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Noether's Inequality for Non-complete
Algebraic Surfaces of General Type

By

Shuichiro TSUNODA* and De-Qi ZHANG*

Abstract

Let V be a nonsingular projective surface. M. Noether proved that dim H°(V, Kv}
where Kv is the canonical divisor of V, provided V is a minimal surface

of general type. Let D be a reduced, effective divisor on V with only simple normal
crossings. An open surface V—D is said to be of general type if the Kodaira dimension
K(V, Kv + D}=2. In this case, KV+D has the Zariski decomposition and we denote by
P, which is a Q-divisor, the numerically effective part of the decomposition. We have
(P2) = (c1(y)2) if D=Q and if V is a minimal surface of general type. In the present
article, we shall verify that dim H\V, #,/ + £)^9/8(-P2)+2 and several other inequalities.
Such pairs (V, D) that the above inequality becomes an equality are precisely described.
The case that D is semi-stable has been treated by Sakai [Math. Ann. 254, 89-120 (1980)].

Introduction

Let k be an algebraically closed field of characteristic zero, which we fix
as a ground field throughout this article. Let V be a nonsingular projective
surface defined over k. If V is a minimal surface of general type, we have

the following inequality due to M. Noether:

1

We intend, in the present article, to extend this inequality to a logarithmic
surface of general type, which is to be defined below.

Let V be a nonsingular projective surface defined over k and let D be a
reduced effective divisor on V with only simple normal crossings. Denote by
Kv the canonical divisor of V. Let D—^Di be the decomposition into irredu-
cible components. We call a pair (V, D} a logarithmic surface (log surface, for
short). It is called minimal if KV+D has a decomposition into a sum of Q-
divisors:

Kv+D=(Kv4-^aiDl)+^l(l-ai)Dl, where
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(1) O^a^l and
(2) Kv+^otiDi is numerically effective,
(3) the intersection matrix of ^(l—a^Dt is negative definite, and
(4) if oL3^l then (Kv+^aiDit £,)=0 and (D]}<-2.

This decomposition is unique and called the Zariski decomposition. We write
Sofi-Dj as D*. Then the surface (V, D} is a logarithmic surface of general type
if (/fF+D*)2>0 or synonymously if the Kodaira dimension ic(V, KV+D] is equal
to 2. The connected components of Supp(D— D*) consist of twigs, rods or forks
(see Miyanishi and Tsunoda [4; p. 436] for the relevant definitions), which
can be contracted to normal points with quotient singularities. We denote
dim#°(F, KV+D) by pg and (KV+D*)* by (c!).

Now we can state the following results.

Theorem 1.3. Let (V , D) be a minimal log surface of general type such thai
Kv-\-D\ is composed with a pencil. Then we have:

We have also pg<(cl)+3.

Theorem 2.10. Let (V, D) be a minimal log surface of general type such
that pg^and \KV+D\ is not composed with a pencil. Write KV+D\ = \C\+G,
where C\ and G are respectively the movable part and the fixed part of \Kv-\-D .
Then the following assertions hold, where C is replaced by a general member of

C\ if necessary.
(1) We have pg^(c\}+2. Suppose pg=(c\)+2. Then C^KV-±D* and 0 , C i :

V-*PN (N:=pg — 1) is a birational morphism onto a normal rational surface W
of degree N—l. (See the precise description of W and C in Lemmas 2.2 and 2.3.)

(2) Suppose V is not a rational surface. Then pg^(cl)-{-l. Moreover, if
the equality holds then C-^KV+D*, pg=3, 2<g(C}^pa(C}<3, l+pg(V)^h\V, C)
+%(CV)=/i°(F, -£*)+g(C) and 0^\ : V->PZ is a morphism of degree two.

(3) Suppose V is not a ruled surface. Then pg<l/2(c\}+2. Moreover, if
the equality holds then C^KV+D*, l/2(Cz)-^l<g(C)=pa(C)<(C2)+l, l + pg(V}<
h\V, C}+1(Ov}=h\V, -Z)*)+^(C)+1-1/2(C2) and either 0 I C I : V-+PN(N:=
pg—1} is a birational morphism onto a surface of degree 2(N — 1) or 0\c\. V—»
PN is a morphism of degree two onto a normal rational surface W of degree
N-l.

Write \Kv+D\ = \C\-\-G as in Theorem 2.10. In § 1 we consider the case
where \C\ is composed with a pencil. After proving Theorem 1.3, we describe
precisely in Propositions 1.6 and 1.7 such surfaces (V , D} that the first inequality
of Theorem 1.3 becomes an equality. In view of Example 1.8, the bounds for
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pe in Theorem 1.3 are the best possible ones. In § 2 we consider the case
where |C| is not composed with a pencil. At first, we prove several ine-
qualities of the form h°(V, C)^a(C2)+^ with a, j8eQ(cf. Theorem 2.8). We
also consider the cases where these inequalities become equalities. Then
Theorem 2.10 is a consequence of Theorem 2.8 and the fact (#F+£*)2^(C2)
(cf. Lemma 2.9).

These theorems can be considered as one of Fujita's A-genus type results
(cf. [1]). In fact, there is a direct relation between Fujita's theorem and ours
(see § 2). On the other hand, Sakai [6] has treated the case where D is semi-
stable.

We shall use the following terminology and notation. Let V be a nonsingular
projective surface. If E is a nonsingular rational curve on V with (Ez)= — n,
we shall call E a (-n)-curve. A divisor H on V is called numerically effective
(nef, for short) if the intersection number (H, R)^Q for every curve R. A nef
divisor H is called nef and big if the self intersection number (H2)>0.

