
Publ. RIMS. Kyoto Univ.
28 (1992), 1-11

Multiple Solutions for a Class of Non-local
Problems for Semilinear Elliptic Equations
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Jan CHABROWSKI*

Abstract

The purpose of this papers is to investigate the solvability of a class of non-local
problems in the sense of Bitsadze-Samarskii (see (A^)). We prove the existence of mul-
tiple solutions under the assumptions of the Ambrosetti-Prodi type on a nonlinear function g.

§ 1. Introduction

In this paper we investigate the solvability of the following non-local prob-
lem for the semilinear elliptic equation

=g(x, u)+t0(x)+f(x) in Q ,

)=0 on 8Q ,

in a bounded domain Q with a smooth boundary dQ, where 0 : dQ-*Q and
/3 : 8Q-^R are given functions and t is real parameter. In the literature the
problem of this type is often referred to as the boundary value problem with
the Bitsadze-Samarskii condition ([4], [7], [13] and [15]). The most charac-
teristic feature of a non-local problem is that the boundary condition relates
values of a solution on the boundary to its values on some parts of the interior
of the region. The main purpose of this article is to prove the existence result
for the problem (Nt) under the assumption of the Ambrosetti-Prodi type ([1],
[4], [5], [10]). It is well known that the Ambrosetti-Prodi conditions played
crucial role in the study of the solvability of the Dirichlet problem for the semi-
linear elliptic equations. This type of assumptions has been widely used in the
last decade and we refer to the recent survey article [121.
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In Section 1 we prove the existence of the principal (smallest) eigenvalue
of the corresponding linear non-local problem. The proof of Theorem 1 is based
on the Krein-Rutman Theorem [11] and we follow here the argument used in
papers [2] and [3]. The existence of the principal eigenvalue allows us to
study the problem (Nt) under the assumption of the Ambrosetti-Prodi type. In
Section 3 we prove the existence of a constant tQ such that the problem (Nt)
has no solution if t>t0, at least one solution if t=tQ and at least two distinct
solutions if t<tQ (see Theorem 4). It is obvious that Theorem 4 constitutes an
analogue to the corresponding result for the Dirichlet problem for semilinear
elliptic equations (see [1], [4], [5], [8], [10] and [11]). The linear non-local
problem was first studied by Bitsadze-Samarskii [6] and was subsequently
generalized by many authors (see for example [6], [7] and [14]. Finally we
mention that the type of the non-local problem considered in this work arises
in the physics of plasma [13].

§ 2. Eigenvalue Problem

The main objective of this section is to prove the existence of the principal
eigenvalue for the problem

Lu = Xm(x}u in Q ,
(EVP)

0 on 8Q .

We make the following assumptions :
(A) The operator L is uniformly elliptic, that is, there exists r>0 such that

for all x<=Q and
(B) The coefficients ai}, bi} c and the derivatives Di3aij and Dtbi belong to

Ca(Q} (0<a<l), moreover c(*)^d>0 on Q for some constant d. The functions
j8 : 3Q->[0, 1] and 0 : dQ—>Q are continuous. Finally we assume that m is a
positive function in Ca(Q}.

Following the terminology from [2] and [3] we provide the Banach space
C(Q) with the natural ordering given by the cone CT(Q) of non-negative func-
tions on Q. We set C+(<5)=C+(Q)-{0} and we denote by C+(Q) the interior
of C+(<2).

To proceed further we consider the linear non-local problem

Lu=f in Q ,
(NL)

u(x)-p(x)u($(x))=Q on dQ ,

where f^Ca(Q}. The results of the paper [7] guarantee the existence of a
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unique solution neC2(Q)nC(Q) of the problem (NL) given by

(1) uM=dG y}v(y}dSy-G(x, y)f(y}dy ,

where v^C(dQ) is a solution of the Fredholm integral equation of the second
kind

(2) "00 - PWrv(y)dSv= ftxMfrx), y}f(y}dy .

