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Monodromy Representations for Generalized
Knizhnik-Zamolodchikov

Hecke Algebras

B>

Ivan CHEREDNIK*

Abstract

In the paper generalizations of the Knizhnik-Zamolodchikov equation with symmetries in Weyl
groups for arbitrary classical r-matrices are studied. Their monodromy representations are calculated
explicitly in terms of Hecke algebras and affine Hecke algebras for basic examples.

§00 Introduction

The aim of this paper is to generalize the so-called Knizhnik-Zamolodchikov
differential equation for n -point function from the two-dimensional conformal
field theory [1] and to determine the corresponding monodromy representation.
We develop the results of Tsuchiya, Kanie [2], Kohno [3,4] and Drinfeld (con-
cerning the KZ-equation and its natural version with the values in simple Lie
algebras) for some new W-invariant equations [5,6] connected with classical
W-invariant r-matrices for arbitrary Weyl groups W. Monodromy matrices are
calculated explicitly for classical W and some special r-matrices (in the funda-
mental representation ofg€N) by means of Hecke algebras of corresponding types.

In general, one obtains certain representations of Birman-Wenzl algebras or
some their generalizations of the same type as W.

Our main result on the monodromy (Theorem 3) is, however, formulated in
terms of the affine Hecke algebra 3C% for GLn and not by means of Hecke
algebras of type An-\, Bn, Cn. There is no contradiction with the above general
statement since the latter are some quotient algebras of 3€JJ. We do not use 9^/{
for the sake of uniformity only. This very algebra plays a key role in the theory
of Young's bases for Weyl groups and Hecke algebras of classical types.

We follow [5,6] and determine explicitly Young's bases for irreducible
Cbsemi-simple" representations of some extention of C[W] (for classical W). In
the special case W=Sn this extension is the so-called degenerate (g—»1) affine
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Hecke algebra Wn (Murphy, Drinfeld, Lusztig). We define the KZ-equation for
this algebra and calculate its monodromy, which turns out to be a representation
of 3Cg.

There are some applications. The monodromy gives us an isomorphism
Wf^yt'n (for general q), constructive isomorphisms between C[W] and
corresponding Hecke algebras and a regular method of "exponentiating" of
quantum Yang's /^-matrices to their trigonometric counterparts. Moreover, one
obtains a way of realization of any irreducible representation for ^ as a
monodromy representation for a certain local system and gets some new invar-
iants of links in R3 without a circle S1 (or two circles for affine W). All these
results are connected with Kazhdan, Lusztig, Ginsburg et al. approach to Hecke
algebras from the point of view of the Langlands-Deligne conjecture. We arrive,
in fact, at some special version of this conjecture with the monodromy group (or
2£/[) as the Galois group and representations of C[W] or corresponding Hecke
algebras in place of p-adic representations.

§1. W-in variant Local Systems

Let R = {a} be a root system of type Xn = An, Bn, . . . , G2 in Rn equipped
with a W-invariant euclidian form (,), W the Weyl group of R, generated by the
orthogonal reflections oa in the hyperplanes o*(a) = 0, where a*(u) = (a,u),
u E.Rn. Later on, {01,. . . ,an} CR are the simple roots for some Weyl chamber,
R+ the set of positive roots a> 0, ot = o^, u,- = a]. Let (,) and all the or*, w G W
be extended to (bi)linear forms and automorphisms of C\ We denote by 6n

the ring of analytical functions in a sufficiently small neighbourhood U C C1 of
M = 0.

Let A: W— >A* be a homomorphism into the multiplicative group A* of
some associative C-algebra A. The group W^w acts on functions f(u) of u G C"
with their values in A by the formula X(w)f(w~l(u)) (A(w))"1 =f (7) (u). For
a collection r — {ra, a^R} of ^4 -valued functions ra(u) and indices l<i , j^n
we put

A- (1/2) S vi/w, Fij=[Dh Dj], vl
a
 d= Ba*ldUi.

