Supplement to "Hodge Spectral Sequence on Compact Kähler Spaces"

By
Takeo Ohsawa*

1. The purpose of this short note is to supplement the author's previous article [1] by exhibiting a rigorous proof of the dual L^{2} Poincaré lemma as well as its $\bar{\partial}$-analogue (cf. Proposition 4.1 (7), p. 272 in [1]). We have stated there that up to a slight change its proof is similar to that of the ordinary one, for which we had given a detailed proof. However it turned out that the proof requires a different technique which does not seem to be in the literature. Therefore the author would like to present it here.
2. Let $V \subset \mathbf{C}^{N}$ be an irreducible complex analytic set of dimension n containing the origin as an isolated singular point, let $z=\left(z_{1}, \ldots, z_{N}\right)$ be the coordinate of \mathbf{C}^{N}, and let $\|z\|^{2}=\sum_{i=1}^{N}\left|z_{i}\right|^{2}$. We fix $c \in(0,1)$ so that the spheres $S_{c} \subset \mathbf{C}^{N}$ of radius c centered at 0 intersect with V transversally for all $c^{\prime} \in(0, c]$. We set U $=\{z \in V ;\|z\|<c\}$ and $U^{\prime}=U \backslash\{0\}$. Let us denote by $C_{0}^{r}\left(U^{\prime}\right)$ (resp. $\left.C_{0}^{p, q}\left(U^{\prime}\right)\right)$ the set of (\mathbf{C}-valued) compactly supported $C^{\infty} r$-forms (resp. (p, q)-forms) on U^{\prime} and set $C_{0}\left(U^{\prime}\right)=\bigoplus_{r=0}^{2 n} C_{0}^{r}\left(U^{\prime}\right)$. Let $d s^{2}$ be the restriction of the euclidean metric to U^{\prime} and let $d v$ be the volume element with respect to $d s^{2}$. For all $u \in C_{0}\left(U^{\prime}\right)$, $|u|$ will denote the length of u with respect to $d s^{2}$, and the L^{2} norm $\|u\|$ of u will be defined as the square root of the integral of $|u|^{2} d v$ over U^{\prime}. Let $d: C_{0}\left(U^{\prime}\right)$ \leftrightarrows be the exterior derivative and let $\bar{\partial}$ (resp. ∂) be its (0,1)-component (resp. $(1,0)$-component). The maximal closed extensions of these operators to the completion $\overline{C_{0}\left(U^{\prime}\right)}$ with respect to $\|\|$ will be denoted by the same symbols. We put $\Phi=\left\{K \subset U^{\prime} ; \bar{K} \subset U\right\}, \quad S^{r}=\left\{u \in \overline{C_{0}^{r}\left(U^{\prime}\right)} ;\right.$ supp $\left.u \in \Phi\right\}$ and $S^{p, q}$ $=\left\{u \in \overline{C_{0}^{p, q}\left(U^{\prime}\right)} ; \operatorname{supp} u \in \Phi\right\}$. Then our goal is to prove the following.
[^0]Lemma Under the above situation, $\operatorname{Ker} d \cap S^{0}=\operatorname{Ker} \bar{\partial} \cap S^{p, 0}=\{0\}$ for all p,

$$
\begin{equation*}
\operatorname{Ker} d \cap S^{r}=\left\{d u ; u \in \mathscr{D} \circ m d \cap S^{r-1}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ker} \bar{\partial} \cap S^{r}=\left\{\bar{\partial} u ; u \in \mathscr{D} \circ m \bar{\partial} \cap S^{r-1}\right\} \tag{2}
\end{equation*}
$$

if $0<r<n$.
Proof. That $\operatorname{Ker} d \cap S^{0}=\operatorname{Ker} \bar{\partial} \cap S^{p, 0}=\{0\}$ is trivial. Let $0<r<n$, $f \in \operatorname{Ker} d \cap S^{r}$, and let $f_{p, q}$ be the (p, q)-component of f. First of all we note that $\bar{\partial} f_{0, r}=0, \partial f_{p-1, r-p+1}+\bar{\partial} f_{p, r-p}=0$ for $1 \leq p \leq r$ and $\partial f_{r, 0}=0$. Let us fix $b \in(0, c)$ so that $\operatorname{supp} f \subset U_{b}^{\prime}:=\left\{z \in U^{\prime} ;\|z\|<b\right\}$. Then we put

