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Entropy for Canonical Shifts. II

By

Marie CHODA* and Fumio HiAi**f

Abstract

Let N c M be a pair of factors. Associated with a conditional expectation E from M onto N
with finite index, we introduce the canonical shift F on the von Neumann algebra A, with the
canonical state 0, generated by the tower of relative commutants for the basic constructions iterated
from E. Related with the minimum index [M: AT]0, we investigate the entropy /i^(r) of F and the
entropy H<t)(A\T(A)) of A relative to the subalgebra T(A). The inequalities /fy(F) < log [M: JV]0

and ^H^(A\Y(A)) < log [M: JV]0 hold in general. Furthermore when E has the minimum index and
N c M has finite depth, we establish fy(T) = ±H+(A\r(A)) = log[M: JV]0-

Introduction

Based on Connes' spatial theory [9] and Haagerup's theory on operator
valued weights [15], Kosaki [24] extended Jones' index theory [22] for type II ±
factors to that for conditional expectations between arbitrary factors. For a
pair of factors N c M, let $ (M, N) be the set of all faithful normal conditional
expectations from M onto N. Although Kosaki's index Index E varies
depending on Ee<f (M, N), it was shown in [19] (also by Longo [30]) that if
IndexE< oo for some Ee&(M,N), then there exists a unique E0e<?(M, N)
which minimizes Index £ for EE$ (M, N). Then the minimum index [M: JV]o
for N c: M is defined as Index £0.

Pimsner and Popa [33] extensively developed the entropy H(M\N) for type
II! factors N a M in connection with Jones' index [M:JV]- Among other
things, they showed the inequality H(M\N) < log[M: JV] and obtained several
characterizations for the equality. Also it was noted in [19] that H(M\N)
= log[M: JV] is equivalent to [M: AT] = [M: JV]0. The entropy H(M\N) was
first used in Connes and St0rmer [12] to study the entropy of Kolmogorov-Sinai
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type for automorphisms of finite von Neumann algebras. Furthermore the
notion of entropy for automorphisms was extended by Connes [10] and Connes,
Narnhofer and Thirring [11] to the general setup of C*-algebras or von
Neumann algebras.

For von Neumann algebras N a M and a faithful normal state q> on M, the
entropy H9(M\N) is defined as in [10], which coincides with the above H(M\N)
when 9 is a trace. General properties of H9(M\N) were given in [21]. When
there exists £e^(M, N) with (p°E = (p, another entropy K9(M\N) was defined
in [20] (also [23]) by taking account of Pimsner and Popa's estimate of
H(M\N). Given factors N c M and £e<f(M, IV), the relation between the
entropy KE(M\N) and the minimum index [M: JV]0 was established in [20] in a
way analogous to [33]. Here KE(M\N) = K9(M\N) independently of cp with
(p°E = (p, and KE(M\N) = H(M\N) when N c M are type II x factors and E is
the conditional expectation with respect to the trace.

The entropy ff(cr) for a *-endomorphism a of a finite von Neumann algebra
A was investigated in [6, 7] in connection with the entropy H(A\a(A)) and the
generalized index A.(A9 0(A)) introduced in [33]. Here the entropy for *-
endomorphisms can be defined in the same way as that for automorphims. For
an inclusion N c M of type II1 factors with finite index, Ocneanu [31]
introduced a special kind of *-endormorphism F, called the canonical shift, on
the tower of relative commutants induced by the tower of basic
constructions. The canonical shift F is extended on the von Neumann algebra
A generated by the tower of relative commutants, which becomes a typical
example of 2-shifts. Under a certain assumption (equivalent to the equality
H(M\N) = log[M: AT]), the following relations were obtained in [7]:

H(A\T(A)) < 2H(T) < logA^i F(^l))"1 = 21og[M: JV].

These numbers are all identical particularly when N a M has finite depth. The
aim of this paper is to extend the results in [7] to the canonical shift defined for
a pair of arbitrary factors.

In §1 of this paper, for the reader's convenience, we list definitions and
preliminaries on the index theory and the entropy theory. In particular, we
note that the main results for automorphisms in [10, 11] remain valid also for *-
endomorphisms. Now let N a M be factors and £e^(M, N) with Index £
< oo. Then we obtain the basic construction for E following [24], which
consists of a factor M1 => M, a projection eeM^ with Ml = <M, e), and
E1 eS'(Ml9 M). In §2, we obtain an algebraic (up to isomorphisms) characteriz-
ation of the basic construction (Ml9 e, EJ for E. A similar characterization was
given in [17].

Iterating the basic constructions from E9 we obtain the tower of factors N
a M = M0 c M1 c M2 c: ••• with projections eB_1eMB and EneS'(Mn, Mn_1)
for n > 1. In § 3, on the tower of relative commutants M' n M^ c M' n M2 < = • • - ,
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we define the mirrorings yn and the canonical shift F. To do so, we adopt a
powerful idea of Longo's canonical endomorphism [28-30]. Here it is worth
noting that the canonical shift T on [}n(M

rr\Mn) is independent (up to
isomorphisms) of the choice of EeS'(M, N). But taking the GNS represent-
ation associated with the state 0 canonically determined by {£„}, we extend F
(denoted by the same F) to a * -endomorphism of the von Neumann algebra A
generated by (Jn(M'nMn). We call (A, 0, F) the canonical shift associated with
E. In particular, when E = E0 (i.e. Index £ = [M: AT]0), 0 is a trace and
Popa's analysis [36] on sequences of commuting squares can be applied to the
tower of relative commutants in our setup. Thus A is a type II x factor when E
= E0 and N c M has finite depth.

In §§4 and 5, we establish relations among the entropy MF) of F, the
entropy H<I,(A\T(A)) relative to T(A), and the minimum index [M: AT]0. The
following inequalities hold in general:

MD < {KE(M\N) + KEl(M,\M)} < log[M: JV]0,

We show that E = E0 if h+(T) = log[M: JV]0 or if H+(A\r(A))
= 2 log [M : JV]0 • The inequality H*(A \ T(A)) < 2h^(Y) holds when E
= E0. Furthermore when E = E0 and N a M has finite depth, we obtain

H+(A\r(A)) = 2MF) = log W F^))'1 = 2KE(M\N) = 21og[M: JV]o-

Finally in §6, we give two typical examples to illustrate our main results.

§1. Preliminaries on Index and Entropy

In this paper, all von Neumann algebras are assumed to be a-finite. Let M
be a von Neumann algebra. The set of all faithful normal states on M is
denoted by cf(M). Given a von Neumann subalgebra N of M, we denote by
£(M, N) the set of all faithful normal conditional expectations from M onto
N. In this section, we collect definitions and preliminaries on index and entropy
for the reader's convenience.

(1.1) Index for conditional expectations

Let N c= M be von Neumann algebras on a Hilbert space ffl . For each
, N), there corresponds uniquely a faithful normal semifinite operator

valued weight E'1 from N' to M' by the equation d((p°E)/d\l/ = d(pjd(\l/°E~l)
of spatial derivatives where cp and \j/ are any faithful normal semifinite weights
on N and M', respectively (see [15], [37, 12.11]). When N c M is a pair of
factors, Kosaki [24] defined the index of E by Index £ = E ~ [ ( l ) . Kosaki's
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index extends Jones' index [22] in the sense that if M is a finite factor and EN is
the conditional expectation [39] onto a subfactor N with respect to the trace,
then IndexEN coincides with Jones' index [M: AT].