(X

Let us denote by Ptj (!</,;< ri) the subsum of Fy- in which one leaves terms
const- [ra,r$ only for or,)8EZar/ + Zafy. We assume that ra depends only on a*
and

for some set {raE:A

Definition 1. A collection r= {ra} is a classical r-matrix (of type Xn) iff for
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a) wra = rw(ft), b) rQ, + r_, = 0, c) F^Q. D

Owing to a), there is only one or two indeterminate functions among {ra},
viz. rai if X = A,D,E and ra^ ra for other X (we use here and further the
numeration of the tables of [7]). As for c), there are two kinds of relations. The
independent "commutativity" conditions (appearing for n > 2 only) are as
follows:
i/ov rfA =®> where /J= a3 in cases X = A,D,E or Xn = 53,C3,F4 and /3= a3,an

for other Bn,Cn. The remaining ("Yang-Baxter") equations have the form

KyaJ = ['"or, + ̂ 2, rai - r^J (AT,, =£ £2,

£,,,-i = 0 CY=5,C,G) or F23^0 for Xn = F4.

For example, let us write down the last condition for J3,C,F in the important
particular case when [rex,rp]=Q, if (a,f$) = Q (for all a,/3^R). We obtain the
relation

[/a Sp + ra +/?] = [ra+2(l-> rcv+ft ~~ r/J5

where a= an-i, /3= an for Bn, a= an, f}= an-i (Cn) and a= a2, 13= a3(F4).
See [20] for some details.

In the case of An-i for A = End(V®fl), where V is a C-space9 with A(iv)
operating on F®" by the corresponding permutations of the components, one
arrives at the usual classical r-matrices (Sklyanin, Faddeev et al.). To be more
precise, the values of ra/ = rn(ul - u2) should belong to End(F02). Then r/y =
'V12 by definition, where w(l,2,. . .,H) = (/,;',...), and c) has the well-known
form

1̂2̂ 34] = 0 = [r12,r23] + [r12,r13] 4- [r13,r23].

Our general Definition 1 is a quasi-classical limit of the corresponding quantum
one from [8]. Sklyanin connected certain r-matrices of type Dn and some soliton
equations with boundary conditions (see Funct. Anal, and AppL, 1987, v, 21,
No. 3, p. 86-88).

Proposition 1. Ifr satisfies Definition 1 then Ftj = 0 for all 1 < i,j < n and the
following W-invariant system of differential equations

d®/dUi = KDi<P, \<i<n, (1)

is consistent (satisfies the corss-derivative integrability conditions) for an A-valued
function <&(u), any icGC and u from

U* l (u E C", a*(u) * 0 for all a} . D

We fix an invertible solution <£>° of system (1) in a neighbourhood U° C 17*
of some point w°G U*. Let if be the projection of w° onto U = U*IW, B =
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ji{(U,u0) — the fundamental group of U. One can represent every element y
by a closed path y 3 w° In U and pull y back to a path y* C 17* connecting w°
with some point wru°, where wy Is a certain element of W (depending only
on y). We denote the analytic continuation of <J>° along y* by <P*y and Introduce
the monodromy 66matrlx":

(2)
(One has to provide the existence of <Py, If dimc A = °°.) The map /?: B— » A*,
/3(y) = TY is an antl-homomorphism: ryFy' = TY>7 (In particular, wyHy = WYY>).

Put 5y'(V) = w°H-(ary,M0) (o/,^)"1 (exp(jr^)-l)^- for w° from fl" withjhe
coordinates M? > 0. The element In 5 corresponding to the projection onto 17 of
the Image of the segment 0 < ip < 1 with respect to s; will be denoted by Sy. Here
and below Sj= Ts(l <y < n). The group JB (the so-called generalized braid group
— see [9]) has the system of generators {$;} with the following fundamental
relations

(siSj)m/2 = (SjSi)m/2 or SiSi+lSi = si+lSiSi+l (3)

respectively for even m = m^ (m,y is the order of o/tTy) or for m = 3 (1 < / </ < ri).
Affiee analogs. Let us transfer the previous considerations to the case of the

affine Weyl group Wa generated by the reflections a^k in the affine hyperplanes
a*(u) = k<=%. We denote the normalizer of Wa by Wa. Let Ua=lTa/Wa, lfa =
(u G U,a*(u) &Z}. By analogy, there should be

for some set (ra^, arE/?, A:EZ}.

Let Afl: Wfl— >^4* be a homomorphism extending A. To describe Afl one has to
know ka(w) only for the shifts w = w/: ̂ -^M + &>/, where {w/} Cl?" are the dual
fundamental weights: (co'lf aj) = 6^ !</, y'^w, for Kronecker's delta. These
shifts aJi generate a normal subgroup P In Wa with the natural action of W, Wa Is
the semi-direct product W-P of W and P.