Here dG/dny denotes the conormal derivative of the Green function G associated
with the operator L. With the aid of (1) and (2) we define a linear operator
K: Ca(Q)-*C\Q)r\C(Q), given by u=Kf, where u denotes a solution of the
problem (NL). It follows from Theorem 2 in [7] that

(3)

The estimate (3) has been established in [7] under the assumption that Q^
<J&<1 on dQ, where k is a constant. An inspection of the proofs of Proposi-
tions 1, 2 and Theorem 2 in [7] shows that (3) remains true if 0<^(;c)<Jl on
dQ provided the right hand side of the non-local boundary condition is identi-
cally equal to 0. The estimate (3) allows us to extend K by the continuity to
the operator K: C(Q)->C(Q). Invoking Theorem 9.11 in [9] (p. 235) we have

for any domain Q'(^Q and any p>l, where C=C(Q', Q) is a constant. Con-
sequently Kf^Wf^(Q)r\C(Q) for each /eC(<2) and Kf is a strong solution
of the equation Lu—f (see Chapter 9 in [9]).

Let e be the solution of the problem (NL) with /(#)==! on Q. It follows
from the strong maximum principle and Proposition 2 in [7] that e^C^(Q) and
we define

equipped with the norm given by the Minkowski functional (see [3] p. 630).
It follows from [2] that Ct(Q)=Ce(Q)r\C+(Q) is the positive cone in Ce(Q)
with non empty interior.

Lemma 1. The operator K: C(Q)->C(Q) is compact.

Proof. Let fm be a bounded sequence in C(Q). Then um(x)=Kfm(x) is
given by (1) with vm^C(dQ) satisfying the integral equation (2). By Arzela's
Theorem the sequence

r

', y}fm(y}dy
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contains a uniformly convergent subsequence on dQ, which we relabel again as
Zm. Since ^=1 is not the eigenvalue of the integral equation (2), we may
assume that the sequence vm is uniformly convergent on dQ. Similarly the
sequence

\QG(x, y}fm(y}dy

also contains a uniformly convergent subsequence on Q. Therefore the com-
pactness of the operator K follows from the representation formula (1).

We are now in a position to prove the existence of the principal eigenvalue
of the (EVP).

Theorem 1. The (EVP} admits a positive eigenvalue AQ(m) with a positive
eigenfunction @Q. Moreover AQ(m) is the only eigenvalue with the positive eigen-
f unction.

Proof. We first assume that J8(%)>0 on 3Q. Then Kf^C^(Q) for /<E
C+(Q\ that is, K is a strongly positive operator. Indeed, if u(xQ)=Q, then by
the strong maximum principle x0^3Q and by the non-local boundary condition
w(0(*0))=0 with 0Uo)e<P, which is impossible. The (EVP) is equivalent to the
fixed point equation

(4) \u=K(mu)
A,

and the result follows from the Krein-Rutman theorem ([11], see also Theorem 3.2
in [3]). Using the standard regularity theory for the elliptic equations it is
easy to see that any solution in C(Q) of (4) belongs to C(Q}C\C\Q) and is a
solution of (EVP),

Let us now consider the case when /3 vanishes at some points of dQ. It is
evident by the strong maximum principle and the non-local nature of the
boundary condition that for every solution u of (NL) with /eC+(Q) we have
u(x0)=Q if and only if x^fi'^ty. We now prove that K is e-positive operator,
that is, for each /eC+(<3) there exist positive constants a and b such that
ae<Kf^be. The right-hand side of this inequality follows from the positivity
of the operator K. To prove the left hand side of this inequality we choose
v^Ca(Q} such that v^C+(Q) and Q^v^f on Q. Hence u^Kv^Kf. By
the maximum principle and the above observation dui(x)/dv<0 and de(x)/dv<0
for each ^e^'^O), where d/dv denotes the directional derivative with respect
to the outward normal. By the continuity there exists «i>0 such that for all

i] and all x ^ ~ l ( Q )
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Therefore, since u i(x)— ae(x)= 0 on jS'^O) there exists a neighbourhood £7 of
jS-^O) in 0 such that w1(^)-ae(x)>0 for all JccE^-^'CO). On the other hand
Wi(#) is positive on the set Q—U, hence Ui(x)—ae(x)>Q on Q — U for sufficiently
small a>0. This shows that there exist a>0 such that ae^Kf on <3, that is
K is e-positive. Since the injection of Ce(Q) into C(Q) is strictly positive, the
restriction of K(m-} to Ce(Q) is strongly positive compact linear operator. The
result follows from Theorem 3.2 in [3].