The following formula (the best constant for Pimsner and Popa's inequality)
serves as another definition of Index E. This formula for Jones' index is due to
[33, Theorem 2.2], while for infinite factors it was obtained in several ways in [3,
16, 27, 30]. The proof when Index E < oo is not difficult as shown in [27]. A
nice proof of full generality is given in [26].

Theorem 1.1. Let N a M be factors where M is not finite
dimensional Then for every Ee<^(M, N),

(IndexE)"1 = max {A > 0: E(x) > fa, xeM+}.

Moreover (IndexE)"1 is always the best constant for the complete positivity of
E — AidM including the case M is finite dimensional.

(1.2) Minimum index

Given a pair of factors N a M, the value of Index E depends on the choice
of Ee<f (M, N). But if Index £ < oo for some Ee<f(M, N), then the relative
commutant JV'nM is finite dimensional and Index £ < oo for all £e<f(M, N) as
noted in [19]. In this case, it was proved in [19] that there exists a unique
E0e<f(M, JV) such that

Index £0 = min{IndexE: Ee<f(M, N)},

which is characterized by the condition

£0-11 N' n M = (Index E0) E01 Nr n M.

In fact, £0 |AT'nM becomes a trace on JV'nM. We define the minimum index
[M: JV]0 for a pair N c M by [M: JV]0 = IndexE0. Also let [M: N]0 = oo if
<?(M, JV) = 0 or Index £ = oo for all Ee£(M,N). Note [24, Theorem 4.4]
that if Index £ < 4 for some EeS(M, N), then ATnM = C and hence g(M9 N)
= {£}. See [18, 20, 30] for properties of the minimum index.

(O) Commuting squares

Consider a square

N c=M

U U
B c:A

of von Neumann algebras and let cpeS*(M). Then the next proposition can be
proved as [14, 4.2.1].

Proposition 1.2. Assume that there exist conditional expectations E: M -> AT,
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F : M -> A and G : M -» B with respect to (p (i.e. cp° E = cp° F = cp° G = (p). Then
the following conditions are equivalent:

(i) E(A)aB'9
(ii) E°F = G;
(iii) EoF = FoE and AnN = B;
(iv) E\A = G\A.

We say that

u u
B ^A

is a commuting square with respect to q> if there exist the conditional
expectations £, F and G as above and the equivalent conditions (i)-0v) hold.

(1.4) Entropies H9(M\N) and KV(M\N)

Let N c M be von Neumann algebras with cp€$(M). Following Connes
[10], we define the entropy /f^(M|JV) of M relative to N and cp by

H,(M|AT) = sup£{%>, ^ - Sfo>|JV, ^|JV)},
WO i

where the supremum is taken over all finite families OAi,...,*/O of ^,-eM* with
Zi^i = <P- ^ere ^(^' ^) denotes the relative entropy of (p, ij/eM*, which was
first introduced by Umegaki [40] in the semifinite case and extended by Araki
[1, 2] to the general case. Particularly if M is finite with a faithful normal trace
T, T(!) = 1, then H(M\N) = H,(M\N) is given by

H(M\N) =

where rj(t) = — tlogt on [0, oo), EN: M -> N is the conditional expectation with
respect to T, and the supremum is taken over all finite families (x 19..., xn) of
x£eM+ with ^ixi= 1- ^ee [21] f°r general properties of ff^(M|N).

When there exists EE$ (M, N) with cp°E = q>, another entropy K9(M|N) of
M relative to N and (p was defined in [20] (also [23]) by

K,(M\N)= -S(d>,G>)

where co = (^|JV'nM and c5 = (^^^(E'^JV'nM). Here unless c5 is bounded, the
relative entropy S(a), co) is given by the infimum of S(co', co) for o'e^'nM)^
with co' < co. If AT is a factor, then KV(M\N) is independent of the choice of
<pe&(M) with cp°E = <p, so that we write K9(M\N) = 1C£(M|N). Although the
entropies H9(M\N) and ^(M|AT) are not generally identical, we have H(M\N)
= KX(M\N) when M is a type II x factor.
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(1.5) Relation between entropy and Index

Pimsner and Popa [33] established the relation between the entropy
H(M\N) and Jones' index [M: AT] for a pair of type II j factors N c M. The
entropy K9(M\N) was investigated in [20] in connection with Kosaki's index
and the minimum index for a pair of general factors. In the following, we state
the main results in [20] restricting to the case of factors N a M. Here note that
the centralizer (N'nM)E of Ee&(M, N) is atomic whenever so is ATflM. Also
for each nonzero projection q in JV'nM, E(q) is a scalar and Eqe£(Mq, Nq) is
defined by Eq(x) = E(q)~1E(x)q, xeMq.

Theorem 13. Let Ee<f(M, N).
(1) If N'nM has a nonatomic part, then KE(M\N) = oo.
(2) If AT 'nM is atomic and {qt} is a set of atoms in (N'{]M)E with YttQi = 1>

then

Theorem 1.4. (1) KE(M\N) < log[M: AT]0 for every Ee<$(M, N).
(2) If [M: JV]0 < oo, then the following conditions for EE$(M, N) are

equivalent :
( i ) IndexE = [M: AT]0, i.e. E = E0;
(ii) XJS(M|JV) = log[M:N]0;
(iii) KE(M | N) = log Index E ;
(iv) Index Eq = E(q)2 Index E for every nonzero projection qeN' nM.

(1.6) Entropy for *-endomorphisms

After Connes and St0rmer [12] developed the entropy of Kolmogorov-Sinai
type for automorphisms of finite von Neumann algebras, Connes [10] and
Connes, Narnhofer and Thirring [11] extended it to the general setup of C*-
algebras or von Neumann algebras. As in [6], to fix the notations, we briefly
survey its definition extending to the case for *-endomorphisms of general von
Neumann algebras.

Let A be a von Neumann algebra with <t>e&(A) and a a *-endomorphism of
A with 0 ° a = (j). Then a is unital, injective and weakly continuous. For each
neN, we denote by &n the set of all families *F = (^.....iji^...^^ of
i//iltmfmtineA+ such that £fl ..... in\l/ti ..... in = 0 and \l/h in = Q except for a finite
number of indices. For ¥e^n, fee{l,...,n} andj'eN, let

^ j = . .L ^ii ..... i k - i , j , » k + i , . . . , i n -
ii,---,ik- i,ik+ i ..... in

Given finite dimensional subalgebras Bl9...,Bn of A, Connes [10] defined
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VePn h,...,in k=l

Then the following is easy to check as in [6, Lemma 2]:

By this and [10, Theoreme 5], the following limit exists for each finite
dimensional subalgebra B of A:

h+ a(B) = lim -H*(B9 a(B),...,an~l(B)}.
n->co YI

Now the entropy h^a) of o relative to 0 is defined by the supremum of h^a(B)
for all finite dimensional subalgebras B of A.

The arguments in [11, §VII] remain true also for *-endomorphism, so that
we have:

Theorem 1.5. If {Bk} is an increasing sequence of finite dimensional
subalgebras with A = ((JkBk)'

f (so A is approximately finite dimensional), then

Proposition 1.6. (1) h^a) = ht00(0~ l off) for every automorphism 9 of A.
(2) h^a") < nht(a) for all neN, and the equality holds if A is approximately

finite dimensional.

§2. Basic Construction and Algebraic Basic Construction

The concept of the basic construction invented by Jones is a core in the
index theory [22, 24]. In this section, we present some preliminary results on
the (algebraic) basic construction, which will be useful in the next section.