We set formally for some r= {ra,

r^ (M) = 2 (Afl(fi>?) rfff (W/ - k) Xa((Djk} (4)
/fcez

under the assumption that

Afl(o}y) r^ = rffiAfl(o}y) for / =£ y.

Put r^= wra,; for every v^E W transforming aL to a^R (r% does not depend on
the choice of w if condition a) of Definition 1 holds true). Given a classical
r-matrix r, we claim that ra= {rj, a&R} will be a classical r-matrlx as well.

There are some ways to make (4) meaningful. E.g., impose the condition
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which are defining for trigonometric classical r-matrices. Then ra coincides with r
by definition and Jii(Ua, u°) for a suitable u° is nothing else but the monodromy
group of (1). To be more precise, one should consider (1) for F-invariant U.
Then the latter will be true.

§2. The Factorization

Let us join some of the {crj, l < z < r c by arrows or/'— »or/. One has the
associated ordering: oc-t> ay iff there exists a sequence a/ = o^— » or^— >. . . -*<*,;
= 0} or or/ = (Xj. First, we assume {or/} with all the arrows to form a tree F. The
second condition is as follows. Any connected set of the Dynkin diagram for R
(with {a,} as vertices) contains a maximal vertex relative to the above ordering.
In particular, there exists as = maxr{c^}, l < i < r c , and for every i±s there is
the only "next" vertex o/< connected with at by the arrow a/-— »a/. The last
arrow will be denoted by 0,.

Let (ij) be the only minimal path in the tree /"(not in the Dynkin diagram!)
from a/ to ay. We set ek(ij) = 0 when ak£ (ij), £k(ij} = — 1 for akE. (ij) if a-L is
closer to ak then to ock-\ otherwise £k(ij) = 1. Let us denote maxr{an va = dor*/
dui + 0} for arG R by mr(o) = m(a) and put Mr= {mr(a)}. Here and elsewhere
a^R+ (or>0).

Changes of variables. Given p (!</?<«) we introduce the substitution
vl = Ui/Uj' (i + s), vs = up, which is called to be of type (p, T) and put ov = (VL = 0)

{ " 1
v = (v/) e F, n v/ ¥= 0 [ for

some sufficiently small neighbourhood VE.Cn of ov. We identify points from F*
with their preimages in 17* and assume the image v° of u° to be in F*.

Proposition 2. System (1) can fre rewritten in terms of v E F* as follows

biE6v®cA, (5)

where p = s if ra(u) = or*rcv(w) ^ r^ /or some or,

vi£/ <m/> ny'
y=i m / \y=i

ex

n - \ - l

^(M) - ra) (i + s), bs(v) = 2 (f^u) - ra),
a a

= m(a), Yl =Y\Vi where aiE (mj), Yl = 1.
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It arises from (5) that all c/ are pairwise commutative. It holds true for

J m E Mr (ore /?+), since Q = Ze/(pm) £m (i + s), c5 = X Cm and
m(a)=m

the linear span of {c/} coincides with that of
Later on, WKZ = exp(jez log w) for any wEC, zE^4 is viewed either as a

formal series in K-* 0 for arbitrary A or as a holomorphic multi-valued function
for a finite dimensional A, where log is (for the sake of definiteness) the branch
with the cut off along — iR+. In the first case one must replace A everywhere by
the algebra A[[K]] of formal series in K. We will assume below that the elements
Kadc—l are invertible for any l < / < n , /=1,2, . . . , where adc:x-*[c,x] is a
linear operator on A B x.

Proposition 3. There exists for any fE:A commuting with each £m the
unique solution of (5) in the form of

n

where II u$m = II vfc', v belongs to a sufficiently small F*, 0' E A <8> c@v*
m /=!

@>(OV) = Q (see e.g. [10]). D

Let us now put p = s and take the solution (6) for /= 1 as <P°(v) (or <P°(u)).
It depends on {a^} (or the corresponding Weyl chamber C) and on F (to be
more precise on the restriction of the ordering > onto Mr). It does not depend
on the choice of a concrete v°. We will write down «^° = ^>°(w;C,F). It is evident
that W0°= <P\u\w(C),r) for w<EW. Given two pairs (C,F) and (C,f), some
points u°, u° (with their images in F, F) and a path y* C 17* joining u° and M°,
denote by 4>y the analytic continuation of <P° along y*. Here y is the homotopy

class of y* among all the paths in 17* from F to F. Suppose / = 7y C (1,... ,/t) to
be a set such that for any £>0 there exists y* E y satisfying the inequalities

\Vi(y*)\<e for all f E / .

