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The Structure of the Quasi-invariant Set
of a Linear Measure

By

Yoshiaki OKAZAKI* and Yasuji TAKAHASHI**

Abstract

Let n be a probability measure on a locally convex Hausdorff space E and A(p) be
the quasi-invariant set of p. If ^*(^4(^))>0, then there exist a finite-dimensional sub-
space L, a thick subgroup G of L and a countable subgroup {xt} such that A(fj.) =

00

\J(G+Xi). If E is Souslin, then A(fji) is a Borel subset. If E is Souslin and if

>0, then

§ 1. Introduction

Let E be a locally convex Hausdorff space and E' be the topological dual
of E. Denote by C(E, E') the cylindrical cr-algebra on E, the minimal (/-algebra
which makes each < , *'>, x'^Ef, measurable. Denote by B(E) the Borel er-algebra
on E generated by all open subsets. Then it holds that C(E, E')dB(E) and
these t7-algebras are translation invariant, that is, for every x^E and A^
C(E, E') (resp. £(£)) it follows that A-xs=C(E, E'} (resp. £(£)). Let p be a
probability measure on C(E, E'} or on B(E). For x^E we set fjix(A)=fji(A—x)
and A(fjt)={x^E : px^/j. (equivalent)}. The set A(fji) is called the quasi-invariant
set of p. It is well-known that A(fjt) is an additive subgroup of E.

Skorohod [9] stated the following assertions concerning the structure of the
quasi-invariant set A(p) (however there are some gaps in the proof).

Let E be a separable Hilbert space. Then
(1) A (p) is a Borel subset of E,
(2) // fji(F)=Q for every finite-dimensional subspace FdE, then

fjL(A(p))=Q, and
(3) if n(A(fji})—\, then there exists a sequence LI of finite-

( oo \

\J Li ) = 1,

see [9], § 19. On the other hand, Okazaki [7] proved the following results.
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Let G be a complete separable metrizable abelian topological group and
fj. be a probability measure on G. Then

(1) A (p) is a Borel subset of G, and
(2) if ^(^4(^))>0, then A ( p ) is a locally compact a-compact

topological group with respect to the induced topology from G.

There are similarities between these two results. In fact, each locally compact
locally convex Hausdorff space is finite-dimensional and each locally compact a-
compact subgroup of a locally convex Hausdorff space is of the form Rn +
(countable subgroup) (the structure theorem of the locally compact cr-compact
abelian topological group).

In this paper, we generalize the above results of Skorohod as follows.
Firstly, suppose that E is a general locally convex Hausdorff space and p*(A(fjt))
>0, then there exist a finite-dimensional subspace L, a thick subgroup G of L

and a countable subgroup {xl} of E such that A(p)= 0(G+*0 (Theorem 1),

where /£* denotes the outer measure. Secondly, suppose that E is a Souslin
locally convex Hausdorff space, then A(p) is a Borel subset of E and if fjt(A(ft))

>0, A(fjL) can be written as A(JJL)— \J (L+xl\ where L is a finite-dimensional

subspace and {x^} is a countable subgroup of E (Theorem 2).

§ 2. Preliminaries

Let (G, B] be a measurable group, that is, G is a group wTith a ^-algebra
B satisfying

(1) x —> x'1 is 5-measurabIe, and
(2) (x, ;y) —> xy is B®B—^-measurable,

where B(&B is the product <j-algebra on GxG, see Halmos [4], § 59 and Yama-
saki [12], Part B, Chapter 1, § 1.

Let (G, B} be a measurable group and fjt be a measure on (G, B). Then
(G, B, ft) is called separated if for every g=£e (e is the unit of G), there exists
A^B such that p(A)>Q and fjt(Ar\Ag}=0, see Halmos [4], §62 and Yamasaki
[12], Part B, Chapter 1, § 4.

A subset A of a topological group G is called precompact (or bounded) if
for every neighborhood U of e, there exists a finite sequence gi, gz, • • - , gn in

n
G such that Ad \J (Ugz\ If a topological group G has a precompact neigh-

borhood of e, then G is called locally precompact. If a topological group G is
00

written as G— \J An, where each An is precompact, then G is called c?-pre-
71=1

compact, see Halmos [4], §0 and Yamasaki [12], Part B, Chapter 1, §3.
We shall use the following facts in later.
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Fact I. A topological group G is locally precompact and a-precompact if and
only if G can be imbedded densely and isomorphically (algebraically and topologi-
cally isomorphic) into a locally compact a-compact topological group G.

The group G is uniquely determined within an isomorphism and G is called
the completion of G, see Bourbaki [1], Chapter 2, §3, Halmos [4], §0 and Ya-
masaki [12], Part B, Chapter 1, §3, Theorem 3.1. As for the Borel structure
of G and G, the following result is known, see Yamasaki [12], Part B, Chapter
1, § 3, Theorem 3.2.