Kv: Canonical divisor of V
ic(V}: Kodaira dimension of V
h*(V, H):=dimHl(V, H)
pg(V):=dimH\V, Kv\ the geometric genus of V
pg :=dimH°(V, KV+D)
q(V)\=dimH\V,Ov\ the irregularity of V
pa(A): Arithmetic genus of an irreducible curve A
g(A): Geometric genus of an irreducible curve A
\H\ : Complete linear system defined by H
0\H\: Rational map V->PdimiH] defined by \H\
/*(//): Total transform by a morphism /
/'(//): Proper transform by a birational morphism /
H^H2: HI and Hz are linearly equivalent divisors
Hi=Hz: HI and Hz are numerically equivalent divisors
In, Mn : A Hirzebruch surface In of degree n and a minimal section Mu

on In satisfying (M|)= — n.

The authors would like to express their gratitude to Professor M. Miyanishi
for giving valuable advice during the preparation of the present article. The
second author would also like to thank the Yukawa Foundation for partial
financial support.

§1. The Case where KV+D\ is Composed with a Pencil

Let (V, D) be a minimal surface of general type such that the movable part
1C] of \KV-^~D\ is composed with a pencil. Namely, the rational map 0\c~'-
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V-*PN has a curve B as the image. Let B be the normalization of B in the
function field k(V] of V. So, we have a decomposition of 0\c\ to a composite
v^>, where (/>: V-+B is a rational map whose general fibers are irreducible and
v : B-^B is the normalization morphism. Let d be the degree of the curve B
in PN and let e be the degree of the finite morphism v. Let F be a general
fiber of (p. Then it is well known that d^N and C is numerically equivalent
to deF. Since />,=#+!, we have n :=de^d^pg—lt i.e., pg<n+l. Now /*V+
£> is written as nF+G upto numerical equivalence.

As in the Introduction, write

}(l-at)Dt, where

Note that the intersection matrix ((Dt, D.,-))is<,^« is negative definite. Define
Q-divisors F* and G* as follows:

F*=F+ g fciDt with (F*, /),)=0

G*=G+ a CiDi with (G*, Dj)=Q1=1

for every l^j^t. F* and G* are uniquely determined. Since K¥-}-D =
we have apparently Kv-rD* = nF*+G*. We now prove the following:

Lemma 1.1. (1) We have F*^F, O^G*^G, (F*)2^(F2)^0 and

(l.la) (

(2) Among irreducible components of D*, let Ci(l^i^p} (resp. Ej(l^j<^q*)}
exhaust the components meeting F and with coefficient at<l (resp. a}—l\ Then
we have :

(Lib) (KV+D*, F*)1>(KV, F)+ 2J (l-|)(C7, F)+ a (EJ9 F),
i=\ \ 7j7 .7=1

P rr. J7\z
(Lie) (F*)2^a- ' , and

(Lid) (/^+-D*, F*)+2(F*)2:>(*:F, F)-4- a(C t ,

(1) Since Q=(F*, Dj)=(F, D^^^Di, D^^MDt, D,) and
since the intersection matrix ((Dit DJ)}l^li3^t is negative definite, every bl must
be non-negative. Hence F*^F.

We write G*=G+S!=i^Z)t so that G is an effective integral divisor and
G contains no components of Supp(Z)— £>*)• Similarly as above, we can show
that c -^0(0^2^0 and G*^G^>0. On the other hand, we have G*—G=(KV+
D*-nF*)-(Kv+D-nF)=D*-D+n(F-F*). Write D*-D^-n(F-F*)-(G*-
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G)—A—B such that A and B are effective Q-divisors with no common com-
ponents. We have proved A— B = Q. Note that Supp(B) g Supp(D*— D)U
Supp(F—F*)uSupp(G*-G)=Supp (£—£*). So, B has negative definite intersec-
tion matrix. Hence we have Q=(A-B, B) = (A, B)-(B2)^-(BZ^Q. Thus,
(B2)=0 and B=Q. Then A=A-B=Q and 4=0. So, G*-G=D*-£+n(F-F*)

Noting that F, F* and Ky+D* are nef divisors, we obtain:

(F*)»=(F*, F)^(
and

(AV+£*)a^n(#K+£*, F*)=w(nF*+G*, F*)^

(2) We have

C,, C,)

because (KV+D*, CO^O and (/fr, Ci)>0. Indeed, since a*<l, we have C^
Supp(Z)— /)*) and Ct is a nonsingular rational curve with ft — — (CD ̂ 2. Hence
we obtain

P / 2 \ q

;^ S (l -- ) C*-h S £,.
"

Similarly, we have

F*=F+ t
Therefore, we have :

(Kv+D*, F*)=(KV+D*, F)

and

(F*)"=(F*, F

So, the inequalities (l.lb) and (l.lc) are obtained. Combining (Lib) and (Lie),
we obtain the first half of (Lid). Since KV+D* is nef and big and since F
moves in a pencil <p: V->B, we have 0<(#F-fD*, F)=(KV, F)+S«t(Cl; F)+
S(F,, F)^(KV, F)+S(Ci, F)+S(F,, F). Hence the second half of (Lid) is
proved.

Lemma 1.1 gives the following:

Proposition 1.2. Let (V ', D] be a minimal log surface of general type such
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that Kv+Dl is composed with a pencil. Write \ KV+D\ = \ C\ + G and C = nF
as above. Let a>Q and ft be rational numbers such that f ( n ; a, ft)=(a — l)n2-{-
(0-3)n+2(0-l)^0. Then pg^a(Kv+D*T+ft.

Proof. Let a>Q and 0 be rational numbers such that pg>a(Kv
J
rD*')2jrft.

By Lemma 1.1 and by noting that pg^n-\-l, we have:

-0) ,: (n+2Xn+l-0)
—an an

and f(n ; a, 0)<0.

Now we can verify Theorem 1.3.
By Lemma 1.1, we have:

and thence

This implies:

1
- 2

The other two inequalities of Theorem 1.3 follow from (1.3c).

We shall give a sufficient condition for <p; V-+B to be an elliptic fibration
or a P ^fibration, where <p is the same as defined before Lemma 1.1.