Let <2>° be the solution of Proposition 3 for another pair (C,F). The proof of
the following theorem is based on analysis of the expansions of (6) in a neigh-
bourhood of {v,Vy = 0 for/^I}. These statements generalize the factorization
principle by Tsuchiya, Kanie. But we use a direct consideration of (1) instead of
the operator formalism from [2].

Theorem 1. 1) The "transfer matrix" ?T = 2T(C,F;C9f) =
does not depend on u, v and can be calculated as follows. Reduce (5) to some
system (5') by throwing away all the bi for i&I and replacing bL (/E/) by the
function b\ obtained from b-t after the substitution v;- = 0 for /£/. Then the
counterpart 3"' of 2T for (5;) coincides with 3".



MONODROMY AND HfiCKE ALGEBRAS 717

2) Each rational function w vh w' = w"1, is regular at ov or has a pole at this
point, i.e. the value v/(w(0v)) is well-defined (belongs to CU°°) for l < j < n ,
w £ W. One can find y for u° = wu° with the above property for I = I(w) =
{i>Vi(w(o^)=tQ}. Then T7 for any such y (see (2)) exactly coincides with its
analog T'yfor (5') with I=Iy = I(w) defined by (2) where we insert v-* w(ov). D

A particular case. We use the notations from the tables of [7]. Let s = l
and i' = i - 1 except the cases n' = n - 2 for Xn = Dn and 2' =4,3' = 1 for E. We
apply the substitution of type (p = 1). Then I(ok) = {/,;' + k}. This set is empty
for k = n and also for k = n — I in case Xn = Dfl. It consists of two elements for
k = n — 2, Xn = Dn and for k = 4, X = E. Elsewise I(ok) = {k+1}. To calculate
$k = Ts/^ one can use (5'), where b] = 0 for f + k and

where / = k and a runs through all the positive roots with vl
a + 0 which are some

linear combinations only of or/ with / > k (and also or2 f°
r X= E, k = 4) . We see

that (5;) contains only {ra}.

Corollary 1. 1) The monodromy matrices {T,S} and transfer matrices {2T}
for any chambers C and trees F depend only on {r^} (not on the whole r-matrix).

2) Every element S^for l < f c < n is conjugated in A* with

To prove 2) one can use the substitution (p,F) if p = s = maxr and ak is a
minimal vertex (such a Fexists for each k}. In this case I(ok) = 0 and ck = TaA. D

§3. Basic Examples

First we consider the group algebra C[W] = 0 Cw with the natural

inclusion W^C[W] as the pair (A,X).

Theorem 2. 1) The collection ra = ^/(cr|s)~1c7ar /or or E R, where I = l(a) is 1
for long and 0 for short roots (XQ,I €= C), w 0 classical A-valued r-matrix.

2) TTze mapping BBy->TyE:A* for sufficiently general qt = exp(jtiKxi),
1 = 0,1, induces an isomorphism of A and the quotient algebra Hw = lf^ of
C[B] by the relations (sk — qj) (sk + q~[1} = 0, which are imposed for \<k<n

(/=/(«*))• a
Statement 1) results from the construction of quantum /?-matrices for A

from [8]. It could be interesting to compare statement 2) with the Benson-Curtis
theorem and Lusztig isomorphisms between C[W] and Hecke algebras.

For W = Sn (in case An-\) one can follow [3,4] and generalize assertion 1).
We use the notations from [7]: oc{ = e/ — e/+1 1 < / < n, a= £/ — EJ (i <;'), where
Sn acts on £= (e/) by permutations, a/= (/ i + 1), (//') are the transpositions. Let
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A (equipped with a homomorphism A: Sn^A*) contain elements Ta=Tjj =
Tjt (!</<;< n) and */ (1 < / < n) with the relations

[!//,!/£ + TJk] =0 = [Tfj-.Tki], %' = Tw(i} ,v(/), (7a)

[*/,.*/ + Tiy] = 0 = [riy, */ + */], w*i = xww (7b)

for pairwise distinct /,;,&,/, wGS / 7 . Then for l < / < « the system

3<P/az,- - *(*,-& - Zn+i)"1 + S %(*/ - z/r *) # (8)
/=£/

is consistent for any constant z /1+1GC (here the S/I-symmetries of r, x are not
significant). System (8) is S,,-invariant under the action of Sn on {zi,...,z,,}
(dual to {EI,. ..,£„}) by permutations together with action (7) on {%, */}.