$$
F_{r, k}=-\log \left(b^{2}-\|z\|^{2}\right)+(n-r) \log \|z\|^{2}-k \log \log \|z\|^{-1}
$$

for $k \geq 0$. Then $F_{r, k}$ is a strictly plurisubharmonic function on U_{b}^{\prime}. Let $d s_{r, k}^{2}$ be the restriction of the complex Hessian of $F_{r, k}$ to U_{b}^{\prime}, and let $\left\|\|_{r, h}\right.$ be the L^{2} norm with respect to $d s_{r, k}^{2}$ and the weight function $e^{F r, k}$. Namely we put

$$
\|u\|_{r, k}^{2}=\int_{U^{\prime}} e^{F_{r, k}}|u|_{r, k}^{2} d v_{r, k},
$$

where $\left|\left.\right|_{r, k}\left(\right.\right.$ resp. $\left.d v_{r, k}\right)$ denotes the length (resp. the volume form) with respect to $d s_{r, k}^{2}$. Since $f \in S^{r},\|f\|_{r, k}<\infty$ if $k \geq 2$. Note that ($U_{b}^{\prime}, d s_{r, k}^{2}$) is a complete Kähler manifold for any $k>0$. Therfore by Andreotti-Vesentini's theorem (cf. [2] p. 31 Theorem 1.3), one can find a measurable ($0, r-1$)-form say $g_{0, r-1}$ on U_{b}^{\prime} satisfying $f_{0, r}=\bar{\partial} g_{0, r-1},\left\|g_{0, r-1}\right\|_{r, k}<\infty$ and that $g_{0, r-1}$ is orthogonal to Ker $\bar{\partial}$ with respect to the inner product associated to $\left\|\|_{r, k}\right.$. Then, by Bochner-Nakano formula for the complex Laplacian with respect to \| $\|_{r, k}$ we obtain

$$
\left\|\left(\partial+\partial F_{r, k}\right) g_{0, r-1}\right\|_{r, k} \leq\left\|f_{0, r}\right\|_{r, k}<\infty .
$$

Hence we obtain $\left\|g_{0, r-1}\right\|_{r, k+2}<\infty$. Next we solve the $\bar{\partial}$-equation $\bar{\partial} g_{1, r-2}$ $=f_{1, r-1}-\partial g_{0, r-1}$ similarly as above with respect to the L^{2} norm $\left\|\|_{r, k+2}\right.$. Repeating this process and noting that $f_{r, 0}-\partial g_{r-1,0}=0$ since $\bar{\partial}\left(f_{r, 0}-\partial g_{r-1,0}\right)$ $=0$ and $\left\|f_{r, 0}-\partial g_{r-1,0}\right\|_{r, k+2 r}<\infty$, we finally obtain an $(r-1)$-form, say g such that $\|g\|_{r, k+2 r}<\infty$ and $d g=f$. Since g is an $(r-1)$ form, finiteness of $\|g\|_{r, k+2 r}$ implies that of $\|g\|_{n, 0}$. Thus the trivial extension \tilde{g} of g to U^{\prime} satisfies that $\tilde{g} \in S^{r-1}$ and $d \tilde{g}=f$ (cf. Lemma 2.4 of [1]). This completes the proof of (1). Clearly the above proof contains that of (2).

References

[1] Ohsawa, T., Hodge spectral sequence on compact Kähler spaces, publ. RIMS, Kyoto Univ. 23 (1987), 613-625.
[2] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Inst. Bombay, 1967.

[^0]: Received July 18, 1990.
 1991 Mathematics Subject Classification: 32L15.

 * Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606, Japan. Present address: Department of Mathematics, Nagoya University, Nagoya 464-01, Japan.