Proposition 1.4. Let (V, D) be a minimal log surface of general type such
that \Kv-\-D\ is composed with a pencil. Suppose that one of the following con-
ditions (1) and (2) is satisfied.

(1) pg ^l/2(Kv-{-D*)2+3
(2) There are rational numbers a, ft such that a>(l/2)+(0—3)2/16(0 — 1)—

(0 + 3/16)+(l/4(0 —1)), 0>1 and pg^a(Kv+D*)2+ft.
Then (Kv, F)+S(C,, F)+S(£* F) = l (cf. Lemma 1.1) and <p: V->B is

either an elliptic fibration or a P1-fibration.

Proof. Suppose pg^a(Kv+D^)2jrft for some rational numbers a^l/2 and
0>1. Then (Kv+D*)2^(pg-ft)/a^(n + l-ft)/a because pg^n+l. By Lemma
1.1, we have Q^(F2)<(F*)2^(Kv+D*)2/nz<(n + l-ft)/an2<l if (a, 0)=(l/2, 3)
or if a> 1/4(0 — 1). The last hypotheses are satisfied respectively by the con-
ditions (1) and (2) above. Thence we have (F2)=0, and hence 0lC\ and <p are
morphisms. By virtue of Lemma 1.1 we have
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,, F)

if (a, j8) = (l/2, 3) or if a>(l/2)+(j8-3)V16(jB-l). So, (#
S(E;, F)=l because the left hand side is an integer, and hence 2g(F)— 2=
(Kv, F)<U which implies g(F)<^l. This completes the proof of Proposition 1.4.

The first assertion of the following lemma follows from the theory of
peeling (cf. Miyanishi and Tsunoda [4; p. 438]).

Lemma 1.5. Let (V , D) be a minimal log surface. Write
G with the movable part C \ and the fixed part G. Then the following asser-
tions hold.

(1) Every connected component of Supp D — Supp D* is a connected component
of D, consists of (-2)-curves and is contracted to a rational double singular point.
More precisely, if D—D*=^i=l(l — al)Di where 0^a t<l, then Supp D~ Supp D*

(2) We have G^£-[D*] and Supp G2Supp(£-[D*])=Supp(£-D*). Here
[D*] is the largest effective integral divisor satisfying D*^[D*].

(3) 1C and G+ [/)*] — /} are respectively the movable part and the fixed

part of |#H-[£*]|.
(4) h\V, Kr+D)=h°(V, Kv+lD*]).

Proof. We have G^D — D* because Supp(D— D*) has negative definite
intersection matrix and

(G-(D-D*), Dj)=(Kv+D*-C, D7)=-(C, D7)^0,

for every irreducible component D3 of D—D*. Thence follow the assertions
(2), (3) and (4).

If the first inequality of Theorem 1.3 becomes an equality for a pair (F, D),
its structure will be explicitly described in the subsequent propositions 1.6 and 1.7.

Proposition 1.6. Let (V, D) be a minimal log surface of general type
such that \KV+D\ is composed with a pencil and that pg =

v + D*)*}*+8(Kv+D*f}+l. Then, with the above notations, the following
assertions hold.

(1) All inequalities in (l.la)-(l.ld) of Lemma 1.1 become equalities.
(2) We have (F2)=0. Hence 0 I C | : V-*PV and CP : V ->B are morphisms.
(3) We have pg = N + l = n + l. Hence B = B = Pl and B has degree n in Pn.
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(4) We have g(F)<^l. Hence <p is an elliptic fibration or a Pl- Jib ration.
(5) Let i: P1-^Pn be the closed immersion defined by \OP\(n}\. Then

(6) Let Ci(l<>i<*p} and E j ( l < ^ j < q ) be those components of D* defined in
Lemma 1.1, (2). Then C(s are isolated components of D and are cross-sections of
(p. We have p = l-(Kv,

(7) (

Proof. Assume that the first inequality of Theorem 1.3 is an equality.
Then the inequalities in (1.3a), (1.3b) and (1.3c) become equalities. Hence pg =
n+l and the inequalities in (l.la) and (Lid) of Lemma 1.1 become equalities.
Then the assertion (1) follows from the proof of Lemma 1.1 and the assertion
(7) follows from (1.3b) and (l.la).

By the assertion (1) and the proof of Lemma 1.1, we conclude that (.F2)=0,
(d, F)=l, /> = 2*=i(d, F)=1-(KV, -F)-S(£;, F) and the coefficient at of C7

in D* is equal to 1— (2/r,) for l^i^p, where r»=— (Cf). So the assertion (2)
follows. Therefore, d does not meet components of D* other than d because
(Ky+D*, d)=0. Hence Cis are isolated components of SuppD*. Then C*s
are isolated components of D by Lemma 1.5, (1). This proves the assertion (6).
Since 2pa(F)-2=(Kv, F)<l-p^l, the assertion (4) follows.

Since we have pg = n-\-l, from the argument for the proof of pg = N+l^
?2+l before Lemma 1.1, we have n — de — d—pg — \—N. So, B is a curve of
degree d — n in Pn and B->B is a birational morphism. Then we obtain the
assertion (3) because every irreducible curve of degree n in Pn, which is not
contained in any hyperplane of Pn, is, upto a projective isomorphism, the image
of P1 under the closed immersion i\ P1->Pn defined by \ O P i ( n ) \ . This proves
also the assertion (5). Indeed, note that

Proposition 1.7. With the same assumptions and notations as in Proposition
1.6, we have the following assertions'.

(1) We have p = l and (Cl)=-n-2. Hence ^q
J=1(EJf F)=-(KV, F} (cf,

Proposition 1.6, (6)).
(2) Supp(D— D*) consists of several connected components of D. More

precisely, we have D-D*=(2/nJr2)Cl
Jr^=zDk, where SuppS*=2^* = Supp D—

Supp D* (cf. Lemma 1.5, (1)).
(3) Let D' be the reduced effective divisor consisting of all components of

D* with coefficient 1. Then /?=/?' -hd+SU^* and D* = D'+(n/n+2)C1.
.Moreover, Ky-rD'-^nF, G=D-Df and F*=F+(l/n+2)d.