Later on, T// = (//) and A is generated by C[S,J and {jc/, !</<«} with the
defining relations (7b). This algebra is isomorphic to the degenerate
algebra %€„. The latter is defined (Drinfeld) by adjoining to C[S,J pairwise
commutative independent y1?. . .,y/7 with the relations

[°i-»)V] = ° for y =

To identify A and 2C,'Z one has to put

(y), l ^ / < « .

We will give a version of (8) for W of other classical types. Let us construct
the group Sn (the Weyl group of type Bn,Cn) by adjoining to Sn pairwise
commuting elements PI, . . . ,pn with the relations wpfw~l = pw(/), pf = 1,
!</<«, iv E Sw, acting on Cn B z = (z/) by the formulas p/(z/) = (- l)6(;z;

( l</ ,y</i , 5/y — is the Kronecker symbol).
We can add these {p/} to Wn with the extra relations [PI,JC/] = 0 for / = / = / .

The resulting algebra will be denoted by 0%,. Its subalgebra !%,', generated by
C[Sn] and

^i + A*ift)/2, 1 ̂  i ̂  w,

for ^ E C will be called the degenerate affine algebra of type Bn or Cn and briefly
denoted by A. We will use the notations

(Jj ) - p/py-0y), ^ = (pipj + l)/2, ^ - -% - Z /J^(y).
n>j>i

The algebra yi can be defined over C[Sn] in an abstract way by the relations

o/y» LF/ok] = o, (9)
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[OiJk] = [Pk-yj] = 0 for 1 </, fc < H, k±i,i+l.

We note that one has to consider in case Dn the subalgebra of Wn generated by
S,z, pipj and %i + piXipi ( l^z, j^n). The terms ^A in tne formulas for f/ (and
yi) do not alter relations (9) and will be convenient only in the next sections.

Assertion 1) of Theorem 2 (for S,,,C;I) can be rewritten in terms of {z/} (dual
to fa} from the corresponding tables of [7]) and also generalized by adding
{Xi} C %€„ as follows. We claim that the system (1 < i < n)

+ Zw + l)'1)* (10)

for z,7+1 G C (an arbitrary constant) and an ^-valued function <P(z) is consistent
and S/rinvariant. We will study (10) later only for z/z+1 = 0 and after the
substitution

(cf. the particular case after Theorem 1). We arrive at the consistent A -valued
system

;^z^-^irj^ir,)-1.

where FI = H vm, 1< fc < n.

Further we will consider system (8) only for r£y = (zy) and zn+i — 0 as well.
After the same substitution (11) we arrive at the system which can be obtained
from (12) if one puts p/ = 0 and (JJ)^O for every z,;. We will use this remark to
calcualte monodromy matrices for All_l and Bfl simultaneously. Let us denote
(12) without pi and (9) by (12A). One has xi = xi/2, y/ = y//2 in (12A).

§4. The Monodromy

We choose the initial point zQ = (z?)^Rn with its image v° = (v?) in the
domain {0>v?>-l/2} for (12) and in {0<v?<l/2} for (12A). Let <f>° be
the solution of type (6) for (12) or (12A) and /= 1. Our aim is to caluclate the
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monodromy matrices S k in case (12) and Sk for (12 A) which correspond to
the paths

**(V) = (tj + (4y + 6k+lJ) (exp(7n» - 1) (zl + zLi)/2),

J*(VO = (Z? + (4; ~ 4+iy) (exp(^) - 1) (zg - zLi)/2),

where ty runs along the segment [01], !</:<«, !<;<« and matrices /?/, /?/
respectively for (12), (12 A) and the paths

f l = (z,9 exp (jri V<5//), r' = (z° exp (2;ri^(5;7)), 1 < / < ra.

Here we follow Section 1 with some natural modifications which will be explained
now.