First let us recall the procedure of the basic construction [24] . Let N c M
be factors and Ee<f(M, N) with Index £ < oo. Choosing <peg(M) with cp°E
= cp, we represent M standardly on J^ = ffl 9 equipped with the natural cone
ffl + and the associated modular conjugation J. Define the factor M1 = JN'J
and the projection e by e(x£) = E(x)& xeM, where q> = co^, ^e Jf +. Then

Also E1£(£(M1, M) is defined by

The construction of (Ml5 e, EJ is called the basic construction for E. We write
this procedure as follows:
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The next proposition is a restatement of [25, Appendix I], which shows that
the basic construction is canonical up to spatial isomorphisms.

Proposition 2.1. Let N a M bejactors with Ee<f (M, N). Let 9: M -» M
be an isomorphism such that 9(N) = N and 9 ° E = E ° 9 (hence Index £ = Index E
< oo). Let

N c= M c *M,
T K

&e £/ze fow/c construction for E defined on a Hibert space $ with the conjugation
J. Then there exists a unitary u: ffl -> $ such that

(i) uxu* = d(x), xeM,
(ii) uJu* = J,
(iii) ueu* = e,
(iv) wM^M* = Ml5

(v) Ad (n) ° £ !=£!<> Ad (M) OTI Mx.

Now let us introduce the notion of algebraic basic constructions. Let N
c M c= Ml be factors, eeM1 a projection, EeS'(MyN) and ^^^(M^M).
We call (M 19 e, £x) an algebraic basic construction for E if

(1) M1 = <M,e>,
(2) £^ = ^1 (A>0) ,
(3) exe = £(x)e, xeM.

In this case, we have Index £ < oo by Theorem 1.1 because for xeM+

lE(x) = E1(E(x)e) = E^exe) > £1(x1/2^)*£1(x1/2g) = A2x.

Note [24, Lemma 3.2 and (8)] that the basic construction for E is an algebraic
one. The next proposition shows the uniqueness of algebraic basic construc-
tions for E up to isomorphisms. In other words, the above (1H3) algebraically
characterize the basic construction for E (see [34, Proposition 1.2] for more
elegant characterizations in the type II 1 case). A similar result was obtained by
Hamachi and Kosaki [17, Theorem 8].

Proposition 2.2, Besides (Ml5 e, £J for £e^(M, N) as above, let N ^ M
c Mj be factors, £eMx a projection, £e<f(M, N) and E1ES'(M1, M) such that
(M1,e,E}) is an algebraic basic construction for E. If 0 :M-»M is an
isomorphism such that 0(N) = N and 8°E = E°0, then there exists a unique
isomorphism 9± : M1 -> M1 such that

(i) 01(x) = 0(x)
(ii) 9,(e) = e,
(iii) O^E^E
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Proof. Since Index E < oo as remarked above, we can take the basic
construction for E. So we may assume that (Ml,e9El) is the basic
construction (in the spatial sense) for E. Let E1(e) = II (A > 0), while E^e)
= Al with A - (Index E)"1. Let q>eS(M) and define ^e(T(M1), jj/effWJ by \j/
= (p°El9 {j/ = cp°9~l°E1. According to [33, Proposition 1.3] and [41, 2.5.3],
there exists a basis {m1?...,mn} in M for E which satisfies ££i?i£em? = 1. The
existence of such a basis shows that M1 is the linear span of {aeb: a, beM] (see
the proof of [33, Proposition 1.5]). For any ai9 b^M, 1 < i < fc, we have

where \L = /A"1. Therefore a map 91 : Mv -*Mt is well defined by

Then (ii) holds and 9l is a *-homomorphism. Since if/ = ̂ °9ly 9l is normal
and hence injective. We get

and since 0i(l) = ^i0(m^e0(mf)9

0l(l)0(x) = O^x) = 0(x)0i(l), xeM,

so that 9^(1) = 1, showing (i). Moreover the linear span of [deb: a, BeM}
the * -algebra generated by Mll{e}, so that 01 is surjective. Since

(0! ° JEJ (aeb) = W(ab) = ^(E^ ° 0J (fleb), a, b e M,

we get ju = 1 and (iii) holds. It is immediate that (i) and (ii) uniquely determine
9. •

is

Proposition 2.2 shows that algebraic properties of the basic construction
automatically become those of an algebraic basic construction (Ml9 e, £x) for
E. So we have for instance

(4) Index E = Index El = A'1 for A in (2),
(5) N = Mt]{e}'9
(6) e€(Nrr\M1)EoEl9 the centralizer of E°E±.

Furthermore we have:

Proposition 2.3. In any representation of N c= M c M1?

(7) £-1(e)=l,
(8) exe = kEi

Proof. Since (7) and (8) hold for the basic construction, it suffices by
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Proposition 2.2 to show that the validity of (7) and (8) is preserved under
isomorphisms, that is, if a: M1 -^ Ml is an isomorphism and if M = a(M), N
= a(AT), E = a0°£oa^1(a0 = a|M), E1 = a° J E 1 °a~ 1 and e = a(e), then (7) and
(8) imply

(7') E~i(e) = l
(8') exe = AEi1(x)e, xeM'.

We may separately consider an amplification, an induction and a spatial
isomorphism. The first two cases are easily shown by [20, Propositions 1.7 and
1.5]. The final case is obvious. •

From now on, let N a M be always a pair of factors with [M: AT]0

< oo. By iterating the basic construction from £e^(M, AT), we obtain the
tower

N <=.M = M0<=M1<^M2c: ...
*F K K

of factors Mn together with conditional expectations EneS>(Mn, Mn-^. Then
we have the commuting square property as follows.

Proposition 2.4 Let (p0E$(M) with (p0°E = (pQ, and define cpne$(Mn) by

cpn = (p0°E1°---°En, n>L

Then for every 0 < j < k < n

Mk c: Mn

U U

is a commuting square with respect to cpn.

Proof. Let Ektn = Ek + 1 ° - - - ° E n which is the conditional expectation Mn

-»Mfc with respect to cpn. Hence by [38], we have

of n(M'j n Mn) = M'j n Mn, of- (M'j n Mk) = M] n Mk, t e E,

so that there exist the conditional expectations Mn -» M} n Mn and Mn -> M} n Mk

with respect to cpn. Now it is easy to check that Ektn(Mj(}Mn) = M}nMfc,
implying the conclusion by Proposition 1.2. •

Let £0e<T(M, N) be such that Index E0 = LM: NJo- Then the characteriz-
ation of E0 in (1.2) immediately shows the following:

Proposition 2.5. E = E0 if and only if E(x) = E^Jx^J) for all xeN'ftM.

The next important result on the minimum index for the tower is proved by
Kosaki and Longo [26].
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Theorem 2.6. Suppose E = E0. Then for every 0<k<n,
Ek+1°-•°En££>(Mn, Mk) gives the minimum index for Mk c= Mn; equivalently
[Mn: Mk]0 = [M: NJ*0~

k. In particular, Ek + 1 ° - - - ° E n \ M ' k ( } M n is a trace.

§3. Definitions of Mirrorings and Canonical Shift

Ocneanu [31] introduced the important concepts of the mirrorings and the
canonical shift on the tower of relative commutants for the inclusion of type II t

factors with finite index. The aim of this section is to present precise definitions
of the mirrorings and the canonical shift which are available to the inclusion N
c= M of general factors.

Given Ee<f(M, N) where Index £ < oo by assumption, let

N <=M = M0^ e°M1 <c e iM2 <c e 2M3 c ...
*¥ K £2 £3

be the tower of basic constructions iterated from E. Here for each n > 1, Mn is
standardly represented on a Hilbert space J^n with the modular conjugation Jn,
so that

Mn+1 = JnM;_! Jn = <Mn, eny,

En + i(x) = UnE~l(JnxJn}Jn, xeAf n + 1,

where /I = (Index E)~l. Then we obtain the tower

M'nMj c: M'nM2 c M'nM3 c •••

of relative commutant algebras, which is an increasing sequence of finite
dimensional algebras.

