(x) be as in Lemma 1.6. Then it is easy to see that E
is a normal AT-weight on M. For any x € m^ n M+ and y e m^ n N+, we have
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= sup{a)jMVai/2^(yi/2}(x)i a e m n M+, ||a|| < 1}

M+9 \\a\\ < 1} (1)

(ii) Since
;); y e m^ n JV+, [| y || < 1} ,

it follows that
+9 \\y\\

From (1), we have (p0il/(y) < <p (Vj e m^n]¥+ 3 ||y|| < 1). Hence il/oE < (p. D

In the rest of this paper9 E will denote the map defined by Lemma 1.6.

Proposition 1.8. (i) // \// = <p\N, then E has a unique linear extension,
which is a ^-conditional expectation.

(ii) // *,. ̂  = 1, then J/(E(x)) = <p(x) (Vx E m,, n M +).

Proof, (i) Since 1 e 91, it follows that ^ e M+ (Vco e N+). Hence E(x) E
N+, VxeM+. Therefore, E has a unique linear extension from M to JV. If
we also denote this map by E, then E satisfies the following equation.

(ii) For any x e m^ n M+,

E m^ n JV+,

n

§2. The Case Where a?\N = <?

In this section, we assume that q> and \// satisfy

Then by [3], there exists a unique n.f.s. operator valued weight F: M+ -> N+
such that <p = *l/oF. Hence, from Example 1.2, we have e9t^ = 1, in particular,
91 = nF.

Lemma Id. T/ie following equalities hold.

(i)
(ii)
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Proof, (i) Let MJ and N/ be the sets of all entire analytic elements for
(p and if/, respectively. Then from the assumption, we have that JV/ c M*.

By [2, Lemma 7], we have that

fl fl e V

Hence, we get for a e 5R n n^, ye JV/ and z e JV/

JNrj#(N* n n^) is dense in ft and JV/ is cr-weakly dense in N, we obtain (i).
(ii) Let {Vi}iel c n^ be a net such that

Since for any a e 91, we have avt e 5R n nv, using (i) we get

Thus, it follows that

(p£y*xy) = <PX(X) Vx 6 M+ .

Theorem 2.2. £ is egua/ to F.

Proof. By the above Lemma, we have

3;, co> (Vo> e N+, Vj; 6 AT, Vx e M) .

This means that E is an operator valued weight. Hence to prove the theorem,
it is sufficient to show that \// o E = (p. [3]

We can obtain fy e Mf j e J such that

& , 6 2 R n M + , | |6j | |<l , o?(&j)^l (VaeC) .

In fact, using some a,- e 5R n M+ j e J which satisfies

m i < l (V/eJ) and a^l,
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we may define bj by
\

Similarly, we can obtain ykEN* ( fceK) such that

y k e n , n n 5 , \\yk\\<l ( V f c e K ) , ^(yk)^l (VaeC).

Since bj and yk are analytic, we have that

for any x e n^.
Therefore, we have that for xen^,, ||x|| < 1

09(x*x)= lim %MFxb»^)
j,k->cc

= SUP

This implies q> < ij/oE. Therefore, using Theorem 1.7, we have cp = ij/oE. D

Proposition 2030 Wfe Afli?g that

501 n m^ n M+ = {x e m^ n M+; rftere exists A > 0 SMC/I tfcat d^(x)|N < ^} .

Proof. According to [6, proposition 2.17], it is true that for any y e JV/ n
tunnS

tA(^(j)cjf,/2(^)) = iA(^).
Thus, if a e m < p n M + and there exists A>0 such that 0(p(a)\N < Ai//, then for
any y e JV/ n n^ n nj, we have

Using the density of ^(N/nn^nnJ) in »y^(n^), we have that aeSUnM+.
Conversely, we assume a e 9Knm< pnM+ , then for some A > 0

<y*y, O9(a» = \\JMyJM^(al'2)\\2 = |lMfliy2ff&(y)*)ll2

< ^(^(y)(7&(y)*) = W(y*y) (My E Af J n n^ n n|).

By the same argument as above, we have Ov(a)\N < faf/. D
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