Fact 2. Let G be a locally precompact a-precompact topological group and
Bu be the a-algebra on G generated by all uniformly continuous functions on G.

Let Ba be the Baire a-algebra on the completion G, the a-algebra generated by

all continuous functions on G. Then it holds that Bu—Bar\G. Moreover, (G, Bu)
is a measurable group.

A topological group G is called a thick group if
(1) G is locally precompact and <r-precompact, and
(2) for the right Haar measure 3 on (G, Ba), G is thick with respect to I,

that is, for every B<=Ba with Br\G~(j) it follows that 1(5)=0,
see Halmos [4], §62 and Yamasaki [12], Part B, Chapter 1, §3.

Let G be a thick group. Then there is a right invariant measure X on
(G, Bu), that is, A(Ag)=A(A) for every A^Bu and every geG. In fact, 2. is
the restriction of 1 to G, see Yamasaki [12], Part B, Chapter 1, § 3, Theorem 3.3.
This right invariant measure 2 on (G, Bu) is called the Haar measure of G. It
is known that, in general, a right invariant measure on (G, Bu) is unique up
to a constant factor.

In the sequel, every group which we consider is abelian. Hence we denote
by x+y the group operation (instead of xy).

§3. Quasi-invariant Set for Cylindrical Measure

Let E be a locally convex Hausdorff space and /j. be a probability measure
on C(E, Ef). Then (E, C(E, E')) is a measurable group and the quasi-invariant
set A(fi) is an additive subgroup of E, see Yamasaki [12], Part B, Chapter 1, § 5,
Theorem 5.1. Remark also that C(E, E')0C(E, E')=C(ExE, (ExE)'). The
next lemma is an easy consequence of this fact.

Lemma 1. (A(fi), C(E, E')r\A(fj,)) is a measurable group.

Proof. We show that ¥: (x, y)—>x—y is /3®/3 —/3-measurable, where /3=
C(E, E')nA(p). For every 5e/3, we can find C so that B=Cr\A(fi) and Ce
C(E, E'}. Then we have ¥-1(B)=¥-1(C)r\A(fjt)xA(/ji)^C(E, E')®C(E, £')r\
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Suppose that p*(A(p))>Q where p* is the outer measure. Let v be the
restriction of ^* to (A(p), C(E, Ef}r\A(p)\ v is defined as follows. Take Ce
C(E, £') such that A(p)c:C and fjt(C)=fjL*(A(p». Then for every AeC(E, E'}
r\A(fi) with A=Dr\A(fjt\ D^C(E, E'\ v(A) is given by v(A)= p(C r\D\

Lemma 2. Suppose that /**(^4(^))>0 and v be the restriction of ^* to (A(fjt),
C(E, E'}r\A(py). Then i> is a quasi-invariant measure on A(ft), that is, v and
vx are equivalent for every x

Proof, Let CeC(£, E'} be A(p)dC and fi*(A(fi))=fi(C). For every Ae=
C(E, E')C\A(p\ we write A-=Dr\A(p), where D^C(E, E'}. Then we have
for each x^A(p), A—x=(D—x)r\A(p) and A(ii)C.(C—x)r\Cc.C. Hence it follows
that ^C-Jc)=XC)=;£*G4(/0) and }jx(A}^^(A-x^v((D-x}r\A(ii}}^^(Cr\(D-x})
=p((C-x)r\(D-xV=p(Cr\D-x)=px(Cr\D) for every x<=A(p). Since v(A)=
p(Cr\D), for every x^A(p\ vx(A)=Q if and only if v(A)=Q.

Lemma 3. Suppose that /^*(^4(^))>0 and v be the restriction of p* to
C(E, E')r\A(py). Then (A(fjL), C(E, E'}r\A(fi}, i>) is separated.

Proof. For every x^Q in A(p), we shall show the existence of A in
C(E, E')r\A(ft) such that v(A)>0 and that Ar\(A+x)=$. Let x'tEE' be <x, %7>
=1 (Hahn-Banach theorem) and set A={y&A(p): 0^<y, ̂ ><1}. Then it holds

that Ar\(A+x)— <j> and A(a)= 0 (A-\-nx). By Lemma 2, it must be v(A)>Q.
=

Lemma 40 Suppose that /^*(A(^))>0 and v be the restriction of p* to (A(fjt)f

C(E, E')r\A([£i). Then there exists a (a -finite by (1) below} measure 1 on (A(p\
C(E, Er)r\A(pfi such that

(1) X^v (equivalent), and
(2) 2x^2. for each x in A(/jt) (A(p.}-invariant}.