Proof. We prove first G*^0 which will imply Supp G=Supp(.D-D*) by
the definition of G* and by Lemma 1.5, (2). By Proposition 1.6, (1) and by the
proof of Lemma 1.1, (l.la), we have:
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Q=(KV+D*, G*)=(G*, F*X=(G*, F)).

Hence G* is contained in fibers of <p. On the other hand, (G*)8=(G*, KV+D*—
nF*)=0. Hence G*=aF with a rational number a. Then 0=(G*, F*)=a(F, F*)
=a(F*)2 and hence a=0 because (F*)2>0. So, G*~0. This, together with the
fact G*^0, implies G*=0.

Write D-D*=^p
i=1(l-ai')Ci+5}t

k=p+1(l-ak)Dk, where 0^<1 for 1^/^f.
By Proposition 1.6, (1) and by the proof of Lemma 1.1, (Lib), we have at=l —

(2/7i) where r*=-(C?) d^'^). Write F*=F+2p<-i&iC«+2i=jH^*0*. Simi-
larly, we have bt=(Cif F)/rt=l/7i(l<i^P) and l^(n+2)(F*)2=(n+2)S^i(Ci,
F)a/ri = 2<=i(H+2)/r i (cf. Proposition 1.6, (7)). In particular, £^1.

We claim that if p + l^k^t and if a/e>0, then 6&=0. Indeed, suppose
<**>0. Then Z)f tgSupp£*. Hence (D*, F)=0 by Proposition 1.6, (6) and by
noting that ak<l. This, together with ( D k , Ct)=Q (cf. Proposition 1.6, (6)),
implies 0=(2 f l j t>o&*£*, F*) = (%ak>0bkDk, ^bkDk) = (^nk>QbkDk)

2 by Lemma
1.5, (1). Hence the claim is true because 2Z)/2 has negative definite intersection
matrix.

Note that G=G-G* = ^+Z)-wF-(^+^*--wF*) = n(F*--F)+JD-D* =

2(n+2/ri)Ci+2(w&ft + l-a j f e)£ft. Since Supp(G+2Ci+2^*) (=Supp(£-£*))
has negative definite intersection matrix, we have G=2j(^4-2/ri)Ct+S(^^^ +
1— af t ) / ) fc^2C i +2a f c =o(nf t f c + l)D J f e4-2 a f t>o(l— «*)^*- Since G is integral and
since ak<l, we see that p=l, ak—$(2<^k^t) and —(C\)=j'l=n-}-2. In particular,
the assertion (1) is true. We have also D— D^=^(2/n+2)C1-i-^t

t
k=2Dk and Supp

Si^^/^SuppSa^o^^SuppZ)— Supp D*. Thus, the assertion (2) is proved.
Now we shall prove the assertion (3). The first part follows from (2). We

assert that 2&*0*=0. Indeed, (2&*^*)2=(F*-F-(l/n-h2)C1)a=(F*)2+(C2
1)/

(n+2)2-2(F^ F) + 2(F, (l/n+2)CO-(l/n+2)-a/n+2)-2(F*)2 + (2/n+2)-0.
Hence ^bkDk=Q because ^Dk has negative definite intersection matrix. Thus,
F*=F+(l/n+2)d, G=C1+2U#ft = £-£/ and Kv+D'=Kv+D-G~~nF.

We end this section with the following example. In view of this example,
the bounds for pg in Theorem 1.3 are the best possible ones.

Example 1.8. Let <p : V—+P1 be a relatively minimal elliptic fibration having
a cross-section D with s:=— (D2)^2. Then Kv^(s— 2)F with a general fiber
F of <p. Note that D is the fixed part of \KV+D\ and Kv+D*=Kv+(s-2/s)D.
Hence ps=pg(V)=s-l and (Kv-+-D*)2=(s-2yt/s. In particular, if s=6, then
(V , D) is a minimal log surface of general type satisfying pg=pg(V)=(9/8)(Kv-\-
Z)*)2+2. We shall show below by giving examples that s can be arbitrarily
large. Hence, if we write £>g<La(Kv+D*f+j$, we have

Then bringing s to oo, we know that a^l, and if we take a = l then ^
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We construct a relatively minimal elliptic surface cp: V-+P1 as above with
s:=— (Dz) as large as we wish. Let S2S be a Hirzebruch surface of degree 2s
with s^O, let M2S be the minimal section of self-intersection number —2s and
let L be a general fiber of a P'-fibration x : Sm-^1- Let d, d and d be
cross-sections linearly equivalent to M2s+2sL such that d, C2 and C3 have no
common points. Let a : W->^2S be a double covering with branch locus M2S+
d+d+d (~4M2s+6sL) and let r: F-->~FF be the minimal resolution of sing-
ularities. By the construction, W has only rational double singular points of
Dynkin type Alt In fact, let P be a common point of Cl and C2. Then P is
not lying on C3. Blow up the point P to get a (-l)-curve E. Let LI be a fiber
of TT passing through P and let L{ be the proper transform of Llf Then the
inverse image of E + L( on V is a union of two (-2)-curves meeting each other
in two distinct points, which is a degenerate fiber of the elliptic fibration <p:
V—>P\ which is induced from TU. Thus the elliptic fibration <p is relatively
minimal. Let r*(T*(M2«)=2J9. Then D is a cross-section of <p with (D2)= — s.

§2. The Case where \KV+D\ is not Composed with a Pencil

Let (V, D) be a minimal surface of general type such that pg^ and the
movable part \C\ of Ky+D is not composed with a pencil. Then ®\C\(V)
is a surface in P*, where N:=pg—l = h°(V, C)-l. Hence, by the Bertini
theorem, every general member of | C is a reduced irreducible curve with
positive self-intersection number. We shall consider, in general, a curve A on
a nonsingular projective surface V satisfying:

(*) h\V, A)^3 and \A\ is not composed with a pencil.

