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Decompositions of Representations
of the Canonical Commutation Relations

By

Reinhard SCHAFLITZEL*

Abstract

Every cyclic regular representation of the canonical commutation relations over any inner
product space V can be decomposed into a direct integral of irreducible regular representations,
where the fibers are representations over subspaces of V. An example using the so-called direct-
product representations shows that generally the irreducible representations cannot be defined over
the whole V. So we get a new type of decomposition having no equivalent in the decompositions of
locally compact groups.

Introduction

In this paper we are concerned with the decomposition of regular
representations of the canonical commutation relations over a complex inner
product space into irreducible representations. This article is the abridged
version of a paper ([10]) accepted as a doctoral thesis by the Technische
Universitat Miinchen (1988).

Let Fbe a complex inner product space. A mapping FFof Finto the group
of the unitary operators on the complex Hilbert space H is called a repre-

sentation of the canonical commutation relations (CCR) over F, iff

W(f)W(g) = exp(ilm</, g ) / 2 ) W ( f + g ) for f,geV.

W is called regular, iff

f s R i — > W ( t f ) e < % ( H )

is strongly continuous for every /e F. In some cases, more general spaces F are
permitted (see 2.8(ii)).

If Fis finite dimensional, the decomposition theory for representations of
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the CCR over V Is very simple: By a famous theorem due to Stone and von
Neumann, there is only one irreducible regular representation of the CCR over
V, and every regular representation over V is a multiple of this representation.

In G.C. Hegerfeldt's papers [4] and [5], certain regular representations of
the CCR over infinite dimensional V are decomposed into a direct integral of
Irreducible regular representations; for example, representations over an inner
product space with countable Hamel base are allowed, but representations over
the separable Hilbert space are not considered. In this paper we decompose
cyclic regular representations W: V-*W(H) over any complex inner product
space V into irreducible representations:

Wean be decomposed Into a direct integral W((p)dv(cp), where for cpeX
Jx

W(cp) is an irreducible regular representation of the CCR over a complex
subspace V(cp) of V. (What this means precisely, see Chapter 1.) As to the proof
we shall have to decompose a representation of a C*=algebra called
$(V). Since $(V) is nonseparable, we will not use the usual reduction
theory. Instead, for the sake of applying a decomposition theorem due to R. W.
Henrichs, we need the concept of direct integrals of Hilbert spaces introduced by
W. Wils (see [12]). The main difference to the usual concept is that
nonseparable Hilbert spaces are permitted.

In Chapter 1 we derive the theorem above, in Chapter 2 we discuss our
result:

By the theorem the representation W can be decomposed into simpler
components, namely into irreducible representations over complex subspaces of
K So all the regular representations of the CCR over V are known, if we know
the irreducible representations over all the subspaces of V. In Chapter 2 we
discuss the question whether it is possible to choose the representations W(cp) of
the fibers as irreducible regular representations over the whole V.

We construct some examples of irreducible regular representations of the
CCR over a dense subspace of /2(N) which cannot be extended to regular
representations of the CCR over P(N). They belong to the class of direct
product representations introduced by J.R. Klauder, J. McKenna, and E.J.
Woods (see [7]). By forming the direct integral of suitable representations of
that kind, we get a regular representation WY of the CCR over /2(N) with the

f ®
following property: There is no decomposition WY = W(^)d^(Q of WY into

Jz
Irreducible regular representations FF(Q that are defined over P(N) — at least, If
we assume that the diagonal algebra in the decomposition is maximal abelian in
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So we recognize that we cannot strengthen our theorem by choosing
irreducible regular representations over V in the fibers.

Throughout this paper we use the following

Notation. For a Hilbert space H and a subset M of H, let be

Mx:= [\JJEH: <^? e> -0 for every
[M] the closed subspace of H, generated by M,

the set of continuous linear operators in H,
the set of unitary operators in H, and

1 or 1H the unit operator in H.

For a set Jf c JS?(#), let be
M' the commutant of Ji.

For a C*-algebra <£/, let be
j/+ the set of the positive operators of sf, and
ff*(sf) the set of states of sf.

For o)6^ (««/), let be
(7rw, HW5 £J the corresponding GNS representation.

For a group G, a function ft : G -> C, and s e G, let be

sft : G-»C, denned by (sft)(t):= ft^'1'*).
For a set >4 and a subset T of ^4, let XT ^e the mapping from A to C, such

that

1 for

For an inner product space F, let be
the CCR algebra over V. (This is a C*-algebra generated by
unitary operators w(/), /e F, which satisfy the commutation
relations.)

We note that — in an obvious manner — there is a bijective correspondence
between the nondegenerate representations of j/(F) and the representations of
the CCR over F.

Chapter 1. A Decomposition Theorem for Regular Representations of the
Canonical Commutation Relations

§1. The C*-AIgebra 8(V) and their Representations

Let F be an inner product space. The set R x F endowed with the
multiplication

(s,/)o(t, g) = (s + t + Im</, 0>/2,/+ g)
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is a group called JfV- % the assignment

(1)

we get a bijective correspondence between the unitary representations of JfF

satisfying the relations n(s, 0) = eis 1 for s EM and the representations of the CCR
over F

If Fhas finite dimension m, JfF5 carrying the usual topology, is a locally
compact group, namely the Heisenberg group of dimension m. A representation
of the CCR over V is regular, iff the corresponding representation of 3tfv is
strongly continuous.

Let W\ V-><%(H) be a regular cyclic representation of the CCR over the
inner product space F.

Let Jf be the set of the one-dimensional complex subspaces of F. For
NeJf the restriction W\N of Wto N is a regular representation of the CCR over
N. By nN we denote the corresponding representation of JVN, and by n'N the
nondegenerate representation of Ll(3t?N) associated with nN (see [2], 13.3).

1.1. The C*-algebra in JSf (H) generated by

is called

Remarks, (i) Let W be another regular representation of the CCR over
F As before, we introduce the C*-algebra J(F). Using the theorem due to
Stone and von Neumann, we easily see that J*(F) and 5(F) are isomorphic in a
canonical way.