For each fixed n > 1, let us define

Mk = JnM'2n^kJn, n+l<k<2n,

ek = Jne2n~kJn, n + l < f c < 2 n - l ,

Ek(x) = UnE2n-k+l(JnxJn)Jn, xeMk,n + 2<k<2n,

where M'2n-k and £2 n-fc+i are defined for M2n_k c M2n-k+1 represented on
Jfn. Then

Mn c Mn + 1 - Mn + 1 c Mn + 2 c ... c= M2nJ

ek,1eMk, EkE$(Mk, Mfc-x), n + 2 <k<2n,

and we have:

Lemma 3.1. For epery n + l < f e < 2 « - l , (Mk+1, ek, Ek+i) is an algebraic
basic construction for Ek where En + 1 = En + 1.
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Proof. Let us check three conditions for the algebraic basic
construction. Since M 2 n_ f c_ 1 = M 2 n_ f e f l {e2n-k}', Mk+1 = <Mfe, ek). Since
Ein-ktein-k) = 1 by Proposition 2.3 (7),

Since by Proposition 2.3 (8)

we get for

ekxek = UHEtolk + l(JnxJJe2n-kJn = Ek(x)ek. M

Lemma 3.1 enables us to apply Proposition 2.2 recursively, so that we have
the following:

Proposition 3.2. For every n > 1, there exists a unique isomorphism On : M2n

-» M2n such that
(1) 0B(x) = x, X6MB + 1 ,
(2) 9n(Mk) = Mfc, n + 2 < k < 2n,
(3) 9n(ek) = ekjn+l<k<2n- 1,
(4) (9n°£fc = Ek°0n on Mk, n + 2<k< 2n.

Using 9n in Proposition 3.2, we now define antiautomorphisms yn of
M'nM2n, n > l , by

(Also let y0 = id on M' n M = C.) We obviously have yn ° yn = idM'nM2n. These
yn are called the mirrorings on the tower of relative commutants, which extend
those in [31]. The next proposition shows that the sequence {yn} of mirrorings
is determined (up to isomorphisms) independently of the choice of the tower.

Proposition 3.3. Besides the tower and {yn} described above, let

be another tower of basic constructions from E, and {yn} be the associated
sequence of mirrorings. Then there exists an isomorphism &: (JnMn^>(JnMn

such that for every n > 1
(1) ®(x) = x, xeM,
(2) ®(Mn) = Mn,
(3) 0oEn = Eno® on Mn,
(4) ®oyn = $noQ on M'nM2n.

s* ^

Proof. Let Mn be standardly represented on a Hilbert space J^n with the
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conjugation Jn. Applying Proposition 2.1 recursively, we have a sequence
{un: n > 0} of unitaries un: ^fn-^ $n such that for every n > 0

(i) unxu* = M n_ 1xw*_ 1 , xeMn (with convention u_v = 1),
(ii) unJnu% = Jn,
(Hi) unenu* = 6n,
(iv) unMn+1u* = Mn + l9

(v) M(un)°En + 1 =En+l°M(un) on Mn + 1.
Thus an isomorphism ©: \JnMn->\JnMn can be denned by 0(x) = wnxw*,
xeMBJ H > 0. Then (l)-(3) are immediate. Let us prove (4). Besides 9n: M2n

-+M2n( = JnM'Jn), let 9n: M2n-+JnM'Jn, n > 1, be isomorphisms as in Propo-
sition 3.2 associated with the second tower. For each n > 1, we can define the
isomorphism 02n: M2n -> M2n by 02n - 9~l ° Ad (wj ° 6n because un(JnM'JJu*
= JnM'Jn. Then by Proposition 3.2 together with (i)-(v)> we have the
following:

(1°) ®2n = M(un) on Mn+1,
(2°) @2n(Mfc) = Mk, n + 2 < fc < 2n,
(3°) 02nfe) = \, n + 1 < k < 2n - 1,
(4°) 02no£ fc = £ f co@2 n 5 w + 2 < / c < 2 n .

Since the above (l°)-(40) are the conditions which uniquely determine the
isomorphism 0|M2n, it follows that ®2n = 0|M2n. Therefore we get for
x E M' n M2n

(©oyjw = e;l(unjnen(x*)jnu*) = kl(Jndm(®(x)*)jj = (fn°0)W,
as desired. •

In the proof of the next proposition, we adopt a key idea of Longo's
canonical endomorphism investigated in [28-30].

Proposition 3.4. For every n > 1, yn+1 °yn = yn°yn-i
 on M'nM 2 n_ 2 .

Proof. In view of Proposition 3.3, we may show in the particular choice of
the tower. First assume that M is infinite (hence so is N). Since the
assumption of finite index implies that AT is a-finite on the standard Hilbert
space Jjf for M, we can choose <i;0 e ffl which is cyclic and separating for both M
and N (see [13]). Let JM and JN be the modular conjugations associated with
£0 for M and AT, respectively, and let W=JMJN. We define the basic
construction (M1? eQ, E^) for E via the natural cone associated with ^0 for
M. Since

M,=JMN'JM=WNW*,

Mx is standard on ffl with the conjugation J1 = WJNW* associated with
£0. Hence the basic construction for El can be defined via the natural cone
associated with £0 for Ml5 so that we have two steps of the tower
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N <=M <=e°M1^
eiM2

*£~ £7 £2

on the same Jf . Here

M2 - WJNW*M'WJNW* = WMW*.

Now define for n > 1

M2n= WnMW*\ M2n+1 = Wn+1NW*n+1( = WnMlW*n),

J2n=WnJMW*\ J2n+1 = W* + lJNW** + l(= Wn

E2n = WnE(W*n-Wn)W*n, E2n + 1 = WE^

Then it is easy to see that the tower

is a realization of the tower of basic constructions from E. For this tower, the
isomorphisms On:M2n^>M2n in Proposition 3.2 are simply 6n = idM2n (M2n

= M2n). Therefore

yn(x) = Jn

This shows that for n > 1

and particularly yn + 1 o yn = y n o yn _ t on M' n M2n _ 2 .
Next assume that M is finite. Taking the tensor product of the tower from

E with any infinite factor P, we obtain

e i ® 1 M 2 ®P

which is really the tower of basic constructions from £®idp. Since the
isomorphisms in Proposition 3.2 for the tensored tower are #n®idp: M2 n®P
-> M2n ® P and M' n M2w = (M ® P)' n (M2n ® P), the mirrorings for the
tensored tower coincide with those for the original tower. Thus the desired
equality follows from the infinite case. M

The next proposition is a partial extension of [34, Theorem 2.6] (also [31]).

Proposition 3.5. For every 0 < k < n, En+1 °--°E2n_k is the basic
construction of Ek+ 1 ° • • • ° En ; more precisely
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for all xEM2n_k with 9n in Proposition 3.2.