In the subsequent arguments, we always assume that C and A are general
members of C| and A , respectively. We are going to prove Theorem 2.8
which will imply easily Theorem 2.10. We need several preliminary results
which give several inequalities of the form h°(V, A)^a(Az)-\-ft with a, fi^Q
under certain conditions.

Since A is an irreducible curve and since h\V, A)2^3, |^4| contains no fixed
components. If xl is a base point of \A\y let ml be the multiplicity of the curve
A at xi and let f1: Vl->V be the blowing-up of the point XL If x2 is a base
point of 1/1(^4)1, let ra2 be the multiplicity of the curve f ( ( A ) at x2 and let
fz '• VZ-^Y! be the blowing-up of the point xz. Continue this process. Then,
at the 6-th step for some £^0, \ f ' ( A ) \ is base point free. Here we set W~Vb

and /:=/*-/i: W-+V.

Lemma 2.1. Assume that A satisfies the above condition (*). Then the fol-
lowing assertions hold.

(1) h\V, A)=h'(W,
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(2) // h\V, A)=(A2)+2, then 0\A] is a birational morphism onto a surface
W of degree N-l in PN, Here N:=h\V, A)-l.

Proof. By the definition of /, we have 3rg/z°(F, A)=h°(W, /'(^)) and 1^
(f'(A}f—(A2)— SJ=imJ. In order to prove (1), we have only to consider the
case where \A\ is base point free. Then every general member Al of A is
nonsingular and irreducible by the Bertini theorem. Replace A by a general
member. Let h — h^A^ ••• hl: V'-*V be a composite of blowing-ups of all (Az)
intersection points of A and Al such that /i'(A)n/i'(^i)=0. Then h'(A)^hf(Ai\
dim | /i '(A) 1=1 and we have a fibration 0\h'u>\ ' V'-^P1. Note that dim|(/ i< •••
/ii) 'CA)|^dim|(/ii._i ••• WU)!-! for each i. Then (1) follows.

Suppose h\V, A)=(Az)+2. Then \A\ is base point free by (1). Note that
W:=0\A\(V) is a surface in PN(N:=h\V, A)— 1) and is not contained in any
hyperplane. Hence we have d :=degW^codimW+l. Namely, we have d^
N-l. Then deg0u\=(A*)/d^(A*)/(N-l) = l. Hence 0lAi is a birational
morphism.

Lemma 2.1, (1) implies that h\V , A)^(Az)+2. This inequality has been
proved by Sakai (cf. [6; Theorem 6.5]). W is described in the following
Lemma 2.2 (cf. Nagata [5; Theorem 7]).

Lemma 2.2. // an irreducible surface W of degree N—l in PN is not con-
tained in any hyperplane of PN, then W is one of the following :

(1) N=2 and W=P*.
(2) N=5 and W=PZ embedded in P5 by \OPZ(2)\.
(3) AT=3, 4, 5, ••• , W=^e where 0^iV-e-3=0(mod 2), and W is embedded

in PN by |Me+(l/2Xtf+*-l)L|.
(4) N=3, 4, 5, • • - , and W is a cone over a rational curve of degree N—l

in PN~l.
Here Se is a Hirzebruch surface of degree e, L is a fiber of a Pl- fibration

TT : Se-^P1 and Me is a minimal section with (Mz
e)=—e. In particular, W is a

normal rational surface.

We consider the case h\V, A)=(A2)-\-2. Suppose that there is a (-l)-curve
E on V satisfying (A, £)=0. Let TI : V->Wi be the blowing-down of E and
let r^\=T^(A). Then we have A=T:f(F1) and 0{Al = 0iri]-Tl. Hence Fl is
nef and big because so is A. Continuing this process, we obtain a composite
T : V-^W of blowing-downs such that each (-l)-curve on W has positive in-
tersection number with F :=r*(A) and the following hold :

A=T*(F) and @ui = @\n'T.

Let I be the reduced effective divisor consisting of all curves E of W
satisfying (E, /1)=0. Then I contains no (-l)-curves. Let Sf(l^^s) be all
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connected components of I. Note that P« :=$,/- i(S<) is a single point, and
each curve on W, which is contracted by @\r\, is contained in Z. Since $ir\
is a birational morphism and since W=0\r\(W) is a normal surface, we have
Pt^Pj(i^jl and 0,n : W— S = W-\jPi by Zariski's Main Theorem. Hence
0}r\ is a minimal resolution of singularities of W.

Since O(r}=@friOPN(l), we obtain the following lemma by Lemmas 2.1 and
2.2, which has been obtained by Fujita and Sakai, independently (cf. Fujita [1;
Theorem 3.2] and Sakai [6; Theorem 6.7]).

Lemma 2.3. Assume that A satisfies the above condition (*) and assume further
T &\r\ _

that h\V, A)=(A*)+2. Let F=T*(A) and V-+W — > W^PN be the same as
defined above. Then

A=r*(r\ 0u, = 0,/vr,

and (W, F) is one of the following :
(1) (F2, H\ where H is a hyperplane.
(2) (F2, Q\ where Q^\OPZ(2}\.
(3) (Se, Me+(l/2)aV+g-l)L), where O^A^-e-3-0(mod 2).
(4)

For the case Bs A 3=$, we have:

Lemma 2.4. Assume that A satisfies the above condition^) and assume further
that V is not a rational surface and \ A \ has base points. Then we have :

(1) h\V, A)^(A*\
(2) Suppose !i°(V, A)-(A^). Then A is nonsingular, \A\ has only one base

point P and \h'(A)\ is base point free. Here h : W— >V is the blowing-up of P.