(ii) For NeJf, Ll(3?N) is separable. If the dimension of Fis greater than 1, Jf
is not countable, and it can be shown that ^(F) is nonseparable. Thus, for
decomposing the identity representation of &(V), we cannot use the classical
reduction theory. If Fhas a countable Hamel base {bn: neN}(but not, if Fis a
separable Hilbert space), we are able to apply the classical theory by considering
the separable C*-algebra, generated by

00

n = l

instead of J*(F), for example (cf. the proof of Theorem 2.1 in [4]).

(iii) We have
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For a two-dimensional subspace M of V we introduce the representations
nM of JfM and n'M of Ll(J^M) as before. We note that for one- or two-
dimensional subspaces L of V the product of the Lebesgue measures of R and L
is the Haar measure of JfL in the normalization we will use.

Lemma 1.2. Let N0,N1EJ^ such that N0 / Ni9 and M:=N0

+ N^. Then the closure i^(N0, N^) of the subspace in &(H), generated by

{n'No(h)n'Nl(k):

is equal to the closure 7T^r(L
1(jfP

M)) of n'M(LL(Jtf'M)) (closures with respect to
the norm topology).

Particularly, we have n'M(Ll(^M}) ^

Proof. For one- and two-dimensional subspaces L of Fand reL^L), we
define

nL(r):= \ r(f)W(f)df,
JL

By an easy consideration we get:

For rEL1(N0) and seL1(N1) we have

r(f)s(g)W(f)W(g)dfdg

(exp(ilm</, gy/2)r(f)s(g))W(f+ g)dfdg
No

(2)

If follows i^(N09 NJ c n'M(Ll(^M)). Now let us prove the other inclusion.
Using a Stone- Weierstrass argument, we easily conclude that the subspace

of L1(N0 x NJ, generated by

is dense in Ll(N0 x N^. Since the map

u\ — >T(U), T(M)(/, g) = exp(ilm</, gy/2)u(f, g),

is an isometric isomorphism in L1(N0 x N\), the subspace generated by

{(/, ^)h-^exp(am</, g>/2)r(f)s(g): reLl(NQ\ seLl(NJ]

is dense in L^JVo x NJ, too. Now it follows from relation (2) that every
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element of n'M(Ll(^M)) can be approximated by elements of the linear span of
{nNo(r)nNl(s):

From now on, let p: £%(V)-* &(K) be a nondegenerate representation of
, p'L:= p°n'L for one- or two-dimensional complex subspaces L of V,

p:= { N ^ J f : p'N a nondegenerate representation of I/pf^)}, and

V fo r^ p *0
} for ^p = 0 (~ }'

Proposition 1.3. (i) For NeJfp let pN be the representation of 3?N

corresponding to p'N. Then for teR pN(t, 0) = elt 1, that means that a regular
representation called Wp>N of the CCR over N is associated with pN.

(ii) If Jfft± 0, Vp is a complex subspace of V; by Wp(f):= WptN(f) for /e N
and NEjVp, a regular representation Wp: Vp — » tfS(K) of the CCR over Vp is
defined.

Additionally, if J^p = 0, Wp is defined over Vp = {0} by WP(Q):= 1K.

Proof, (i) Since for

p(e*n'N(h)) = p(nN(t, 0)-^(/i)) = p(n'N((t^h}\

eltl satisfies the equation eltl • p'N(h) = p'N((t,Q]h) for Ael/pfjy). From this we
get eitl

(ii) Let NQ.N^ENp such that N0^N^ and put Mi^JVo + A/V The
representations p'No of Ll(J^No) and p'Nl of L1^^) are nondegenerate. Now,
considering Lemma 1.2 we see that p'M is a nondegenerate representation of
^P^M)- F°r every one-dimensional subspace N of M, p'N is
nondegenerate. This follows for N / JV0 and N =£ Nl by applying Lemma 1.2
once more (if we use N instead of N0). Now it is easy to show that Vp is a
subspace of V.

It is clear that Wp is well defined, and that feRi ->W£(f / ) is strongly
continuous for f e V p . Obviously,

^(/o)HJ(/i) = exp(iIm</o,/1>/2)HJ(/0+/1) (3)

is satisfied, if /0 and fl belong to a common one-dimensional subspace of
Vp. We will show (3) in case M:= C/0 + Cf1 is a two-dimensional subspace of
P£. Since the representations p'No and p'Nl for ]V0:=C/0 and Nl:=Cf1 are
nondegenerate, p^ is nondegenerate, too. Thus there is a representation pM of
J>fM associated with p'M. The same argument as in (i) implies that
/eMi-»pM(0, /) is a regular representation of the CCR over M. So we can
show the relation (3) by proving
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Wp(f) = pM(0,f) for/GM. (4)

Obviously /= 0 satisfies (4); for /V 0 let N:=Cf, and AT-1 be the orthogonal
complement of N in M. For heV-(3^N) and kELl(J^N±) we have

p'N(h) p'Ni_(k) = p(n'N(h)7i'Nj.(k)) =

p(\ \ ({ k(t\ g^e»LdAh(t, g)ei'W(g + g^dg^dgdt] = p'M(l),
\ JR JjvxAr1 \ JR / /

where

;(t^, gL)elt±dtL }h(t, g) for teR, geN, and gLENL.
JR J

(Identifying J>FM and E x AT x A/"1, we get IELI(^M)). Similarly, we conclude

, g)eitW(g + g^dg^dgdt] =
/

Since p^i is nondegenerate, we get P]v(05 /) = pM(0, /) and equation (4). 9

Proposition 1.4. Let p : <8I(V) -> <£(K) be a factor representation of 0&(V) in
a Hilbert space K ^ 0.
(i) For NeJ^, p'N is either the zero representation or it is a nondegenerate

representation of Ll(J^N).
(ii) Wp is factorial, too. If p is irreducible, Wp is irreducible, too.

First we show a lemma.

Lemma 1.5. Let p : J*(F) -> &(K) be a representation of 38 (V). For
N eJf the essential space KN:= ̂ ^(L1^^))^] of the representation p'N is an
invariant subspace of p.