Proof. By the proof of Proposition 3.3, it suffices to show in the particular
choice of the tower. When M is infinite, we take the tower specified in the
proof of Proposition 3.4 where 9n = idM2n. The case k = n — 1 is just the
definition of the basic construction. Suppose the equality holds for some 0 < k
< n. Then for every xeM 2 n_ f e + 1 , we have

because

as easily checked. Hence the conclusion follows by induction. When M is
finite, we can do as in the proof of Proposition 3.4. H

Given the tower from £, Proposition 3.4 enables us to define a *-
endomorphism F of (Jn(M'ftMn) by

T(x) = yn+l(ym(x))9 xeM'nM2 n ,

which is called the canonical shift on the tower of relative commutants. In view
of the proof of Proposition 3.4, we know that the canonical shift F as well as the
mirrorings yn can be constructed apart from the choice of £e<f (M, N). In this
sense, F is canonical for the inclusion N c M rather than for E. Now the
faithful state 0 on \Jn(M'r\Mn) is defined by

n> 1.

Then we have:

Proposition 3.6. (1) yn(MJ n Mk) = M'2n_k n M2w_7-, 0 < j < k < 2n.
(2) F(M^nMn) = Mk+2(}Mn+2, 0 < k < n.
(3) Tk°yn = yn+k on M'flM2n , k, n > 0.
(4) 0or = (£ on UnCM'flMJ.
(5) If E = E0, then 0°y n = 0 on M'nM2n , n > 0.

Proof. The case of M being finite follows from the infinite case by taking
the tensor product with an infinite factor. So let M be infinite. It suffices as
before to show for the tower specified in the proof of Proposition 3.4. Then (1)-
(3) are directly checked for T(x) = WxW* and yn(x) = Jnx*Jn, xeM'(]M2n. (In
fact, WkJn = JnW*k = Jn+k.)

(4) Proposition 3.5 implies that
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for all xEMn, n > k > 0. Hence for every xeM' nMn, we get

Since Jn+1x Jn+1 £M'n + 2nM2n+2, we get E-+
1

2(Jn

Therefore

(5) Let E = E0 and xeM' nM2n. Combining Proposition 2.5, Theorem 2.6
and Proposition 3.5, we have

0(x) - (E! o--oE2 n)(x) = (E2n+1o...oE4n)(J2nx*J2n)

by (3) and (4). •

Let us extend F to a * -endomorphism of the von Neumann algebra
generated by |Jn(M'nMn). So define

where n^ is the GNS representation of (jn(M'nMn) associated with 0. Further
let (f> be the normal extension of 0 on A, so that 0(^(x))

The inclusion N c M is said to have finite depth if

sup dim Z(M' n MJ < oo
n

where Z(M; n Mw) denotes the center of M' n Mn (this condition does not depend
on the choice of E).

Proposition 3.1. (1) 0 is a faithful normal state on A.
(2) There exists a unique * -endomorphism Y of A such that 0°f =

(3) If E = E0, then $ is a faithful normal trace on A.
(4) If E = E0 and N a M has finite depth, then A is a type II ^ factor.

Proof. (1) Let A° be the C*-completion of (jn(M'nMn) with the extension
of 0. Then n* is nothing but the GNS representation of A° associated with
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$°. Letting <£„ = <£|M'nMw , since <7f"+1 |M'nMw = oj» for all n > 1, we obtain
a one-parameter automorphism group of of ,4° such that a°\M'(]Mn = ofn,
n > 1. Hence it follows (see [4, 5.3.9] for instance) that the normal extension $
of 0° is faithful.

(2) follows from Proposition 3.6 (4).
(3) follows from Theorem 2.6.
(4) Suppose E = E0. Then Popa's arguments in [36, §2] work in our setup

as well. In fact, the results [36, Proposition 2.1, Corollaries 2.2 and 2.3] (also
[14, 4.6.3]) hold for ^[MiA/lo1 and {Bn = M'nMn: n > 0}, when we
consider the dimension vector and the trace vector of Bn with respect to the trace
cj) together with the inclusion matrix of Bn d Bn+i. Thus the same proof as [36,
Corollary 2.5] implies the desired conclusion under the finite depth
assumption. H

Since n^ faithfully imbeds Un(M'nMn) in A, we consider \Jn(M'r\Mn) as a
subalgebra of A and denote f, $ by F, 0 again. We call the *-endomorphism
F extended on A, or more precisely (A9 0, F), the canonical shift associated with
E. In particular, let N c M be type II 1 factors and (A, 0, F) the canonical shift
associated with the conditional expectation EN : M -> N with respect to the
trace. Then 0 is a trace whether EN = E0 or not. This F is the canonical shift
for N a M investigated in [7] .

On the lines of [29, Theorem 5.1], we have the ergodic property of F
extending [7, Proposition 21].

Proposition 3.8. 0^= i Tfe(^) = C.

Proof. Let || • ||^ be the norm on A induced by 0, i.e. ||x||0
= </>(x*x)1/2. Let xe(]kr

k(A). For any e > 0, there exist k and j;eM'nM2k

such that \\x — y\\tf)< s. For every n > 2k, Proposition 2.4 shows that

M'nM2 kc: M'flMn

U U
C ^M

is a commuting square with respect to ^|M'nMn . By Proposition 3.6 (2),
Tk(A) is generated by UnC^fcfiMJ. Hence we see that

M'nM 2 f ec= A

U U
C c Fk(yl)

is a commuting square with respect to 0. So there exists the conditional
expectation F\A^Yk(A) with respect to 0, which satisfies F(M'nM2fc)
= C. Since F(x) = x and F(y) = (f)(y), we get
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< \\F(x - y)L + \<t>(y - *)l < 1\\x-y\\t < 2e,

which implies xeC. •

§4 Entropy A,(F)

Let (^4, $, F) be the canonical shift associated with EeS>(M, N) defined in
the previous section. Let Bn = M' n Mn and c/)n = $ 1 Bn for n > 0. Then {Bn} is
an increasing sequence of finite dimensional subalgebras of A with A
= ((JnBn)". The aim of this section is to establish the relation between the
entropy ft^(F) and the minimum index [M: AT]0.

Lemma 4.1. (1) For every n, m > 0, (UJUF7" (£„))" « included in Bn + 2m.

(2) L6tf fcB = ^— . Then for every n, m > 0, T(m+1)fc"(Bw) commutes with

(U^om,))" fl^foO = 0M0(y)/" a//x6(U^or'(W fl^er^1^,,).
(3) The conditional expectation A -> rj(Bn) with respect to 0 exists for every

n, j > 0, and

Bn <= A

u u

is a commuting square with respect to $ for every n>2.

Moreover if E = E0, then T is a 2-shift on the tower {Bn} in the sense of [7].

Proof. (1) and (2) follow from Proposition 3.6 (2).
(3) By the proof of Proposition 3.7 (1) and [4, 5.3.4], the conditional

expectation A -> Bn with respect to $ exists for every n > 0. Then Proposition
2.4 shows the desired conclusions (see the proof of Proposition 3.8).

(4) is obvious from Proposition 3.6 (3).
By Propositions 3.6 (5) and 3.7 (3), the above (l)-(4) show the last

statement. •

Proposition 4.2. h,(T) = limn^ao-H,(B2n) = lim^-S^J where S(0J is

the entropy of <j)n.

Proof. For each n, m > 1, let B = (U7=VFJ"fc" (£*))" where kn = [ ^-^1

and { ^ : l < i < / } be a set of atoms in the centralizer of $n with ]T.g.
= 1. Furthermore let q{ = F(J'~1)fc"(^) for 1 < i < I and 1 < j < m. Then by
Proposition 3.6 (4) and Lemma 4.1 (2), [q^ —<&: 1 < h,...,im < /} is a set of
atoms in the centralizer of <j>\B such that X«i,...,im^/i '"C, = l and
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= <t>(<lh)-'-<l>((lTJ' Hence by Lemma 4.1 and [10, Theoreme 5(E)] (also [11,
Corollary VIII. 8]), we get

Now the proof is the same as [7, Theorem 1] in view of Theorem 1.5 and
Proposition 1.6 (2). H

Theorem 4.3. (1) h,(Y) <^{KE(M\N) + K^M^M)} < log[M: AT]0.