Proof. The assertions follow by Mackey [6], Lemma 7, Umemura [10],
Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems 1.4 and 1.1.

Suppose that ^*(A(^))>0 and v be the restriction of p* to (A([i), C(E, E'}
C\A((if). Let 2 be a <7-finite invariant measure on A(pt) equivalent to v (Lemma
4). We remark that (^l(^), C(E, Ef)nA(/jt\ 2) is also separated since so is
(A(fi\ C(E, E')r^A(p}, v} and 2 is equivalent to v.

Now let T be the Weil topology of A(p) derived by the invariant measure
(A(fjC), C(E, E')r\A(p), 2), that is, the basis of neighborhoods of 0 in r is given
by the family

where A^C(E, Ef)r\A(p) be 0<^(^)<oo, £>0 and © is the symmetric dif-
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ference, see Halmos [4], § 62, Yamasaki [12], Part B, Chapter 1, §4 and Weil [11],
Appendice 1. Then the following result is known. For the proof, we refer to
Halmos [4], §62 and Yamasaki [12], Part B, Chapter 1, §4, Theorem 4.1.

Lemma 5. (A([JL), r) is a Hausdorff topological group and thick. Moreover,
BudC(E, E')r\A(p) and the restriction X\Bu is the Haar measure on (A(ft), Bu),

Lemma 6. The Weil topology T is finer than the weak topology a(E, E')
on A((i\ In particular it holds that Bu=C(E, Ef)r\A([jL) in Lemma 5.

Proof. We show that each x' is r-continuous. Let N be
I0c, x'y\<N})>$ and let Ad{x^A(fi): \<x, x'y\^N} be 0<^U)<oo. Then
for every x^UA,^A^={x^A(fjt): Jt(AQ(A+x))<H(A)}, it follows that |<*, *'>|
^2N since UA,iU^A—Aci{xGA(fji): \<x, xry\ ̂ 2N\. Remark that if
A(AQ(A+x))<A(A) then Ar\(A+x)^$. Thus the additive functional *' is T-
continuous.

Theorem 1. Let E be a locally convex Hausdorff space and p be a probability
measure on C(E, E'}. Suppose that fjt*(A(fji))>Q. Then

(1) there exists a topology T on A(fjt) such that (A(p), r) is & Hausdorff
topological group and a thick group,

(2) the restriction u of p* to A(ft) is equivalent to the Haar measure on the
thick group (A(f£), r), and

(3) there exist a finite-dimensional subspace LC.E, a thick subgroup G of L
(with respect to the Euclidean topology) and a countable subgroup {xl}d

E such that A(u)= 0 (G + ̂ )C 0 (L + xj.
t=i 1=1

Proof. (1) and (2) follow from Lemmas 5 and 6. We shall prove (3). Consider
the natural injection c; (A(p\ r)->(£, a(E, E')). By Lemma 6, c is continuous.
c can be extended to the completion (A(fji), T)~ into (E')a (the algebraic dual of
E' which is the completion of (E, a(E, E')), see Bourbaki [1], Chapter 2, §3, Theo-
rem 3.1. Let c be the extension. Then I is a continuous homomorphism on the
locally compact (7-compact topological group (A(fjt\ r)" into ((E'Y, G((E')a, E')).
The image i((A(p\ r)~) is algebraically isomorphic with (A(p\ r)~/ker^. We
put the topology T on i((A(/j.\ r)~) induced by the quotient topology of
(A((ji), r)"/ker^. Then (i((A(p}> r)~), T) is again a locally compact (/-compact
abelian topological group and T is finer than the weak topology a((Er)a, Er).
By the structure theorem of locally compact a-compact abelian topological group,
there exist natural numbers n, d (possibly 0) and a compact abelian group K
such that (c((A(fj.\ r)~), T) is isomorphic (algebraically and topologically) with
the direct sum Rn@Zd®K, where R (resp. Z) denotes the real numbers (resp.
integers), see Hewitt and Ross [5], Theorem (9.8) and Weil [11], §29. Since
K is isomorphic to a compact subgroup of the vector space ((E')a, <j((Ef)a, E')\
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it must be K={0}. Let 0: Rn@Zd -+(*(( A(p), r)~), T)c(£')a be an isomorphism.
Then <f> is in fact linear on Rn, hence L=(jj(Rn} is a finite-dimensional subspace
of (E'}a contained in i((A(fjL\ r)~). D=(f)(Zn} is a discrete countable subgroup
of (t((A(p), r)~), T). We have proved that (l((A(ii), r)-), T}=L®D. Remark
that L is open and closed subgroup of (i((A(fjt), r)~), T). Since f(^(AO)=^(j«) is
dense in (i((A(fi), T)"), T)=L@D, it follows that A(^)nL is a dense subgroup
of L with respect to the Euclidean topology of L. By A({ji)r\LCLEr\Lc:L, we