Proof. It suffices to show

(5)

for every Ne^^eK, h<ELl(j4?$), and keLl(^N). The case N = N is trivial;
otherwise we set M:=N + N', by Lemma 1.2 p'$(h)p'N(k) is in the closure of
P'M^^M))- By Lemma 1.2 (using N instead of NQ and N instead of N±) we
conclude that p'$(h) • p'N(k) belongs to the closure of the linear span of

))-p&(LW)- It follows (5). •
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Proof of Proposition 1.4. (i) By Lemma 1.5 KN and therefore (K^ are
invariant subspaces of p(08(V)). Let p1 be the subrepresentation of p defined
on (J^)1. Let us assume that p'N is degenerate. Then (K^ ^ {0}? and pL is
quasi-equivalent to p, since p is factorial. Thus p1!,^^^^) = 0 entails

P\7t'N(Ll(^N)) = 0-

(ii) The case Jfp = 0 is trivial For ^ / 0 from

^LH^v)))' = (using (i))

we get the assertion. 0

§2o The Decomposition Theorem

For the following we need the concept of direct integrals introduced by
W.Wils. We recall the definition (see [12]).

Definition 2.1. Let (Z, /i) be a measure space; for £eZ let H(£) be a
complex Hilbert space. A linear subspace 7" of ^^#(0 is called a set of //-
square integrable vector fields, iff
( i ) £eZ-» ||jy (0||2 is ^integrable for every r\ = (n(Q\ez^r-
(ii) If for ^ef|CeZH(C) there is an tf eF such that rj(Q = r\'(Q for almost every

C, then ??eF.
(iii) If iyer and /ZeL°°(Z, /.), then fc-i/

|| i/(0 II 2 <fy*(0 ) is complete.
z /

The corresponding Hilbert space is called the direct integral of the Hilbert spaces
H(0, denoted by

or

In order to make a distinction we call the direct integrals defined by the
usual concept, which for example is described in Dixmiefs books [1] and [2], as
"direct integrals in the sense of J. Dixmier". Obviously, these direct integrals
also satisfy the Definition 2.1.

rr
202c Let H= \ H(C)^(0 be a direct integral of Hilbert

Jz
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spaces. Let W: V-*tyl(H} be a regular representation of the CCR over F. For
CeZ let F(0 be a complex subspace of F, and PF(Q: F(C) -> #(#(0) be a regular
representation of the CCR over F(Q. Moreover let us assume that for every
/eF there is a //-negligible set Nf such that /e F(Q for every £eZ\Nf,

is well defined and equal to W(f). (This precisely means that
z

for ?/ = (^(0)^ze^ ^e almost everywhere unique extension (^/(0)^eZ of
(WtC)(/)*/(£))cez\jv to an element °f Elcez^CC) belongs to F, and that the operator
of &(H), given by

is equal to W(f}.)
Then we say:

W=
Jz

is a decomposition of IF into regular representations PF(Q of the CCR that are
defined over subspaces F(Q of F.

Now we can formulate the main result of our paper.

Theorem 2.3, Let W: F-> tft(H) be a cyclic regular representation of the
CCR over the complex inner product space F/ 0. Then there exist a regular
Borel measure v on a compact space X and a decomposition

W= W((p)dv(cp)
jx

of W into irreducible regular representations W(cp): V(<p) -> tft(H(cp)) of the CCR,
which are defined over complex subspaces V(cp) of V.

Supplement. (i) If V is a separable inner product space, almost every V(cp)
is dense in F.

(ii) If the decomposition is constructed as in the proof, the diagonal algebra

r®in H((p)dv((p) is maximal abelian in { W ( f ) : f e V } ' .
Jx

We can formulate this result using the group fflv: Certain representations of
the group jj?v will be decomposed into certain irreducible representations of
subgroups Jtf'vM of $CV. So we get a decomposition theorem for represent-
ations of a non locally compact group, having no equivalent in the theory of
locally compact groups.

In the proof we shall have to decompose the identity representation lm(V) of
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For this purpose we need a theorem due to R.W. Henrichs. First let us
give a definition.

Definition 2.4. Let n be a cyclic representation of a C*-algebra jtf and £ a
cyclic vector for TZ; such that ||£|| = 1. We say that a decomposition

n=

of TT is normalized (with respect to £), iff in the corresponding decomposition

of £ almost every £(Q is cyclic for n(Q and ||f(Q|| = 1.

Theorem 2.5 ([6]). Let n be a cyclic representation of a unital (not
necessarily separable) C*-algebra j/ and £ a cyclic vector for n such that ||£||
= 1. Then there is a (with respect to £) normalized decomposition

of n such that every n(cp) is an irreducible representation of j/, and \JL is a regular
Borel measure on the compact space X.

Remarks, (i) Let us briefly sketch Henrichs's construction of the
decomposition :
Let a) be the state of j/ belonging to n and ^ and ^ be a maximal abelian von
Neumann subalgebra of n(<s/)'. \JL is chosen as the orthogonal measure
associated with co and #. For (pe£f(j/), n(cp) is the GNS representation of a
pure state (pe£f(j/) such that

: q>(a*a) = 0} c {aej/: ^(a*a) = 0}.

The diagonal algebra in the direct integral can be identified with #.

(ii) In [6], §3 R.W. Henrichs varies the decomposition of n, in which the
orthogonal measure associated with CD and the center n(A)' r\n(jtf)" of n(st)' is
used, in a similar way in order to get a decomposition of n into factorial
representations.

If we apply this decomposition for 1^(F) instead of the decomposition above,
we obtain a decomposition of W into factorial regular representations W(cp),
which are defined over subspaces V(cp) of V.