(2) // MD - log[M:
(3) Suppose N a M has finite depth. Then the following conditions are

equivalent :
(i) E = E0i
(ii) Mn = log[M:N]0;
(iii) /i0(r) = log Index £.

Proof. (1) For each n > 1, choose a set {#pn)} of atoms in the centralizer of
02n with Xi^2/l) = 1- Since the centralizer of E1o-.'oE2n is nothing but that of
<£2* and

Index (E1o...oE2n)q(2n) > 1,

Theorem 1.3 (2) implies that

KElo...oE2n(M2n\M)
i

Furthermore by [20, Theorem 5.1 (1)] and [21, Proposition 8.1], we have

KEl,....E2n(M2n\M) < J K^MjlMj.,) = n{KE(M\N) + K^M^M)}.
J = l

Thus Proposition 4.2 implies the first inequality. Also we get the second
inequality by Theorem 1.4 (1).

(2) Suppose Mn = log[M: N]0. Then KE(M\N) = log[M: JV]0 holds,
which is equivalent to E = E0 by Theorem 1.4 (2).

(3) In view of (2), it suffices to show that (i) implies (ii) under the finite depth
condition. So suppose N a M has finite depth and E = E0. Then there exists
n0 such that dimZ(B2no + 2) = dimZ(B2no). Since [36, Corollary 2.3] holds for
{Bn} in our setup as noted in the proof of Proposition 3.7 (4), the trace vector of
B2n with respect to the trace 0 is given by (hn~n°sk)k for any n > n0, where A
= [M: AT]o 1 and (sfc) is the trace vector of B2no with respect to 0. Let s
= maxfesk and n > n0. Since $2«(d2")) ^ An~"°s, we have by Theorems 2.6 and
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1.4 (2)

Index (E, o . . . o £2n)9|2n) = 4>2n(q^Y Index (E, ° • • • o £2B)

2n

for all i. Therefore by Theorems 2.6, 1.4 (2) and 1.3 (2), we have

2nlog[M: AT|o = log[M2(I: M]0 = KEl.....E2n(M2n\M)

<^2n(q?n)) log (A "°2^2 = 2S(<A2n) + 21og(A— s),
1 T^2n\rii /

so that fe,(r) > log[M: AT]0 by Proposition 4.2. •

Specializing Theorem 4.3 to the type II 1 case, we have:

Corollary 44. Let N a M be type II ^ factors and H(T) the entropy of the
canonical shift T for N c M.

(1) H(F) < {H(M\N) + H(M1\M)} < log[M: AT]0 < log[M:

(2) // H(r) = log[M:AT]05 then [M: AT] = [M: N]0

= [M: AT]"1! w/zere EM,nMl is the conditional expectation M^-^M'^M^ with
respect to the trace.

(3) If N c M to Jzmte

= log[M: ]V]0 = log[M: AT].

Proof. Let EN be the conditional expectation M -> AT with respect to the
trace. We know by [33, Corollary 4.5] and [19] that EN = E0 (i.e. [M: AT]
= [M:AT]o) if and only if EM^Ml(e0) = [M: AT]'1!. According to [36,
Corollary 3.7], if N c M has finite depth, then EM,nMi(e0) = [M: AT]'1!
automatically holds. Thus the corollary is the specialization of Theorem
4.3. •

§5. Entropy H£A\T(A))

Let (A, 0, F) be the canonical shift associated with £e<f(M, N). Let Bn

and </>„ be as in §4, and Cn = M'2nMn (= r(Bw_2)), n > 2. In this section, we
investigate the entropy H<ft(A\T(A)) in connection with [M: Af]0 and ^(F).

The entropy H^(Bn\C^ is given in [10] by

H,(Bn\Cn) =

where the supremum is taken over all finite families (\j/k) of ij/kEA* with
= </>. But we have H+(Bn\CJ = H*n(Bn\C^ by Lemma 4. 1 (3). Proposition 2.4
and [21, Proposition 2.12 (1)] show the following:
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Proposition 5.1. H^A \ r(A)) = limn_+ ̂  H^(Bn \ Cn) increasingly.

Proposition 5.2. h^T) < H+(A\r(A)).

Proof. By [21, Proposition 2.2 (1)] and Proposition 3.6, we get for n > 1

H,(B2n) < H,(B2n\C2n) + H,(C2n) = H,(B2n\C2n) + H,(B2n_2).

This implies that

-H,(B2n)<-^H,(B2j\C2j).
n ftj=i

Hence the desired inequality follows from Propositions 4.2 and 5.1. M

Theorem 5.3. (1) H^(A\T(A)) < 21og[M: AT|o-
(2) // fl,(^|r(^)) - 21og[M: JV]o, then E = E0.
(3) Suppose N c M has finite depth. Then E = E0 if and only if

Proof. (1) Let

N c= M c= eo M! c= ei M2 c= • • •

be the tower of basic constructions iterated from £0. Here we can assume as
remarked before Proposition 3.6 that the factors Mn are the same as those in the
tower iterated from E. For n > 1, let in = £0jl

 o - - - °£ 0 j l l Bn which is a trace by
Theorem 2.6, and let hn = d(En\M^1 nMn)/d(E0 n\M'n^1 nMJ. Since £„
= hi/2£0.A1/2(=£o..(fci/2-'ii/2)) by [8, Theoreme 5.3], we get

so that d(/)n/di:n = hl ••• hn. For each fixed n > 2, we denote by F and F0 the
conditional expectations Bn -> Cn with respect to </>„ and Tn, respectively. For
1 < fc < n, let us define E^k€S(M'k_^ Mk) by £o,fc = ^Eo,k where A = [M: N]Q 1

and E^l is defined on the standard Hilbert space for Mn. Then it follows that

is n steps of algebraic basic constructions. Since by Theorem 2.6

we have F0 = £o,2°^o, i l^n» so

d(rn\Cn)
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Hence the cocycle derivative [I>F : I>F0], of F and F0 is computed as follows (see
[8,15]):

IDF : 0F0]i = [D(tn »F): 0(1." F0)],

= [DM, ° F) : D(rn o f)]* [D^ o F) : D(in o F0)],

= \_D(<t>n\Cn): D(^\CJ

Now let i/^,...,!/^ e(J3n)+ be faithful with £ti^ = </>„. Then

F) : D(^ » F0)]( [D(^rt o FO) :

Hence by [32, Theorem 4], we get

Since by Theorem 1.1

F0(x) > (Index (£^, 2°£^, i))-1 x =

we have \jik°F0> A2\l/k, so that

= 21og[M: N]

Therefore

21og[M: N]0 + T2(i/(Ma)).

By the lower semicontinuity of the relative entropy ([2, Theorem 3.7]), the
above inequality holds for any ^l5...,^me(5n)^ with ^fc^fe = ^«- This implies
by [21, Lemma 2.6] that

H,(Bn\Cn) < 21og[M: JV]0 + i2(l(WJ).

Since 12(^(^1^2)) ^ ^(T2 (^1^2)) = 0» the desired inequality follows from Propo-
sition 5.1.