obtain L=-A(^}r\LCLEr\Lc:E since the finite-dimensional subspace EnL is
complete with respect to 0((Ef)a, E'}. We denote (%i}=A(n}r\D. Then it
holds that A(fjt}=A(^r\L + { x i } . We prove that the subgroup G=A(p)r\L is
thick in L with respect to the Euclidean topology of L. In fact, for every
Baire subset C in L satisfying Gr\C=<}>, (0-1(C) is a Baire subset of (A(p\ r)~
and (lYl(C}r\A(^)=(j). By the thickness of (A(p), r), it holds that J((0"1(C))=0,
where 1 is the Haar measure on (A(fi), r)~. Remark that the Haar measure on
(t((A(fjt\ r)"), T)=LQ)D coincides with the image measure 1(1) up to a constant
factor. Furthermore, the Haar measure on L is the restriction 1(1} \ L since L
is an open and closed subgroup in (i((A(p), r)"), T). Thus we have proved that
for every Baire subset C in L with Gr\C—^, the Haar measure of C is zero,
which shows the thickness of G in L. This completes the proof.

§ 4e Quasi-invariant Set for Borel Measure

Let E be a Souslin locally convex Hausdorff space and p be a probability
measure on the Borel cr-algebra B(E}. (E, B(E}} is a measurable group since
the product 0-algebra B(E}(3)B(E} coincides with the Borel 0-algebra on the
product space ExE, see Schwartz [8], Part I, Chapter II. Moreover, ^ is a Radon
measure, that is, for every Borel subset A^B(E\ {i(A)=sup{fi(K}: K is com-
pact and KC.A], see Schwartz [8], Part I, Chapter II, §3.

Lemma ?„ A(fjt) is a Borel subset.

Proof. We shall give a sketch of the proof. For details, see Okazaki [7],
Proposition 12. For every Borel subset B^.B(E], the function p(B—x) in x is
Borel measurable since E is Souslin and ft is Radon. Let M(E) be the set of
all probability measures on E. We consider the a-algebra <3tt on M(E) generated
by v-*v(B}, B^B(E], that is, M is the minimal cr-algebra on M(E) which makes
each v->i;(5), B^B(E\ measurable. Then the mapping ¥: (E, £(£))->(Af(£)X
M(E\ <5tt®M\ W(x)=(px, p\ is measurable. By Dubins and Freedman [2], 2.11,
the set D={(£, f]}^M(E}xM(E}\ ^f]} belongs to M®M (here we use the

fact that B(E) is countably generated, see Schwartz [8], Part I, Chapter II, § 1,
Corollary of Lemma 18). Hence we obtain A(fi)=¥~~l(D) belongs to B(E).

Theorem 2. Let E be a Souslin locally convex Hausdorff space and p be a
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probability measure on (E, £(£)). Suppose that p(A(py)>0. Then
(1) A(/JL) is a locally compact a-compact topological subgroup of E with

respect to the induced topology from E,
(2) the restriction v=fji\A(ft) is equivalent to the Haar measure of A(p), and
(3) there exist a finite-dimensional subspace LdE and a countable subgroup

{xz} of E such that A(a)= 0(L + Jct).1=1

Proof. By Lemma 7, A(^) is a Souslin topological group with respect to
the induced topology from E, see Schwartz [8], Part I, Chapter II, §1, Theorem 3.
The restriction v=fji\A(fji) is a quasi-invariant Radon measure on A(/JI) with
respect to the induced topology from E. Furthermore, (A(p\ B(A([i)\ v) is a
separated measurable group, see Lemma 3. Thus by Mackey [6], Lemma 7,
Umemura [10], Proposition 6.2 and Yamasaki [12], Part B, Chapter 1, § 1, Theorems
1.4 and 1.1, there exists a a-finite invariant Radon measure X which is equivalent
to v, see Lemma 4. Hence by Gowrisankaran [3], A([i) is a locally compact
(T-compact topological group with respect to the induced topology from E and
2 is the Haar measure of A((JL) up to a constant factor. The ^-compactness
follows by the cr-finiteness of the Haar measure. By the structure theorem of
a locally compact ^-compact abelian topological group, A(JJL) is isomorphic with
Rn®Zd@K by Hewitt and Ross [5], Theorem (9.8) and Weil [11], §29, see the
proof of Theorem 1. Since K is a compact subgroup of the vector space E, it
follows that K={Q}. Let (p\ RnQ)Zd-*A([jL) be an isomorphism. Then $ is
linear on Rn. We put L=(p(Rn) and {*t}=0(Zd). Then L is a finite-dimen-

sional subspace and A(u)= \J(L-\-xl\ This completes the proof.
1=1
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