Equations (8) for zn+i — 0 (^nd their transformations (12A)) are well defined

in the domain Z = [z £ C"1, 0 (z/ — z/)z/ =£ 0} and give us the monodromy homo-

morphism from B = nv(Z , z°) to A* for Z =f Z/S,,. The paths {sk} are the
natural pullbacks to Z of the {sk} from Section 1 in case An-i (we use the
notations of the tables from [7]). Their images {sk} in B satisfy the same
relations (3). The image rn of rn in B satisfies the relation 5n_1r/,5/I_1rn =
rnsn-irnsn-i. These relations together are fundamental for B, generated by

_

The corresponding group B for (12) is ;ri(Z',z°), where Z' = {

II (z/ ± Zj) + 0}, Z = Z'/S,,. In fact, this group was introduced in Section 1 for
ij _
Xn = Sn. The images {Ji, . . . /„_!/„} of {s^,f72} in B are absolutely analogous to
Si, . . . ,5n_i,r«, but for another M°. They generate 5 and satisfy (3) for sn = rn as
well. Notice that the mapping sk-*sk, rn-^fn induces an isomorphism B-*B.

The algebras A, A are infinite dimensional. Therefore we are to be precise
when dealing with monodromy matrices. Further all the expressions and formulas
make sense and are valid in any finite dimensional representations of A, A or as
formal series in K-+®. In particular, one can write down that S&,J?/E^4*, Sk,
J?fcEA* only by some abuse of notations.

We remind the definition of the affine Hecke algebra !£% (for GLn) in the
Bernstein, Zelevinsky form (see [11]). It is the quotient algebra of the group
algebra C[B] by the relations

(sk-q) (sk+q~l) = 0, l<k<n, ^GC*. (13)

The letters 7\,. . .,T,,-i are in common use for the images of {sk} in 3€^. The
image of r~l will be denoted by Yn. Put y/= Trl. . .T-^YnTn^. . .Trl. It
results from the relations in B that all {Y/} are pairwise commutative. Now we
are in a position to formulate the main
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Theorem 3. 1) Matrices {Sk} satisfy relations (13) and the mapping $&— >
$k, rn-*Rn induces for generic q = exp(mK) an isomorphism p.-Vt^-^A (defined
in the category of finite dimensional representations or as formal series in K).

2) The following relations are true for generic K:

(Sk + (q- q~1} (q2^ ~ *'+1> - 1)'1) g^ ~ *'+1>

(14)

where g(y) = exp(2micy) I\K(y - l))r«y + l))r~2(Ky) (y2 - %~2, r is the
gamma function, y*k = yk — (pk — l)/(4*r), yk are from (9).

3) All these assertions hold good for A, {/?/, Sk} instead of A, {RhSk} after
the substitution y\ = y/ = yh fik k+i — 1 » where l < / < n > f c > l . D

We can express {5&,S&} explicitly by formulas (14) in terms of {ok,pkpk+i,
yk — y^k+i} regarding F as some integral or reducing it to the scalar F-function
after a diagonalization of yk — y£+1 (if the latter is possible). Notice that one can
verify directly that the resulting formulas for {§k} or {Sk} induce some isomor-
phisms A^^i%^A (independently of the origin of {Sk,Sk}}. By the way, it
gives us certain simple conditions for K ensuring the existence of these isomor-
phisms. There are some straightforward generalizations of statement 2) for other
Hecke algebras (without any monodromy technique)*.

Corollary 2. Setting Xj = 0 for all l < / < n in formulas (14) the resulting
expressions for {Sk,Sk} in terms of

give one isomorphisms between C[S7Z], C[5,J and the corresponding Hecke
algebras Hw of type An_i or Bn respectively (cf. Theorem 2). D

§5. Using Young Bases

To prove Theorem 3 it is sufficient to check formulas (14) in every represen-
tation MM?£ of A or A defined for arbitrary sets u = (wl5 . . . ,un) E C", £ = (£l5 . . . ,
sn) EZ2 as follows. Let MMj£ be C[Sn] with the left regular action of Sn as a Sn-
module. We introduce the action of {y/,p/} by the relations

y/1) = uj7 Pj(l) = SjE: {±1} =Z2, 1 <;<n.

It was proved that some analogs of (14) give us isomorphisms of affine Hecke algebras and their
graded (degenerate) versions in the recent paper by G. Lusztig (J. of AMS, 1989, v. 2, No. 3,
pp. 599-635).
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In fact one should prove (14) only for {wj being in a general position (and then
use the deformation procedure). Further we will apply and generalize to Wn

some results by Zelevinsky, Rogawski (see [12,13]) and those from [14-16] on
the representation theory of 9K/(, Wn.