(2) Suppose H+(A\r(A)) = 21og[M: JV]0. Then t2(n(^M) = ° and hence

hlh2 = 1 by the strict concavity of r\. This implies Ei°E2 = £0,i ° ̂ 0,2? so

E1 = £0>1, equivalently E = E0.
(3) Suppose N c M has finite depth and E = E0. Since yn(C2n) = 52
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it follows from Proposition 3.6 (5) that H(t)(B2n\C2n) = H^(B2n\B2n_2) for all
n > 1. Now let us proceed as in the proof of [36, Corollary 2.4]. Choose n0

such that dim Z (#2710 + 2) = dimZ(B2no). Let d be the dimension vector of J52no,
A the inclusion matrix of B2no a J32no + 1, and (sk) the trace vector of B2no with
respect to the trace $. Then according to [36, Corollary 2.3], (AAr)" d is the
dimension vector of B2no + 2n and (Ansk)fe is the trace vector of B2no + 2n with respect
to (/> for any n > 0 where /I = [M: Af]o *• Hence by [33, Theorem 6.2] (also
[35]), we have for every n > 1

n^2) = £(AA'U(AA<r ' d )4(J."S

*•'

Since (sk) is the Perron-Frobenius eigenvector of AA' with the eigenvalue 1, we
have

lim

for all fc, /. Therefore

H,(A\T(A)) = l™H,(B2no + 2n\B2no + 2n_2

as desired. •

Following [33], we define the number ^(A, F(A)) by

9 T(A)) = max {A > 0: Er(A}(x) > A

where £r(^} is the conditional expectation A -» F(^i) with respect to 0. In view
of Theorem 1.1, we can consider ^(A, F^))"1 as a generalized index of Er(A)

when A is not necessarily a factor.

Proposition 5.4. A+(A9 F(^))"1 < (Index E)2.

Proof. Let /l0(J3n, Cn) be defined for the conditional expectation Bn -> Cn

with respect to <£„. Then as [33, Proposition 2.6], we have ^(A9 T(A))
= lim^^l^B^ Cn) decreasingly by Proposition 2.4. For each fixed n > 1, let
us use the notations in the proof of Theorem 5.3 (1). Since [DF:DF0],
= (fcifcaf, F = (M2)

1/2Fo(M2)
1/2 follows from [8, Proposition 4.11]. Define

E' = (^i/i2)1/2(£o,2°^o,i)(^i^2)1/2- Then £'e<f(M', M2) because for xeM2

E'(x) = £ifl(*i)£o.2(*2)* = ^o, 1(^1)^0,2(^2)^ = x.
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Moreover it follows (see [19]) that

IndexE' = (E'0t2oE'0tlr
l((hih2r

l) = ̂ '2E0tl(h^)E0t2(h2
l) = (IndexE)2.

Since F0 = E'0j2° E'0il\Bn, we have by Theorem 1.1

F(x) = E'(x) > (Index E)-2*, xe(BJ+9

so that ^(Bn, Cn) > (Index E)~2, implying the desired inequality. H

The next theorem is an extended version of [7, Theorem 14].

Theorem 5.5. Suppose E = E0. Then:
(1) H,(A\T(A)) < 2h,(T) < logl+(A9 Y(A))~l = 2KE(M\N) = 21og[M: tf]0.

(2) If lim^^-logfc,, = 0 (this is the case if supn-fcn < oo) where kn is the

number of simple summands of Bn, then H^(A\Y(A)) = 2h^(T).
(3) If N c M has finite depth (in particular, if IndexE < 4), then the numbers

in (1) are all identical together with logjyl: T(y4)].

Proof. (1) By Lemma 4.1, T is a 2-shift on the tower {Bn}. The results
[369 Proposition 2.1 and Corollary 2.2] hold for {Bn} and 1
= [M: JV]o *- Furthermore we have by Theorems 1.3, 1.4 and 2.6

H*(B2n) < ̂ KElo...oE2n(M2n\M) = ̂ log[M2n, M]0 = - nlogl

Thus we conclude that {Bn} is a locally standard tower for A2 with period 4 in
the sense of [7, Definition 3]. Hence [7, Theorem 8] implies that

H+(A\r(A)) < 2h,(T) < 21og[M: N]0 < log^(A, T(A))~1.

Since b(A9 T^))"1 < [M: N]g by Proposition 5.4, we obtain the conclusion.
(2) For n > 0, let Kn be the set of simple summands of B2n. Then by

assumption, linv^-logllCJ = 0 where |-| denotes the cardinal number. We
n

denote by (d^\eKn the dimension vector of B2n and by (t(£\eKn the trace vector of
B2n with respect to the trace 0. Moreover let (aff)keKntieKn+l be the inclusion
matrix of B2n c B2n + 2 and let Ln = {(fe, l)eKn x Kn+i : a$ > d^}. To simplify
the notation, we define as in [6, 7]

and analogously /*(C2B). For each n > 1, since the mirroring yn maps 52w_2

c= B2n to C2n c= B2n9 the inclusion matrix of C2n c= B2n coincides with
(flw"1))k6in-i,texn

 an(i ^e dimension vector of C2n coincides with (d^n~1})keKn_i
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under the identification of respective simple summands via yn. Also let (t£n))fce£n

be the trace vector of B2n corresponding to C2n <= B2n, which is a permutation of
(4n)) via yn. Then according to [33, Theorem 6.2], we have

H*(B2n\C2n) = I,(B2n) - I<(B2H-j + I ^ Mr1^ log$4,
(k,l)eLn-i Gkl

because /0(C2n) = /*(JB2n-2) by Proposition 3.6. Now let 1 = max {A, 1 - A}.
Then 0 < A < 1 except the trivial case N = M. Since £2n contains mutually
commuting projections el9 e3,...,e2n-l9 and since

for /2i-i = ^2i-i or /2i-i = 1 ~ e2i- i> 1 < * < ft, we get 4w) ^ ^" f°r all
n, fe. Furthermore according to [36, Corollary 2.2], we get a$ < [M: JV]0 for
all n, fc, /. These imply that

0<- df-^og-^

which tends to 0 as n-> oo. On the other hand, it follows (see [6, Proposition
16], [7, Proposition 4]) that

V<2H,(B2n)-I,(B2n)<log\Kn\.

Therefore by Propositions 5.1 and 4.2

H,(A\T(A)) = Hm 1 _f H,(B2j\C2j) = Jim l/^B^ = 2^(r).

(3) As [36, Corollary 6.7] (also [14, 4.6.6]), we see that if Index E < 4, then
N c M has finite depth. Thus the desired assertion is immediate from (1) and
Theorem 5.3 (3) together with Proposition 3.7 (4). H

Finally in the type II ̂  case, we have the next proposition (without the
assumption EN = E0) in view of the proof of Theorem 5.5 (2).

Proposition 5.6. Let N ci M be type 11^ factors and H(T) the entropy of the
canonical shift T for N a M. Then :

(1) H(A\T(A))<2H(r).

(2) If lim^^-logfc,, = 0 where kn is the number of simple summands of Bn,
n

then H(A\T(A)) = 2H(Y).
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§ 6, Examples

In this section, we present two simple examples to illustrate the results in
§§4 and 5. In the following, we use the same notations as before.

Example 6.1. Let M = R be the hyperfinite type 111 factor, N = R^ Jones9

subfactor [22] of M with [M:N] = A,~1, and T the canonical shift for N
cr M. It follows from Proposition 3.2 that yn(e^ = e2n-k for every n > 1 and
1 < k < 2n - 1. Hence

Suppose A > l / 4 . Then it is known (see [14, 4.7.b]) that M'nMn

= <1, e1,...,en-iy. Hence A = {en: n > 1}" (~ R), so that F coincides with o\
where 0^ is a special case of the shifts discussed in [5, 6]. We have by [6,
Example 2]

l-H(A\T(A)) = H(T) = 2H(*J = H(M\N) = logA'1.