Lemma 2*6* Let £ be a cyclic vector for W(and therefore for l^^) such that
IK 11 = 1. Let
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be a (with respect to £) normalized decomposition of the identical representation
1#(K) of 3%(V) into factorial representations p(Q. For a fixed JVeJ^, p(05v ^
nondegenerate for almost every £eZ.

rr
Proof. Let £ = £(()d^(0 be the corresponding decomposition of £; for

Jz
CeZ let (p(C) be the state of <%(V) belonging to p(C) and £(Q and co be the state
of J*(F) belonging to lm(V) and <J. For N EJf let (Mn)neN be an approximate unit
in L^J'fjy). Since (n'N(un))neN converges strongly to 1H, we have

1 = lim co(n'N(un)) = lim
n~* oo n~* oo

Since 0 < (p(£)(n'N(un)) < 1", it follows lim^^ <p((,)(n'N(un)) = 1 for almost every
^, and Proposition 1.4 (i) implies the assertion. H

f ®
Remark. Let us consider a decomposition TT = 7r(Qd/j(£) of a nondegen-

erate representation TT of a separable C*-algebra. If the usual concept of direct
integrals is used, then almost every n(£) is nondegenerate. For our more general
concept of direct integrals such a statement is not correct.

Lemma 2,1. Let

be a decomposition of l@(V} such that for £eZ the representation p(C):
-»J2*?(H(()) is nondegenerate and for every fixed NeJf p(£)'N is nondegenerate
almost everywhere. For £eZ3 let F(C):= Vp(^ and W(Q:= Wp(^. Then

w=
z

w a decomposition of W into the regular representations FF(Q, which are defined
over the complex subspaces F(Q of V.

Proof. Let /eAT, where NeJf. Since p(C)Jv is almost everywhere
nondegenerate, / belongs to almost every V(Q. Let (un)neN be an approximate
unit in Ll(^N) and vn:= (0,/) «„ for neN. Then (n'N(vn))neN converges strongly to
^(0, /) = W(f), and (p(C)>n)LN to WtO(/) almost everywhere. Using n'N(vn)

rr
= p(C)5v(un)^M(C) we easily see that (W[£)(f)\eZ is a measurable, almost

Jz
everywhere defined field of operators and

W(f)=
z
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holds. Q

Proof of Theorem 2.3. The assertion follows from Proposition 1.4,
Theorem 2.5 (applied to 1^(F)), Lemma 2.6, and Lemma 2.7. It is easy to show
Supplement (i); Supplement (ii) follows from Remark (i) after Theorem 2.5. D

Remarks 2.8. (i) If V is a Hilbert space, one can get a decomposition of W
with the properties of the decomposition of Theorem 2.3, for which, additionally,
holds :
All the V(cp)'s are dense in V.

Let a decomposition W= W((p)d^(cp) of Was in Theorem 2.3 be given;
I x

for (peX we define

:= {/eF: </, g> = 0 for <?€%>)}.

Let FF^)1 : F^)1 -» ̂ (//(cp)1) be an irreducible regular representation of the
CCR over V((p)± (the Fock-representation for example) ; for V((p)± = {0} let

^ C and W^HO):^ 1.

Let %>) := F(<?) + F^)1, H(<p) := H(q>) 0 H(q>)\ and W(<p] : V(cp)
<%(H(<p)) such that

= W(cp)(f) (x)

for feV(cp) and f ± e V ( ( p ) ± .
V(cp) is dense in F, and PF((p) is an irreducible regular representation of the

CCR over F(<p). Considering W[q>) as extension of W[cp), we get the
decomposition

of W which has the desired properties.

(ii) In some cases more general spaces F are permitted in the definition of the
CCR. We consider real vector spaces F, endowed with an antisymmetric
bilinear form a such that there is a countable subset {/„: neN} having the
following property:
For every geV\{0} there is an neN such that a(fn,g)^Q. (Important
examples are real dense subspaces of the separable Hilbert space endowed with
the imaginary part of the inner product.) In the definition of the CCR we then
have to replace Im</, 0> by a(/, g).

Using similar methods as above one can get a decomposition theorem for
regular representation over such spaces, too (see [10], Theorem 2.2.6). Then
the representations of the fibers are irreducible regular representations over
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subspaces V(<p) of V, for which <r|F((p)xK(<p) is nondegenerate. (That means that
for every feV(cp) there is a gEV(<p) such that <r(f, g) ^ 0.)

Chapter 20 The Domains of the Fibers in the Decomposition of Regular
Representations of the Canonical Commutation Relations

§3. Extensions of Direct-Product Representations

In this Section we construct some irreducible regular representations of the
CCR over a dense subspace of the Hilbert space /2(N), which cannot be extended
to regular representations over I2(N). For our purposes we need a very general
concept of extension; thus the results of the literature (see [11] or [13], for
example) are not sufficient.

Definition 3.1= Let V1 and V2 be real dense subspaces of I2(N) such that
1^ ^ K>. Let Wl: Vl-^^(H) and W2: K, -> ̂ (K) be regular representations over
V± and V2, resp., such that If is a closed subspace of K (for the definition of
representations of the CCR over real dense subspaces of I2(N) see 2.8
(ii)). Moreover, let If be invariant under W2, and let the restriction of W2 on If
be equal to W±. Then we say that W2 is an extension of Wl.

Let Ws\ C-»^(L2(E)) be the Schrodinger representation of the CCR over
C, defined by

(Ws(r + is)f)(x) = exp(ir(x + s/2))f(x + 5).

For meN, the m-fold tensor product Ws
m of Ws is an irreducible regular

representation of the CCR over Cm, called the m-dimensional Schrodinger
representation.

For weN let ^neL2(R)1; moreover, let £:= (x)*=1^n, and let H% be the
incomplete infinite tensor product of countable many copies of L2(R),
distinguished by £ (see [8] or [3]). Furthermore, for neN let en:= (5jn)jeNel2(N)
and V0 be the complex algebraic span of the en, weN. By putting

m oo m oo

n=l n=l n=l n=m+l

we define an irreducible regular representation W®: V0 -> ̂ (H^) of the CCR over
VQ. It is called the direct-product representation distinguished by ^ (see [7]).