Proof. We use the notations /: W-*V and S?=iWZi in Lemma 2.1. We
have h\W, //(^l))^(//(/l))2+2, and if the equality holds then $i / 'U), is a bira-
tional morphism onto a rational surface in PN (N:=h°(W, f'(A))—V) by Lemma
2.2. Since V is not a rational surface by the assumption, we have h\V, A)—
h\W, / /(^))^(/'(^))2+l=(A2)+l-St=iml^(A2) because Bs\A\*$ by the as-
sumption. This proves (1).

Suppose h\V, A}=(A2). Then b=mi=l and the assertion(2) follows with
h :=/.

The case pa(A)=l is treated in Proposition 2.5. We shall use the following
notation. Let TT : P(E}—»B be a relatively minimal ruled surface defined by a
normalized rank two vector bundle E on a nonsingular curve B. We define
the invariant e(P(£))=— degA8£ as in Hartshorne [2; p. 373].

Proposition 2.5. Assume that A satisfies the above condition (*) and assume
further that pa(A)=l and V is not a rational surface. Then the following as-
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sertions hold'.
(1) We have h\V, A)=(AZ). V is such an elliptic ruled surface x : V->E

that general members of \A\ are cross-sections of the Pl-fibration x.
(2) There is a suitable composite r: V — >W of blowing -downs of (-Incurves

in singular fibers of 7t such that W is a relatively minimal ruled surface and A^

(3) The invariant e = e(W) satisfies 4^(,42)-eEEO(mod 2).
(4) CP, ru), : W-»PZ is a finite morphism of degree three if (A2)=3, $i rooi -

W—>P3 is a finite morphism of degree one (resp. or two) onto a quartic surface
(resp. or quardratic surface} if (Az}— 4, and $i ru)i > W—*$\T<.A)\(W) is the nor-
malization morphism if (

Proof. We shall use the arguments of Lemma 2.1. Let al : V^V be a
composite of blowing-ups of base points of \A\ so that \a((A)\ is base point
free (0i=f in the notation of Lemma 2.1). Let az : V2—>Vl be a composite of
blowing-ups so that the morphism $2 ^^IO^CA)! '. V^P1 is a fibration (02=li
in the notation of Lemma 2.1). Since V is not a rational surface and since
pa(A)=l, A is an elliptic curve and @z is an elliptic fibration. The last ex-
ceptional curve E of az is a (-l)-curve and is a cross-section of @z. Let 0S :
V2->V'3 be a composite of blowing-downs of (-l)-curves in singular fibers of 02

such that there are no (-l)-curves in any fiber of 0s:=02-0^1 : V3->P\ Then
we have :

(03(E), KV3)

Since (a,(E\ KVz)=-2-(a^E}f^-l, V, is a ruled surface satisfying q=
and -2-(a,(E^^-2-\-I(0Vz}^-l-q. Let 7r3 : V.~>B be the P^fibration. In
general, we have (/\73)<8(1— q\ and the equality holds if and only if V3 is a
relatively minimal ruled surface. In the present case, (/T^3)=0. Hence q=l,
(a»(E))z=Q and V5 is a relatively minimal ruled surface. Evidently, 0%(E) is a
fiber of TT.-,. Hence 030i0[(A) (resp. 0Z0[(A\ or A) is a cross-section of the P1-
fibration 7T3 (resp. KZ \—n^a^ : V2— >B, or n \— TL .^ a ̂  GZI • 01l : V— >B\ Let T:
V-^W be a composite of blowing-downs of (-l)-curves, which are contained in
singular fibers of TT and which do not meet A, such that 7r :=^-r" 1 : W-+B is
a relatively minimal ruled surface. Then A— T*T*(A)-=T*r(A). The assertion
(2) and the second part of the assertion (1) are proved.

Set e=e(W). Then we have (cf. Hartshorne [2; p. 385]):
(1) \r(A)\ is base point free if and only if (r(A))2(=(A2))^e+4. If this is

the case, r(A) is ample and $]Tui\ is a finite morphism because A\ is not
composed with a pencil.

(2) 0;rU)i is a closed embedding if and only if (A2)^e+6.
Let Me be a minimal section of W which has (M2)= — e. We know that
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Me)=(l/2)((A2)-e\ Hence Q<(A2)-e~Q(mod2). Write
where H is the pullback of a divisor h on B with deg/z=(l/2X(^2)+e). Con-
sider an exact sequence:

0 — > 0V(H} — > 0K«4)) — > 0jre«4)| jr.) — > 0 .

Note that e^-l (cf. Hartshorne [2; Theorems 2.12 and 2.15, pp. 376-377]).
We have deg /2^0 and deg T(A)\Me=(l/2)((A2)-e)^Q. If deg h=0 then (A2)=

l and A°(7, 4):g h\V, H)+h\Me, r(A)\Me) = h\B, A)+
A) + degrCA)|jre^l+l. This contradicts the hypothesis.

Therefore, deg h^l. Then H\V, H)^H\B, h)**H\B, -A)=0 and h\V, H)=
deg A. We have also 0^/i°(Me, -r(A)Ue)-/i°(Me, r(A)U/e)-deg T(A)\Me^l and
the last inequality becomes an equality if and only if r(^4)| ,¥g~0. Then we have :

(A2}<h\V, ff)+A°(M., T(A)\Me)=h\V, A)^

and h\V, A)=(A2)+1 if and only if r(Ay\M^. If h\V, A)=(A*)+1, then
0=degr(^)Ue=(l/2)((^2)-e) and l<(T(A))2=e<e+4. Hence \r(A)\ has base
point which leads to h\V, A)^(AZ) by Lemma 2.4. This is a contradiction.
Therefore, we must have h\V, A)=(A2). The assertion (1) is proved.