Remark 1. Let /£0(ra) be the first eigenvalue for the Dirichlet problem

Lu=hnu in Q ,

u—Q on dQ .

One can show that A0(m)<A0(m) provided /J^O on dQ. To show this we intro-
duce the solution operator u=Kif corresponding to the Dirichlet problem Lu—f
in Q and u—Q on dQ (see [3] p. 635). The maximum principle yields that

Q\ Therefore ^(

Remark 2. Let us assume that <f>(x)=yQ with yQ^Q for all x^dQ, that
is, the mapping <f> is constant. Then the second eigenvalue AJjri) of (EVP)
satisfies the inequality AQ(m)^Ai(m). In the contrary case A1(m)<AQ(m) and the
corresponding eigenfunction v(x) must be equal to f}(x)v(yQ) on 8Q. Hence by
Theorem 4.4 in [3] v must be of constant sign on Q which is impossible. How-
ever we were unable to prove this result in a general case.

Remark 3. Theorem 1 remains true if c(%)^0 on Q and Q<fi(x}^d<l on
dQ, where d is a constant. For this we need only to show that the estimate
(3) continues to hold. As in Theorem 3.2 in [9] we introduce the auxiliary
function

Q

where d>kb and Q is contained in a slab 0<Xi<b. Thus

Q

provided k is sufficiently large and d>bk> and

Q

in Q,

on 9y. The last inequality can be achieved by increasing d if necessary. Con-
sequently by Proposition 2 in [7] we have
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(0d-e**i)sup|/! on Q.Q

Using the function
w(x)=u(x)+(ed-e**i) sup | / 1

Q

we prove that u(x)^— (ed— e k X l ) s u p \ f \ on Q.
Q

§ 3. Semilinear Non-local Problem and Multiple Solutions

We commence by investigating the solvability of the non-local problem

(5) Lu=f(x, u) in Q ,

(6) n(x)-p(x)u($(x»=Q on dQ ,

using the well known method of sub- and supersolutions.
A function 0eC2(Q)nC(Q) is said to be a subsolution of the problem (5),

(6) if L0^f(x, 0) in Q and 0(jc)-j8(*)0(0(*))^0 on 3Q.
A supersolution is defined by reversing the inequality signs in the above

definition.

Theorem 2. Suppose that fz=Ca(QxR) and that f ( x , £)-/(*, ?)^-<w(£-i?)
/or some positive constant a) and all (x, ?) and (*, 57) m QxR with <?>)?. // f/ze
problem (5), (6) admits a subsolution 0 and a supersolution ¥ such that 0(x)<
¥ ( x ) on Q, then the problem (5), (6) has solutions u and v in C(Q)nC2(Q) such
that @(x)<u(x)^v(x)^¥(x) on Q. Moreover any solution w of (5), (6) satisfying

on Q is such that

on Q .

Proof. We define two sequences of solutions of the linear non-local problem

Luk+i=f(x, Uk) in Q ,

uk+1(x)-p(x)uk+i(<j>(x))=Q on dQ ,

for k=Q, 1, 2, ••• , where uQ=0 and

Lvk+i=f(x, vk) in Q ,

vk+1(x)-p(x)vk+l(<f>(x))=Q on dQ ,

for &=0, 1, 2, • • - , where vQ—W. Without loss of generality we may assume that
f ( x , u} is increasing in M, since otherwise / and L can be replaced by f ( x , u)
+cou and L+co, respectively. It follows from Proposition 2 in [7] that