Let us recall a result of L. Streit (see [11],§4) concerning extensions of
WP. Consider the elements ^™=1Anen of I2(N) such that for every
®?=iWs(tA,n)\l/n belongs to H^, that means that

00

X K ^5(^/1)^115 *An) ~ 1 < OO



1032 REINHARD SCHAFLITZEL

for every teR. They form a real subspace f£ of /2(N). Obviously we have
V^VQ. By defining

n for (x) ene#f and ABeBeP£,
n= 1 «= 1 n= 1 n=l n= 1

we get an irreducible regular representation PIJ: P£->4Jf(H5) of the CCR over
P£. W^ is an extension of W? .

The following result makes it possible to find direct-product representations
having no extension to regular representations of the CCR over I2(N).

Theorem 3.1 Let g = En°°=i/^e/2(N)\^ such that for every teR\{0}
ii Z5 "0* weakly equivalent to (x)£°=1 t^n? ^^ means that

/or every teM\{0}. T/z^/2 WJ° cannot be extended to a regular representation of
the CCR over a real subspace V of P(N), containing g and V0.

So, if such a g exists, W% and W® have no extension to a regular
representation over P(N).

First let us show a lemma.

Lemma 330 Let co° be the pure state of the CCR algebra ^(V0) belonging
to W® and the cyclic vector £ = (x)^°=1 i//n. Moreover, let V be a real subspace of
/2(N) such that V^ V0, and let CD be a state of £/(V), extending o>° such that the
corresponding representation Ww of the CCR over V is regular. Then for f

holds.

Proof. We show

for every
Let m be fixed. We identify Cm and the subspace {£*= 1 lnen: ̂ ,..., AmeC}

of V0 in a canonical way.

Let (Wm, Hw, ^J be the GNS representation of the CCR over V
corresponding to CD. (Instead of the representation n^ of <tf(V) belonging to w
we apply the representation Ww of the CCR over Fthat is associated with n^.) By
the theorem of Stone and von Neumann the restriction Wm\cm of Wm to a
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representation over Cm is a multiple of the Schrodinger representation
Ws

m. Therefore, we may assume that

where / is a suitable index set, and

for / l 1 ? . . . ,AmeC.

Next we need more information about £w. Let com be the restriction of CD
to j/(Cm). From

m m

«Uw( X A^j) = n
n = l n = l n = l n = l n = l

for /L l 5 . . . , / lmeC we conclude that the GNS-representation for com is equal to

m m

(Pys
m, (x) L2(R), (g) ijjn). 6

n = l

So com is a pure state.

Let (ty)le/ be an orthonormal base of P(J). We can write £w as the sum
Z'6j6i®»7i where 61^®?=! L2(R) and Z* 6 / l l e i l l 2 = 1- For 9^^m we have

«m(w(fif)) = co(w(g)) =

where col is the positive linear form of j/(Cm) determined by col(w(g)) = <
Qty for geCm . Since com is pure, we have col — t?com, where tt is a suitable
nonnegative number. From (6) we see that there is a unitary operator U in
(x)™=1L2(R) such that

UQ, = tl®\l/n and UWs
m(g)U* = Ws

m(g) for geCm.

Since Ws
m is irreducible, (7 = yl, where 1^1 = 1, and ^, = a,(x)^=1^n, where a,

= t t y . We get

m
> — fos\ )// ^V^ M \A7nPTP VI '— 7 (V Yl /T\^co — ^S' T n ^^ / Wlicit fI .— / L^ifji. I /I

n = 1 ;e/

Moreover, for / = ZiT= i ̂ nene ^ we 8et
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n = m+ 1

therefore we have

OO

W0( I J.nen) = l®W,(
n=m+ 1 n=

where W/(Xr=m + i ^«gn) *s a unitarv operator in
It follows

n= 1

(7) and || 17 1| = 1 finally yield

Proof of Theorem 3.2. Let us assume that W: V->W(K) is a regular
extension of W® . Let co be the state of sf(V) corresponding to W and ^
(considered as an element of K). By assumption,

11 = 1

holds for every tGM\{0}. Lemma 3.3 implies co(w(tg)) = 0 for t£R\{0}. This
is a contradiction to the regularity of W, from which limt^0co(w(tg)) = 1 follows.

0
Now we discuss some examples. First let us introduce some notation,

which is used in the next section, too.

00eL2(R), defined by <£0(x) - /4 *exp - * for

(One-particle state),

), defined by 0i(x) = — ̂ / [_ l j l ](x) for xeM, and

0,> for AeC and i = 0, 1.

Corollary 3.4. Let N = N 0 ( j N 1 be a decomposition of N, j8(w) = 0
neNQ, and fi(n) = 1 for neNl. For <J:= (x)^°=1^(n) we
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o o .

If V^ V0 is a subspace of 12(N) not contained in V^ W® cannot be extended to a
regular representation over V.

Proof. It is easy to calculate that

for |A| < 2. It follows that for ^=1lnenel2(N)

00 00

X ^(/y - 1 < oo ^=^> ^ |Im/Ln < oo
n = l « = 1

holds. From

we see that

is satisfied for every ^^°=1 Anen6/2(N). This shows the equation for V^\ applying
Theorem 3.2 and observing that eQ(X) > 0 and e±(X) > 0 if /I has a sufficiently
small modulus, we get the assertion. 0

§4. An Example, Part 1

In this Section we form the direct integral of irreducible regular
representations of the CCR, which are defined over proper subspaces of P(N)
and which cannot be extended to regular representations over P(N), and get a
cyclic regular representation WY of the CCR over P(N).

Y:= {0, 1}N = {(aM)neN: ane{0, 1} for neN} is a metrizable compact abelian
group; let juy be the normalized Haar measure of 7.

In this Section we identify N with the disjoint union Uj^i {0, ^}j by using
an arbitrary but fixed bijection.