Note that (3) is equivalent to saying that \r(A)\ is base point free. Suppose
\r(A)\ has base points. Then (A2}—e or e+2. In view of Lemma 2.4, r(A}\
has only one base point P and \ f ' r ( A ) \ is base point free. Here /: Wi— >W is
the blowing-up of P. Let LI be the fiber of n containing Fand let g: Wi-*W2

be the blowing-down of the (-l)-curve /'(LJ. Then g*g*frT(A)=f'T(A) and
H°(Wt, g*f'T(A)}^H»(W,, f'r(A)}^H\W, r(A)\ Note that \f'r(A)\ and
\g*f'r(A)\ are base point free. Hence we must have (g^f/T(A))2^e(Wz)+^.
Since (g#/'z(4))8=(r(4))a-l^*+l, we obtain -l<e(Wz)^e-3 and e^2. In
particular, A^Me. On the other hand, (Me, L0=l implies (^//(MC))2^(MJ)+
1= — e+1^ — 1. Hence g*f'(Me) is equal to the minimal section Me<iW^ of VF2

and e(P72)^e— 1. This contradicts the above inequality e(W2)^e—3. Therefore,
\r(A}\ is base point free.

The assertion (4) can be proved similarly as in Lemma 2.1.

We now consider the case where the geometric genus g(A)^2. We shall
use the following Clifford theorem (cf. Martens [3; §2.31]).

Lemma 2.6. Let X be a nonsingular projective curve of genus g^2 and let
L be a divisor on X satisfying O^deg L<2g— 2. Then the Clifford's index c(L):
=degL+2(l-/2°(Z, L))^0 and the equality holds only if L~0, L^KX or X is
a hyperelliptic curve.

Lemma 2.7. Assume that A satisfies the above condition^} and assume further
that A is a nonsingular curve with g(^4)^2. Then the following assertions hold.

(1) // (Kv, A}^ then h\V, ^)^(
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(2) // (Kv, A)^-l then h\V , A)^(A2}+2- g(A).

Proof. (1) Suppose (Kv, A)^Q. Then conditions of Lemma 2.6 with X:=A
and L:=A\A are satisfied. Hence we have c(A\ A}=(AZ}+2(1- h\A, OA(A)))^Q.
This, together with the equality h\V, A)^l + h°(A, OA(A)\ implies the asser-
tion (1).

(2) Suppose (Kv, ,4)<0. Then H\A, OA(A))^H\A, OA(KV))=0. Hence we
have h°(V, A)^l+h°(A, OA(A))=(Az)+2-g(A) by the Riemann-Roch theorem.
The assertion (2) is proved.

Now we can prove the following :

Theorem 2.8. Assume that A satisfies the condition (*) given at the beginn-
ing of § 2 and assume further that V is not a rational surface. Then the follow-
ing assertions hold true, where A is replaced by a general member of \A\ if
necessary.

(1) Suppose h\V, A)^(A*)+1. Then h\V , A)=(A2)+l=3, g(A)=pa(A)^2
and l+pg(V)^h\V9 A)+TL(Ov)= h\V , Kv-A)+g(A). Moreover, 0lAl: V->PZ is
a morphism of degree two.

(2) Suppose h°(V, A)— (A2). Then one of the following cases takes place.
(2-1) V is an elliptic ruled surface with general members of \A\ as cross-

sections of the Pl-fibration. @u\ is a morphism of degree ^3 onto a surface.
(See the precise description of V and A in Proposition 2.5).

(2-2) We have g(A)=pa(A)=2 and (Kv, A)^-l. V is a ruled surface
satisfying q(V)=hl(V, A)^2. 0lAl is a morphism of degree ^3 onto a surface.

(2-3) We have g(A)=pa(A)^2, l+pg(W)^hW, f'(A))+X(Ow)=h°(W, Kw-
f'(A))+g(A)-l and (A2)=3 or 4. Here f :=id if Bs\A\=<f> and f: W-+V is
the blowing-up of a base point P of A if Bs\A\^$. If (A2)=3 and \A\ is
base point free, then g(A)^3 and 0iA\ : V— >PZ is a morphism of degree three.
If (Az)=3 and \A\ has base points, then A\ contains only one base point P and
&if<.A->\'. W-*PZ is a morphism of degree two. If (A2)=4, then ^(^1)^3 and
$\A\ : V-^PZ is a morphism of degree one (resp. or two) onto a quartic surface
(resp. or a quardratic surface}.

(3) Suppose V is not a ruled surface. Then h\V, A)^(l/2)(Az)+2. Suppose
further h°(V, ^)-(l/2)(A2)+2. Then g(A)=pa(A)^(l/2)(Az)+l, l + pg(V)<h\V,
A)+-l(Ov}=h\V,Kv-A) + g(A) + l-(l/2)(Az), and either 0lAl : V->PN(N:=
h°(V, A)— 1) is a birational morphism onto a surface of degree 2(N—1) or 0\A\ '.
V—>PN is a morphism of degree two onto a normal rational surface W of degree
N—l in PN . (See Lemma 2.2 for the precise description of W.)

Proof. (1) Suppose h°(V, ^)^(^42)+l. Since V is not a rational surface,
we have then h\V , A)=(A2)+l by Lemmas 2.1 and 2.2. By Lemma 2.4, \A\
is base point free. Hence A is a nonsingular curve and g(A)=pa(A). Since V
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is not a rational surface A is not a rational curve, for otherwise (Pi^om : V'—>
JP1 is a f^-fibration in the notation of Lemma 2.1. Therefore, ^(^4)^2 by
Proposition 2.5. Then we have (Kv, A)^Q and (A2)+l = h\V, A)^l+h\A,
0A(A))^(l/2}(Az)+2 in view of Lemma 2.7. Hence we must have h\V, A)=
(A2)+l=3 and h\V, A) = l + h°(A, OA(A)). Considering cohomologies of the
following exact sequence

0 —> Ov —> 0V(A] —> 0A(A) —> 0,

we obtain l+pg(V)^h\V, A)+Z(OV)= h°(V, Kv-A)+g(A\ The last assertion
can be proved as in Lemma 2.1.

(2) Assume h\V, A)=(AZ). We use the same arguments and notations
/: W-+V and S?=iWi? as in Lemma 2.1. Then f ' ( A ) is a nonsingular curve
and the geometric genus g(A)=pa(f'(A)). Since V is not a rational surface,
we have g(A)^l.