on. Q for each ^. Furthermore, by virtue of Theorem 9.11 in [9] we have
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for each p>l and each Q'mQ, where C = C(Q')>Q is a constant independent
of k. Hence by the Sobolev embedding theorem we may assume that there
exists a function u<=C\Q) such that u=limuk and DiU=\imDiUk uniformly

on each compact subset of Q. The Schauder interior estimates yield that we
C2(Q) and that DijU—lim Di3Uk uniformly on each compact subset of Q (see

k -»00

Theorem 6.2 in [9]). Since uk(x)-ul(x)^^(x)luk(^(x))-ul(^M)'] on dQ for
all integers k, I we conclude from the weak maximum principle of Alexandrov
(see Theorem 9.1 in [9]), that

(7) s u p | M f t U ) — MiU) |

where D*=:det [a t^]1/n and C>0 is a constant independent of k and /. Now
observe that \imuk(x)=u(x) uniformly on 0(SQ) and that lim \\f(m,Uk)—f(',u)\\n

—0 by the Lebesgue Monotone Convergence Theorem. Combining these two
facts with (7) we conclude that lim uk — u uniformly on Q. The remaining part

of the proof is standard and therefore is omitted.

To establish the multiplicity result for the problem (Nt) we assume that
7/1:^1 on Q. We denote briefly the principal eigenvalue of (EVP) and that of the
Dirichlet problem by AQ and /10 respectively. Further we assume that $e
Ca(Q)r\C+(Q), /€ECA(Q), (0<a<l) and g^C\QxR). Moreover the nonlinearity
g satisfies the conditions of the Ambrosetti-Prodi type

(8) lim sup^'-s)-<A^0<liminf^-s)

S->-co S S-+oo S

uniformly in Q and

(9) lim sup l^-sl< co
S-»oo S

uniformly in Q (the strict inequality A<^o holds if /3^0 on dQ).
The assumption (8) implies the existence of constants C>0 and

<ft such that

(10) g(x, s)^^s-C for all (x,

(11) g(x, s)^/Zs-C for all (x,

We begin by proving some technical lemmas. The methods used in the
proofs are not new and have appeared in several papers (see for example [4],
[8] and [10]).
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Lemma 2. There exists a number r such that for t<r, the problem (Af,) has
no solutions.

Proof. Let ¥Q be the first eigenfunction of the Dirichlet problem for the
adjoint operator L*. Thus

x = \ g(x, u)Wodx+t ¥Q®dx + f ¥ Q d x .
Q JQ JQ JQ JQ

It follows from the inequalities (10) and (11) that

^\ fjtu¥0dx-c( ¥0dx+t( ¥00dx + ( f¥0dx
JQC JQ JQ JQ

and

Wnudx^
JQ

These inequalities imply that

(12) t

and

(13) t^(\ ¥Q0dx}'1\\ (ZQ-{2)u¥Qdx + c( ¥Qdx-( f ¥ 0 d x .
^JQ / LJQ JQ JQ

If \u¥Qdx^Q, then (12) yields that

and if ( u¥0dx^Q then if follows from (13) that
JQ

So in both cases the existence of a solution implies that

and a solution does not exist if t>r.

Remark 4. If ¥0A_f, then T is independent of /.
In the following lemma we assume for simplicity that t=Q.

Lemma 3. The problem (N0) admits a subsolution a) satisfying a)(x)—
j8(^)ew(^(jc))=0 on dQ and such that a)<u on Q for any super solution u of (Af0)
satisfying u(x}— @(x)u(<t>(x})~ 0 on dQ.

Proof. Let a) be a unique solution of the non-local problem
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u = pu-C+f(x) in Q ,

-=Q on dQ ,

where ^ and C are constants from (10) and C is chosen in such a way that
one has the strict inequality in (10). Let u be a supersolution of the problem
(/V0) with u(x)— f)(x)u($W)=Q on dQ. Then we have

—v n

and consequently u>v on Q since ^</i0.

Lemma 4. There exists a t^R such that the problem (Nt) has a supersolution.