It is possible to define the collection {fs(u,s), s E Sn} of functions in u E <C",
sE.Zr2 taking values in C[S,J by the relations

= ok + (uk - uk+i)~l (ek£k+i + l)/2, 1 < A: < TZ,

= fs(t(u), t(s)) ft (M,e) for st>t,s,teSn. (15)

Here st > t iff the length l(st) of a reduced decomposition for sf in Sn is equal to
/(s) + /(£), £„ acts on u, 8 by permutations.

A generalized skew Young diagram (cf. [14]) is a collection

\L= {^±r, d(±r)EC, l<r<n} , where

d(r)-d(rr)£Z3d(-r)-d(-rr) for r^r ' , ^r for £= ±1, l < r < r c is a usual
skew Young diagram jjfr= {mf >mfr} CZ ( ! < / < A X ) satisfying by definition
the conditions rafr = 0, mf r> . . . ̂ m|r, mf r> . . . >m|r. We assume that

X (wfr — mfr) = /I. We can number the set {(£,r,/,/), mf r </ < mf r} by (lower)
i,^,r
indices /c (1 < A: < w) in the ''natural" order:

{/:>m} if {&<£„} or if {&- gw = 0<r j k-rm} or

{^k-^m = rk-rm = 0< ik - im] or {& - §m = r^ - rm - 4 -im = 0 <jk-jm}.

Let us introduce the permutation o)= o>^ES,, of the indices {&} which does not
change ^, r^ and has the defining property:

either {j^k) </w(m)} or {/o>(^) ~/w(

for any k > m (%k = £m, r^ = rm). Put

u\ = ik -jk + d(%krk) - X&2 - (& - 1) (4^)-\ 1 < k <

We note that the below construction of bases for 3^ will not depend on #, JT
on rf(±l) and on d(§r) for "empty" f ^ r . Moreover, the representations from the
next proposition modulo isomorphisms do not depend on the order of pairs in
the set {(/^+r, rf(+r))} or in {(/^"r, d(-r))}. The terms with #, jr in the formulas
for u° and the difference d(+l) - d(-l) will be significant only later for 3€g.

Proposition 4e ^Iny irreducible ^C'n-module with the semi-simple action of
{y\-> - • • Jri} is isomorphic to the Wn-submodule MM = 0 C/J C M^^for some \JL,

where /?= lim /5(M°, £°) EC[S,J. The converse (for any //) w ^rwe «5 we//. One



MONODROMY AND HfiCKE ALGEBRAS 723

has for s>a)

We note that a general Mu^£ can be represented as MM for an appropriate set
{d(±r)} if co = id (e.g., each /^r contains no more than one box). We need only
these MM £ to prove the theorem.

It is possible to generalize the main idea of this construction for any group
Sn = SnP if one can find in C[P] elements ;r/y = JT;-/ (1 </<;'< ri) with the properties

for any i </, s G S,15 p E P. E.g. jr^- = $y for S/z above. Without going into detail
we must define an analog of %'„ by relations (9) with JT//+I in place of $;+i and
use fs/(u) = ak + (uk - uk+l)~

ljrk k+l instead of fSk(u,e).
Calculation of {Sk, Sk} In MA'. Theorem 1 shows that when calculating S^_1?

Sk_i one has to solve the Endc(M
M)-valued system

-2(yk^ + fa k-M-i) (vk + I)"1 + ak^(vk + l/2)-l(ri - 1), (16)

where j±k, rj=l for An-i (i.e. for (12A)), r] = 2 in case Bn (for (12)) and

Cj=—2^lyi. This system can be solved independently in the spaces M% =
/>/

+ C/L s E Sn, s => c^, /(as) = /(j) + 1, where a- ak^.

Lemma le Pw? v+ - -us-iw, v_ - -w5-i(^-i), w = -4vk(vk + 1), 6 =
v+ - v_, gf - 1, g2

+ - -1, g2- = (6-1)7(5+1).

•TTzere ar^ rwo linearly independent solutions cp+,(p~ of (16) in M% with respect to
the base e^e2:

>-+/-1 iv^ gf ^^,6^;^), /= 1,2,

where F is the hyper geometric function with a± = 1/2 ± 77105/2, & = inj(l + 5)/
2 + / — 1, c± = l± ^6, cy (/ ¥= fc) acr on M^ ^ 5ome constants (see above). D

To finish the proof of Theorem 3 we use the theory of Young bases for ^
from [15,16]. One can start from F^(u) = (Tk + (q - q~1} (q

2(^-^^ - l)~l

g(uk — uk+i) in place of /SA, where q = exp(mK), g(v) is any scalar function
(g(O)^O). We construct {Fs(u)} by the same cocycle relation (15) as for {fs}
and define {F^, s> co= a)^} for the same set 14^. The properties of these bases
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were stated in [15-17]. We will consider H% (of type Ax-i) as the subalgebra of
3Kg generated by {Tl9.. .,rn_J.