Suppose g(A)=l. Then we have (Az)=h\V, A)=h°(W, /'(4))=(/'(.4))8=
(A2)—S?=imJ by Proposition 2.5. Hence we must have S?=ira2=0, V—W and
£a(^L)—1. So, the hypothesis of Proposition 2.5 is satisfied and hence the case
(2-1) occurs.

Suppose g(A)^2 and (Kw, f'(A))<-l. Then K(V)= — oo and V is a ruled
surface with q(V)<Lg(A) because f ' ( A ) is nef. By Lemma 2.7, we have (Az)=
h\W,f\A}}<l+h\f\A\Or,M\A}}) = (f'(A)}z + 2-g(A). Hence we must
have g(A)=2, (A*)-=(f'(A))*, i.e., V=W and |^| is base point free, and h\V, A)
= l + h°(A, OA(A)\ By considering the same exact sequence as in (1), we can
prove hl(V, A)=q(V). This fits the case (2-2). Indeed, the last assertion in
the case (2-2) can be proved similarly as in Lemma 2.1.

Suppose g(A)^2 and (Kw, f'(A))^Q. We shall show that the case (2-3)
occurs. In view of Lemma 2.7, we have (A*)=h°(W, f'(A))< l + h°(f'(A\
0/'U)(//(^)))^(l/2)(A2)+2-(l/2)2timl. So we must have h\V, A)=(A*)=3
or 4, and h\W, f'(A))=l + h\f'(A\ O r ^ ( f ' ( A f f ) . Moreover, if (A2)=4, then
2?=iwJ=0, i.e., V^W and A is base point free, and if (Az)=3, then SUwiJ
^1. Then g(A)=pa(A) and the last three assertions of (2-3) follow (cf. Lemmas
2.1 and 2.4). In fact, g(A)=l-t-(l/2Xf'(A), Kw+f'(A»> l+(l/2)(/'(v4))2. Con-
sidering an exact sequence similar to the one given in (1) with V (resp. A)
replaced by W (resp. f'(A)\ we can prove that l+pg(W)^h\W, f'(A)}+li(Ow}
= h\W, Kw-ff(A)}+g(A)-l. So all assertions in the case (2-3) are verified.

(3) Suppose V is not a ruled surface. We use the notation /: W—>V in
Lemma 2.1. By the additional assumption, we have g(A)=pa(f'(A))^2 (cf.
Proposition 2.5) and (Kw, f ' ( A ) ) ^ Q because f'(A) is nef. Then we have h\V,
A)=hW, f'(A))£l + h°(f'(A), Oru)(/'(A)))^(l/2)(/ /(A))2+2^(l/2)(A2)+2 in
view of Lemma 2.7.

Consider the case h\V, ^)=(l/2)(A2)+2. Then (f'(A))z=(Az), i.e., V=W
and \A\ is base point free, and h°(V, A)=l+h\A, OA(A)). Note that deg$lAl
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as in Lemma 2.1. Then the last assertion follows. Note that
g(A)=l+(l/2XA, Kv+A)^(l/2}(A*}+l because A is nef. By considering the
same exact sequence as in (1), we obtain l + p8(V)^h\V9 A)+X(OV}= h\V , Kv

-A)+g(A)+l-(l/2)(Az). The assertion (3) is proved.

In order to prove Theorem 2.10, we need the following preparation. Write
\KV+D\ = \C\ + G as in the statement of Theorem 2.10. Define Q-divisors C*
and G* in the same fashion as for F* and G* before Lemma 1.1. Then we
can also show that 7fr+D* = C*+G*, C*^C and O^G*^G as in Lemma 2.1.
Moreover, we have :

Lemma 2.9. (1) We have (
(2) // (1) becomes an equality, then D* is an integral divisor and C~^Kv-}-D*.

Proof. (1) Since KV+D*, C* and C are nef, we have (Kv+D*)*=(Ky+
D*, C*+G*)^(AV+#*, C*)=(C*+G*, C*)^(C*)2=(C, C*)^(C2).

(2) Suppose that (1) is an equality. Then by the proof of (1), we have
(Kv-i-D*, G*)=0, and (C*-C)2=(C*)2-2(C, C*)+(C2)=0. Hence C*=C because
Supp(C*— C)^Supp(J9— £*) which has negative definite intersection matrix.
Note that (C, G*)=(C, /fK+£*-C)=(C + G*, Kv+D*)-(C*)=(Kv+D*y>-(C*)=Q
and (G*)2=(/^+£*-C, G*)=0. Hence, G*=0 by the Hodge index theorem.
Indeed, G*=0 because G*^>0. Hence Supp GgSuppCD— £*) and G-(D—D*)=
Kv-i-D-C-(D-D*)~Kv+D*-C*-G*=Q. Since Supp(G+£*-£)(gSupp(£-
D*)) has negative definite intersection matrix, we have G=D—D*. So, D* is
an integral divisor and C^KV+D

Now Theorem 2.10 which is stated in the Introduction of the article in a
consequence of Lemmas 2.1, 2.2 and 2.9 and Theorem 2.8. In fact, note that
/>0(C)=i+(i/2xc, ^F+c)^i+(i/2xc2)+(i/2)(c, KV+D*\

Sakai [6; Theorem 6.5] proved the inequality pg <(l/2)(Kv+D*)z+2 in
Theorem 2.10, (3), provided that D is semi-stable.

In the forthcoming article [7], we shall give first the geometric structure
of those pairs (V , D) satisfying ^=(l/2Xc!)+2, where (c$:=(Kv+D*?. Then
we shall verify an inequality of the form (cD^acz+fi, where cz '.—cz(V)— e(D)
is the Euler number of V—D, and a(>0) and j8 are two rational numbers.
Finally, we shall give the geometric structure of those pairs (V, D) satisfying
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