Let us introduce some further notation used in the following. Let k be an
element of N.

oefe :=(a1,...,afc)e{0, 1}*(^N) for a = (an)neNe 7,
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lk :=(/!,..., WG{0,1}* (eN) f o r ; > f c and / = (Il9...,lj)

Ik := U {0,1}'(SN),
j= i

4" .^/Afc1,...,**} for ne{0, 1}*,

Nfc :=N\{0, l}k,

C<fe) := (a e 7: ak = n} for n e {0, l}fc,

G<*):= {/e{0, 1}': lk = n} for 7 > fc and ne{05 1}*,

f 1, if m = a* for a suitable fceN
<5(m, a ) :=< , . for ae F and

0 otherwise

i fo 'm!:" form,ne{0 , l}* ,
0 otherwise l ;

(«,a) f°r a6 ^ (Definition of </>0 and $l before 3.4),

it ic // (cw\ — 1 nk
It la /*yv^n ) — -"-/•^ •

§3 implies that for aeF W£:f£-*^(Ha) is an irreducible regular
representation of the CCR over

00 00

v* = { Z ^e'2(N): X |Im;y < oo}5
n=l j=l

and there is no regular representation of the CCR over /2(N) extending W£.

Lemma 4.1. For every /e/2(N) ./V/:= {aeF:/^} w a ^-negligible set.

Proof. Nf = 0 for /= 0; from now on let /= £n°°=1 Anen ^ 0. For feeN
we have

^| = oo}c=

where M,-^ {ae 7: |/laJ| > ||/||/j2}. It follows

00 00

It is

Mj= U cy> where J,:

Therefore, /xy(MJ.) = | Jj\ • l/2j. From
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J
we get \Jj\ <j4 and jUy(Mj) <j4/2j. This implies

oo oo oo oo V 4

Mr( 0 ( U M;)) = inf UY( U M/) < inf Y ^ = (

k = \ j = k J teN ,-=* J teNM2^

from (8) we receive the assertion.

We put

HY:=

where a direct integral in the sense of J. Dixmier is used. For feV0,
(M£(/))aer is a measurable field of operators. For /= £^°=1 /lnene/2(N) and
a 6 Y\Nf, (Wa(YJ^=1 hnen))men converges strongly to W£(/)(see [11], Lemma 5); so

)aey is an almost everywhere defined measurable field of operators, and by

WY: /2(N)

a regular representation of the CCR over /2(N) is given.

Let WY° be the restriction of WY to V0.

Proposition 4.2. (i) £Y:= ^doc is a cyclic vector for WY° and WY.
JY

r©
(ii) For the diagonal algebra Q) in HY = Ha da,

JY

}' = {Wr°(f):feV0}'

holds.

We denote the state of j/(!2(N))(j/(l^), resp.), corresponding to WY (WY°,
resp.) and ^y, by cor (co?, resp.).

Proof, (i) Since £ada is a separating vector for Q), (i) follows from (ii).
JY

(ii) In several steps:
(a) It suffices to show

for keN and me{0, l}fe.

y

k
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For: Since Q) is generated by

f ri yc(k) (a) 1 rfa: /ceN, me{0, 1
Ur m

® £ {FFy°(/):/eF0}" is satisfied. Since 0 c {FFF°(/):/e^}', we get

r®Since in the decomposition F^0 = Wa° doc of H^° the fibers Wx° are irreducible
JY

and regular, the diagonal algebra 3) is a maximal abelian von Neumann
subalgebra of {WY°(f): /e P£}' (see [9], Lemma 1.2). Now it is easy to conclude
that

The considerations after the proof of Lemma 4.1 establish that for /
= Z;Li^i.e/2(N) (^(Zr=i4^)LeN converges strongly to W,(f\ and thus

holds.

(b) Let jeN be fixed. For aeFle t B^j be the incomplete tensor product

f®(x)neNjL
2(R) distinguished by ®neNj<^(B>a); moreover, let HYJ:= Hajdu and

^•:=®-e(0,l}^2(R). '

Applying [1], Proposition 11, p. 175, we find that there is a unique Hilbert
space isomorphism

U:Lj®HYJ—+ HY

which maps

r© p©
i /f® ?7(a)rfa into if/ ®rj(tt)da

JY JY

r®for i^eL^- and rj(a)daeHY 7-. (Identifying L 7-®H a j and ffa, we consider
Jy

^ ® >y(a) as an element of Ha.)

Let Py be the subspace

{ Z ^ngne/2(N): An = 0 for almost every ^eN;}

of PJ. For oceFwe define a regular representation 1^°-: l^-» ̂ (HaJ) of the
CCR over Vj by
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W°j( £ lnen) = (g)

Then by putting

n=l ne{0,lp

for Xr=i^n e « e ^0 ' we °btain a regular representation

of the CCR over V0, which is transformed by 17 into WY°.

(c) For jeN and /e{09 l}
j let

*l*i'= (8) ^(«,o6Lj-
ne{0,lH

From now on, let fceN be fixed.

For me{05 l}
k and 7 > k let Pmje^(Lj) denote the orthogonal projection

onto

[^:/6{0, l } J , l k = ni];

moreover, let Q^:= U(Pmj® !HY J17*.

Since the Schrodinger representation H$ is irreducible,

= { (g) W^(^): ^neC for ne{0, 1}^}";
ne{0, lp

it follows

^•® le{ (8) H5(AJ: A n eC for ne{0, 1}'}"® Cl s {^(/): /e F0}"
ne{0,l}J

and 6mje{^y°(/):/e ^o}" for 7 > k. Now we can prove (9) by showing that
r(Qmj)j>k converges strongly to # c ( k )(a)lrfa and by applying the density

JF m

theorem due to J. von Neumann.

(d) Since sup7->fe \\Qmj\\ = 1 < oo, it suffices to show

j-oo •

only for those rfs that belong to a suitable generating set of the Hilbert space
HY- Therefore we only consider the case
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Y\ = ft (a) (x) £n(a)^a,
J Y » = i

where /i6LQO(Y) and aj0>k exists such that gB(a) = 05(nja) for j >j0, ?ie{0, 1}J,
and ae7 (that means that (x)n6(0)1p^n(a) = i/^ for j>j0, /e{0, 1}J, and
aeQ(J)). For j>7o we get

mj.^ = (identifying Ha and L,- ® HaJ)

X̂
y le{0,l}J

= ^ L pmj
ie{0,l}J

= 17 V ^®
GX^

n = l

in (*) we used the fact that << /> l 5 02> = 0, and therefore Pmj-^ = 0 for lk / m.
ffl

Remark 4.3. It is not difficult to show that /eP(N)h-» WF(/)e^r(Hy) is
even strongly continuous (see [10] for a proof).