Proof. For a fixed A^>0 we set

m=max {g(x,

We choose subdomains Q^Q^QzdQzdQ with meas(Q — Qi)^<5, where d>Q
is to be determined. Let HtECa(Q) be such that H(x)=Q on Qlf H(x)=m on
Q — Qz and Q^H(x)<jn on Q. Let v be a solution of the non-local problem

in Q

0 on 9Q .

By Proposition 2 in [7] v>Q on Q. The solution v is given by

G(x, y}H(y}d y ,
y

where w is a solution of the integral equation (2) with / replaced by H. The

integral GH(x)=\ G(x, y)H(y)dv is a solution of the Dirichlet problem Lu—B
JQ

in Q and u=Q on 90, therefore by standard estimates

for each p>l, where M>0 is a constant. Taking p sufficiently large and
applying the Sobolev embedding theorem we obtain

sup \GH(x}\<M'Mmd11*
Q

for some M'>0. Since ^=1 is not eigenvalue for the Fredholm integral equa-
tion (2) we get the following estimate for w

for some Ci>0. Finally applying the Holder inequality we deduce from (2)
that



10 JAN CHABROWSKI

iv(x}\:_ x . . , , ^
V J 3 Q dny I

Now observe that dist(0(3Q), 3Q)>0 and consequently we derive from the last
inequalities that

sup \w(x}\<C2d
llP for some C2>0.

dQ

Now we choose <5>0 so that C2d
1/p^N. Taking t sufficiently large but nega-

tive to ensure that m+t0^H on Q we have

and this completes the proof.

Lemma 5. Suppose thai the problem (Nn) has a solution, then the problem

(14) Lu=g(x, u)+h in Q and u(x)-p(x)u(fix))=Q on dQ
has a solution for each h<*f and

Proof. Since u is a supersolution of the problem (17), by Lemma 3 it has
a subsolution. Hence the existence of a solution of (14) follows from Theorem 2.

Corollary. Suppose that the problem (Nt) has a solution for t=t0, then it has
a solution for any t<tQ.

Theorem 3. There exists tQ such that the problem (Nt) has a solution for
t<t0 and no solution for t>tQ.

Proof. By Lemma 4 the problem (Nt) has a supersolution for certain t.
Lemma 3 implies the existence of a subsolution and consequently Theorem 2
ensures the existence of a solution. To complete the proof we set ifo^sup {t;
the problem (Nt) admits a solution}. By Lemma 2 t0 is finite and the above
Corollary guarantees the existence of a solution for each t<t0.

Now we are in a position to prove our final result.

Theorem 4. There exists t0 such that the problem (Nt) has at least two solu-
tions for t<tQ at least one solution for t=tQ and no solution for t>tQ.

Proof. The proof is similar to the proof of the analogous result for the
Dirichlet problem presented in the paper [4]. Therefore we only sketch the
main idea of the proof. Let t*<tQ. It follows from the proof of Theorem 3
that the problem (Nt*) has a solution u belonging to the interior of the order
interval X=[_u, «], where u and u are suitably chosen a sub- and supersolutions
of the problem (Af t#). We now set

Dsg(x, s)| ; x^Q,
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oj=max(ffl0+l, \\e\\cw)

and denote by K the solution operator for the non-local problem for the operator

L+o). One can assume that u is the only fixed point of the operator G=

KF(-, f*) in IntX, where F(u, t*)=g(x, u)+t*0+f+a)u. It is easy to see that

the Leray-Schauder degree deg(id — G, Uo+eB, 0)=1 for small e>0, where B

denotes a unit ball in E~{u; u<=C(Q), u(x)=fi(x)u(ij>(x)) on dQ}. The second

key idea is to show that deg(zd — G, pBt 0)=0 for some p>Q such that u0-f e£

dpB. Thus, the degree on pB—(uQ+£B) is —1, which implies that there is a

fixed point of G in pB—(uQ+eB). The existence of a solution for the problem

(Nto) can be obtained as a limit of the sequence of solutions of problems (Ntj)

with ^<£0 and tj-*tQ (for details see [4], p. 150.
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