Proposition So 1) Let us denoted by Mu» the ^-module H% with the regular
left action of HI C W% and the action of {Yk, 1 < k < n} defined by the relations
Yk(l) = 42< Then Jlu<> contains M? =f 0 CF°S as an irreducible W%-submodule

o S~a)

(for generic q}\ Yk(F®) = q2^F° for kr=s~l(k), \<k<n. Any irreducible
representation of^% with semi-simple action of {Yk} has the form M? for some a.

2) The modules M^ for \JL with the only non-empty diagram ul (in case A)
or with only two such diagrams u+l,u~l (in case B) and with d(±l)=0 consti-
tute the set of all irreducible representations for the Heche algebra H% of type
An-i or for ff}* of type Bn with q = exp(mscx) (see Theorem 2, where Y~l is
to be taken as the image of sn). D

Lemma 1 leads to

Corollary 3, Put g(x) = exp(2mKx)I\K(x + 1))F4* - 1)) • I^2(icc) (x2 - l)x~2

for generic K. Then the mapping F?—»/?, s>co is extended to an isomorphism
M?^M^ of modules under the action of ^ and %C'n (or Wn) with respect to
the homomorphisms /3: (3f%^>^i'n (or its analogue /3 for Wn) from Theorem 3. D

This corollary generalizes the main theorem of [6] and is connected with
formulas from [2,4]. The usage of {Yk} and our appropach to Young bases
make the construction as explicit as possible (cf. Theorem 5.8 from [4]).

It follows from the corollary that /J, 13 are isomorphisms (for general K) and
that formulas (14) are valid.

Concluding remarks. 1) One can construct some invariants of links by
means of the results of this paper. Any link in R3\SL, where S1 = {t^C, \t\ =
1}, can be represented by an element (a braid) from the generalized braid group
Bn in case Bn,Cn for some n (see (3), Section 1). The construction of general
invariants of these links is similar to that of [18]. The simplest analogs of Jones
polynomials use the trace Tr» of the Hecke algebra H\ acting on the tensor
product of n copies of some vector space CN in the usual manner (Baxter,
Jimbo).

We number the generators S i , s 2 9 . . -A from the formula (3) to ensure the
validity of the relation SiS2SiS2 = S2SiS2Si and the relations 5/5/+1jl- = 5/-+15/5/+1

(i > 1). Then s^ corresponds to the passage of the first strand through S1, $/ is the
permutation of the /-th strand and the (i + l)-th one. To construct the invariant
one has to use the homomorphism /?m: Bn-+ (H*+m)* taking s^ to Tm... T2T

2T2

...Tm, braids Sl to Tm+/_1 (Ki</i) and put x(s)=Tr»+m (M^n+m)/3m(s)),
s<EBn, M = diag(qN~l,qN~3,... ,ql~N}. This x does not depend on n (after a
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proper normalization — see e.g. [18]) and gives some Markov invariant for B^
with the parameters ra,JV,g.

2) The equations (1) for general S,z-invariant r-matrices can be interpreted
by means of some generalization of Kac-Moody algebras [5,19]. The function <P
turns out to be a version of the so-called r-function. In case of Yang's r-matrix
this interpretation is closely connected with the primary fields from the conformal
field theory (see [1,2]).

3) The isomorphisms between Hecke algebras H%, %£% and their degener-
ations give some isomorphisms of the corresponding quantum groups for general
q and the universal enveloping algebras or between the yangians and their
^-analogs from [16].

4) The author thanks the participants of the A.N. Varchenko-D.B. Fuks
seminar in Moscow State University, I.M. Gelfand for their kind interest in this
work, T. Tanisaki for several important remarks and especially T. Miwa for
useful discussion and advice. He is grateful for the kind invitations to the
Hayashibara Forum 90 on special functions (Okayama 1990) and to the RIMS
seminars, where this work was reported.

Its preliminary version was published as preprint ITF 89-74E (Kiev, 1989)
with the same title. Some continuation is in paper [20] and in the Proceedings of
the Okayama conference.
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