§50 Insertion about Decompositions with the Same Diagonal Algefera

Let s& be a unital C* -algebra, CD a state of j/3 and ^ an abelian von
Neumann subalgebra of n^stf)' . Moreover, let v be the orthogonal measure in

associated with CD and #.

5.1 Theoreme Let

a (wzY/z respect to ^w) normalized decomposition of nw into representations
): j/ -> «Sf(Jff(Q) o/j/ 5wc/z ^a^ ^ w transformed into the diagonal algebra of

the direct integral H(0dju(Q (in the sense of Definition 2.1). Let £m
/•© Jz

= £(Qdju(Q be the corresponding decomposition of^w, for £eZ let <p(£) be the
Jz

of j/ belonging to 7i(Q ««^/ £(£)• Moreover, let Z be the a-field, on which
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the measure u is defined, let v0 be the restriction of v to a Baire measure on
and $Q the a-field of Baire sets on =9"(j/).

Then T: Z -> ̂ (stf}, £h-»cp(0, w ^-^ ^-measurable, and v0 w the image of u
under T.

Proof. In several steps:

(a) Let U be the Hilbert space isomorphism which is composed of both the
r®

canonical isomorphisms, transforming | H9dv((p) into Hw and Hw into

H(0d/x(0, resp.. For

U <p(a)ldv(<p)I7* - (0(a)ld/<(0

holds.

For: Let P be the orthogonal projection onto [^^>w] in Hw. For
there is a unique operator 0(C)e^ such that PCP = 0(C)P (cf. [6], §2.). In
order to get the assertion (10) we will show that for

(p(a)ldv(cp),

if we identify Hw and Hvdv((p), and that

if we identify Hw and H(Qdu(Q. It suffices to establish (12); (11) follows in
Jz

the same way. So we have to prove

/ for every

We can easily check this relation after having shown that

P =
z

where P(0 is the projection onto C£(() for

f® / f® \
Obviously, P(0^(0 is well defined, P(0<W0 K^J ^ C^^J, and

Jz \Jz /
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• r\ = rj for r\ e^^w. It remains to prove that
z /•© Jz

holds for f/ = ^(Q^^e^U^. We get this from
Jz

I

/

for heLCG(Z^}.

(b) For aej/+ and an interval 1 in R^" we define BaJ:= {(pe &*(£/): (p(a)el}
and CaJ:=T-l(BaJ) = { £ e Z : < p ( Q ( a ) e I } . For / ='[0, s[(s > 0), Cfli/ is /*-
measurable, and

For: Since 7B a I(<P)l^v(<P) i§ a projection, there is a set DaJeL
J&(j*)

satisfying (13) where CaJ is replaced by DaJ. From (a) we get

- <p(a))ldv(<p)U* =
z

The operator on the left is positive, therefore the operator on the right is
positive, too. We obtain

(a) < s for almost every CeD f l j / .

Since the operator

is positive, we conclude as before that cp(Q(a)>s for almost every
aj. After a modification on a negligible set we get

Ca>[0iS[^DaJ^Ca^s]. (14)

For neN let /„:= [0, s(l - l/n)[. We have

= l/f sup
\ neN
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= sup XDOI - (15)
'Z

From (14) (applied to ln)9 CaJ = U^°=i^a,/n follows. Thus CaJ is ju-measurable,
and

sup lDa ,
neN

From this and (15) the assertion follows.

(c) So

lE(q>}ldv(cp)U* =

holds for every E = Ba>[0jS[. Similar arguments establish (16) for £ = J5fl>[0jS]

(s > 0). Now it is easy to see that (16) is satisfied for every

Ee$ := { H ®an,in'- ^eN, anej/+, /„ a relatively open interval
n=l

Thus for BeS* we obtain

[dv(q>)

lE(9)ldv(<p)U*
z Jz /

Since the cr-field ^0 is generated by /, and ^ is closed with respect to finite
intersections, v(B) = //(T"1^)) holds for every Be$0. 13

We mainly need the following corollary.

§82o Additionally, let us suppose that s$ is a separable C*-
algebra. Let

f°©
and

be two decompositions of n^ with diagonal algebra ^, and Hw = H(£)dfji(C) and
r® Jz

Hw= K(j8)dA(j6), resp., the corresponding decompositions of Hm. Moreover,
Jx
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let the first decomposition of nw be normalized with respect to £w; let

be a direct integral in the sense of J. Dixmier, let X be a standard
x

Borel space and A a a-finite measure on X.
Then for almost every £eZ there is a (ieX such that 7i(Q and p(f$) are

unitarily equivalent.

f®
Remarks. (i) From the assumptions above it follows that H(0d//(Q is a

direct integral in the sense of J. Dixmier.

(ii) If Z is a standard Borel space, too, the corollary is an immediate conclusion
from [2], Proposition 8.2.4, but we are interested in the general case.

Proof. Let v be the orthogonal measure in y(jtf) associated with CD and #,

rand let nw = n^dv^) the corresponding decomposition of nw. Since

is compact and metrizable, ^(j/) is a standard Borel space, and the direct
integral can be interpreted in the sense of J. Dixmier. Let us compare this

fe

decomposition of nw with n^ = p(/3)dl(^). The Proposition 8.2.4 in [2]
x

mentioned above implies that there are a v-negligible set N, a l-negligible set IV 19

and a Borel isomorphism 5: y(jtf)\N -^X\Nl such that n^ is unitarily
equivalent to p(S(cp)) for cp e & '(«s/)\JV ". Since the set of Baire sets in £f(jtf) is
equal to the set of Borel sets, from Theorem 5.1 we get that T~l(y(sf)\N) is JJL-
measurable, n(T-*(P(j*)\N}) = 1, and that for ^ET~l(^(j/)\N) n(Q is
unitarily equivalent to TZ^(C) and therefore to p(S(q> (£))). S3

§60 The ExampSe9 Part 2

Proposition 60L There is no decomposition

WY=
Jz

of Wy into regular representations W(Q of the CCR which are defined over /2(N)
such that the diagonal algebra of the direct integral is maximal abelian in

Proof. In several steps:
(a) Let us suppose that

WY=
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is a maximal abelian decomposition of WY into regular representations
2(N)-^(H(0).