Next suppose A < 1/4 and t(l - f) = A, t > 0. We get

= 2fi(t)

by [7, Theorem 1], [6, Example 2] and [33, Corollary 5.3]. On the other hand,

H(T) <^{H(M\N) + H(M,\M)} = H(M\N)

by Corollary 4.4(1) and [21, Proposition 8.4]. Hence H(T) = H(M\N).
Moreover since the Bratteli diagram for the tower B0 c B^ c B2 a • • • is Pascal's
triangle (see [14, p. 231]), we have H(A\r(A)) = 2H(T) by Proposition 5.6 (2).

Therefore -H(A\T(A)) = H(T) = H(M\N) for any 1

Example 6.2. Let us consider M = N®B^>N = N®C where N is any
factor and B = Mm(C). Let q>0E&(B) and h = dcp^/di where i is the normalized
trace on B. Define £e<f(M, N) by E = idN®(p0 and cpleff(B) by dcp^/di
= h~1/i:(h~1). Then it follows (see [21, Example 8.3]) that the basic
constructions EnE$(Mn9 M,,^), n > 1, iterated from £ are given as follows:
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where B(n) = (x) " B. Moreover it is easy to see that the mirrorings yn on
AT n M2n = B(2n) are given by

? « f l l ® *2 ® '•• ® fl2n-l

where af denotes the transpose of a. Therefore

!>! (x) a2 ® - ® a2 w_1 ® a2n) - yw + 1(4M ® at
2n_1 ® ••• ® a2 ® a\ ® 1 ® 1)

= 101 ® a 1 ® a 2 ® - - - ® a 2 n _ 1 ® a 2 n ,

so that T is the unilateral shift on (A, 0) = (x)f (B(2\ (Pi®(p0). This example
clarifies that 0 is not generally invariant for yn but F preserves 0. By [10,
Corollaire 10], we have

When <PQ = I and hence ^ ® (p0 is the trace on B(2\ we get by [6, Example 1]

MH = 21ogm = log[M: JV]0.

Also when q>Q^i (hence A is a type III factor), we get (see [21, Theorem 6.6],
[20, Proposition 3.6 and Example 4.6])

References

[ 1 ] Araki, H., Relative entropy of states of von Neumann algebras, Publ RIMS, Kyoto Univ.,
11 (1976), 809-833.

[ 2 ] , Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto
Univ., 13 (1977), 173-192.

[ 3 ] Bailet, M., Denizeau, Y. and Havet, J. F., Indice d'une esperance conditionnelle, Compositio
Math., 66 (1988), 199-236.

[4] Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics II,
Springer-Verlag, New York-Heidelberg-Berlin, 1981.

[5] Choda, M., Shifts on the hyperfinite IIrfactor, /. Operator Theory, 17 (1987), 223-235.
[- 5 j ^ Entropy for *-endomorphisms and relative entropy for subalgebras, /. Operator

Theory, to appear.
[7] , Entropy for canonical shifts, Trans. Amer. Math. Soc., to appear.
[ 8 ] Combes, F. and Delaroche, C., Groupe modulaire d'une esperance conditionnelle dans une

algebre de von Neumann, Bull. Soc. Math. France, 103 (1975), 385-426.
[9] Connes, A., On the spatial theory of von Neumann algebras, /. Fund. Anal, 35 (1980),

153-164.



488 MARIE CHODA AND Fumo HIAI

[10] Connes, A., Entropie de Kolmogoroff-Sinai et mecanique statistique quantique, C. R. Acad.
Sci. Paris Ser. I, 301 (1985), 1-6.

[11] Connes, A., Narnhofer, H. and Thirring, W., Dynamical entropy of C* algebras and von
Neumann algebras, Commun. Math. Phys., 112 (1987), 691-719.

[12] Connes, A. and St^rmer, E., Entropy for automorphisms of II1 von Neumann
algebras, Acta Math., 134 (1975), 289-306.

[13] Dixmier, J. and Marechal, O., Vecteurs totalisateurs d'une algebre de von Neumann,
Commun. Math. Phys., 22 (1971), 44-50.

[14] Goodman, F. M., de la Harpe, P. and Jones, V. F. R., Coxeter Graphs and Towers of
Algebras, Springer-Verlag, New York, 1989.

[15] Haagerup, U., Operator valued weights in von Neumann algebras, I, II, /. Fund. Anal, 32
(1979), 175-206; 33 (1979), 339-361.

[16] Hamachi, T. and Kosaki, H., Index and flow of weights of factors of type III, Proc. Japan
Acad., 64A (1988), 11-13.

[17] , Orbital factor map, preprint.
[18] Havet, J. F., Esperance conditionnelle minimale, preprint.
[19] Hiai, F., Minimizing indices of conditional expectations onto a subfactor, Publ. RIMS,

Kyoto Univ., 24 (1988), 673-678.
[20] , Minimum index for subfactors and entropy, /. Operator Theory, to appear.
[21] , Minimum index for subfactors and entropy. II, /. Math. Soc. Japan, 43 (1991),

347-379.
[22] Jones, V. F. R., Index for subfactors, Invent. Math., 12 (1983), 1-25.
[23] Kawakami, S., Some remarks on index and entropy for von Neumann subalgebras, Proc.

Japan Acad., 65A (1989), 323-325.
[24] Kosaki, H., Extension of Jones' theory on index to arbitrary factors, /. Fund. Anal., 66

(1986), 123-140.
[25] , Characterization of crossed product (properly infinite case), Pacific J. Math., 137

(1989), 159-167.
[26] Kosaki, H. and Longo, R., A remark on the minimal index of subfactors, preprint.
[27] Loi, P. H., On the theory of index and type III factors, C. R. Acad. Sci. Paris Ser. /, 305

(1987), 423-426.
[28] Longo, R., Solution of the factorial Stone-Weierstrass conjecture. An application of the

theory of standard split W*-inclusions, Invent. Math., 76 (1984), 145-155.
[29] , Simple injective subfactors, Adv. in Math., 63 (1987), 152-171.
[30] , Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys., 126

(1989), 217-247.
[31] Ocneanu, A., Quantized groups, string algebras and Galois theory for algebras, preprint.
[32] Petz, D., Properties of the relative entropy of states of von Neumann algebras, Acta Math.

Hungar., 47 (1986), 65-72.
[33] Pimsner, M. and Popa, S., Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup.

Ser. 4, 19 (1986), 57-106.
[34] , Iterating the basic construction, Trans. Amer. Math. Soc., 310 (1988), 127-133.
[35] , Finite dimensional approximation of pairs of algebras and obstractions for the

index, J. Funct. Anal, 98 (1991), 270-291.
[36] Popa, S., Classification of subfactors: the reduction to commuting squares, Invent. Math.,

101 (1990), 19-43.
[37] StrStili, §., Modular Theory in Operator Algebras, Editura Academiei and Abacus Press,

Tunbridge Wells, 1981.
[38] Takesaki, M., Conditional expectations in von Neumann algebras, /. Funct. Anal., 9 (1972),



ENTROPY FOR CANONICAL SHIFTS. II 489

306-321.
[39] Umegaki, H., Conditional expectation in an operator algebra, Tohoku Math. J., 6 (1954),

177-181.
[40] , Conditional expectation in an operator algebra, IV (entropy and information),

Kodai Math. Sem. Rep., 14 (1962), 59-85.
[41] Watatani, Y., Index for C*-subalgebras, Memoirs Amer. Math. Soc., no. 424, 1990.