Let 7Ty(7r(0, resp.) be the representation of j/(/2(N)) associated with WY

, resp.). Let j*(V0, Q) be the C*-subalgebra of ^(/2(N)) generated by

m

(w( £ lnen): meN, A neQ + iQ, w= l,...,m};

obviously «s/(P^, Q) is separable. Let nY)Q(n(^)Q, resp.) be the restriction of nY

(7r(Q, resp.) on ^(V0, Q). We obtain the decomposition

of 7Ty jQ . Since

o, Q))" = {WY°(f):f£V0}" = {WY(f):fel2(N)}",

ris a cyclic vector for nY>Q, and the diagonal algebra in Jff(£)d//(Q is

^o5 Q))' (see Proposition 4.2 (ii)). "^

(b) Our next intension is to normalize the decomposition (17).

rLet £y = £(()dju(Q be the corresponding decomposition of £r. For
Jz

let K(C):= I^(^)Q(^(VO, Q)K(C)]- Since £y is cyclic for nYQ, almost every
rr

belongs to K(Q for every r\ = (r](£)\eZeF. Thus H(£)d/z(£) is isomorphic to

r ~K(£,)d/j,(C) in a canonical way, where r=mfI^z^(C) is the set of square
Jz rf
integrable vector fields in

We can assume that all the K(Q's are not equal to zero. (Otherwise we
remove every (eZ satisfying K(Q = 0 from Z.) Instead of \JL we can use a

ff

suitable measure \i equivalent to //, and transform K(£)d/j(£) into
such that in the corresponding decomposition

of {y every |(Q is equal to |j7 |̂- (For details see [10].)

In this way we obtain the decomposition
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of 7Ty;Q, where TT(C)Q denotes the restriction of 7r(C)Q on K((). It is easy to show
that the diagonal algebra is nY

(c) For ae 7 let 7ra be the representation of jtf(Va) corresponding to Wa and
the restriction of na on jtf(V0, Q). It is easy to recognize that

a > Q a (19)
v ;

is a decomposition of nY^ such that 7?y,Q(j/(^9 Q))' is the diagonal algebra in
the direct integral. Let us compare the decompositions (18) and (19): Corollary
5.2 implies that almost every TZ;(()Q is unitarily equivalent to a representation
7caQ. This is a contradiction, since naiQ cannot be extended to a regular
representation of j/(/2(N)). D

Proposition 6.1 suggests that WY cannot be decomposed into irreducible
regular representations of the CCR over /2(N). For example, our result shows
that it is not possible to extend the representations of the fibers appearing in the
decomposition of Theorem 2.3 to irreducible regular representations over I2(N),
and so to get a decomposition of WY into irreducible regular representations of
the CCR over P(N).

But there remains the question whether there is a decomposition of WY into
irreducible regular representations of the CCR over I2(N) such that the diagonal
algebra is not maximal abelian in WY(12(

We cannot exclude this possibility completely for the following reason: In
contrast to the case of separable C*-algebras there is a representation n of a
nonseparable C*-algebra jaf possessing a decomposition into irreducible fibers
such that the diagonal algebra is not maximal abelian in n(jtf)' . A still
unpublished example of such a kind was constructed by R.W. Henrichs. Is it
possible that this phenomen also appears in the case of the representation nY of

Remark 6.2. It can be shown (see [10], Proposition 3.4.2) that there is no
decomposition fo WY into factorial representations W(Q of the CCR over J2(N),
for which

is strongly continuous. So it Is impossible to transfer the strong continuity of
Wf (see Remark 4.3) to the representations of the fibers.



DECOMPOSITIONS OF COMMUTATION RELATIONS 1047

It is a pleasure to thank Prof. R.W. Henrichs for suggesting the problem
and encouraging the progress of this work. I am also grateful to M. Binder for
his technical advice.

[I] Dixmier, 1, Von Neumann algebras, North-Holland, Amsterdam-New York-Oxford, 1981.
r_2] 5 C*-algebras, North-Holland, Amsterdam-New York-Oxford, 1977.
[3] Guichardet, A., Tensor product of C*-algebras, Part II, Infinite tensor products, Aarhus,

Lecture Note Series, 13 (1969).
[4] Hegerfeldt, G.C., Decomposition into irreducible representations for the canonical commut-

ation relations, Nuovo Cimento B, 4 (1971), 225-244.
[ 5 ] , Representations of the canonical commutation relations, in Functional analysis:

Surveys and results II (Bierstedt, K.-D., Fuchssteiner, B., eds.), North-Holland (1980), 149-164.
[6] Henrichs, R.W., Decomposition of invariant states and nonseparable C*-algebras, Publ.

Res. Inst. Math. ScL, 18 (1982), 159-181.
[7] Klauder, J.R., McKenna, 1, Woods E.J., Direct-product representations of the canonical

commutation relations, /. Math. Phys., 1 (1966), 822-828.
[8] von Neumann, J., On infinite direct products, Compositio Math., 6 (1938), 1-77.
[9] Schaflitzel, R., Some particle representations of the canonical commutation relations, Rep.

Math. Phys., 25 (1988), 329-344.
[10] , Zerlegungen regularer Darstellungen der kanonischen Vertauschungsrelationen,

Dissertation, Technische Universitat Miinchen, 1988.
[II] Streit, L., Test function spaces for direct-product representations of the canonical

commutation relations, Comm. Math. Phys., 4 (1967), 22-31.
[12] Wils, W., Direct integrals of Hilbert spaces I, Math. Scand., 26 (1970), 73-88.
[13] Woods, E.J., Continuity properties of the representations of the canonical commutation

relations, Comm. Math. Phys., 17 (1970), 1-20.




