Newton Polygons and Formal Gevrey Classes

By

Akiyoshi Yonemura*

Introduction

Following to the fundamental study of Malgrange [7], Ramis elucidated the analytic meaning of slope of Newton polygon for ordinary differential operators [10]: In generic cases the index of operator in formal Gevrey class of order s equals to the ordinate at the origin of supporting line of Newton polygon with slope $k=1 /(s-1)$. He also demonstrated various comparison theorems.

The purpose of this note is to generalize one aspect of Ramis theory to partial differential operators. There seems to be three ways of generalization:

1. To consider holonomic systems.
2. To consider operators of Kashiwara-Kawai-Sjöstrand type [1, 3].
3. To consider Cauchy problems.

For 1, 2, we refer to Laurent theory [4, 5, 6]. We shall discuss from the standpoint 3.
On the other hand, our study is closely related to the Cauchy-Kowalewski theorem. Mizohata's inverse Cauchy-Kowalewski theorem asserts that if the operator is not Kowalewskian, there exists a divergent formal solution [8]. It is well known that the formal solution of heat equation belongs to Gevrey class of order 2. The problem is what determines the Gevrey order of formal solutions.

From a different point of view, O$u c h i$ developed the theory concerning the analytic meaning of formal solutions [9]. It is certain that his theory implies one part of our theorem. There exists, however, more elementary and straightforward method to our problem.

§1. Notations

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$, we set $|x|=\max _{1 \leq j \leq n}\left|x_{j}\right| . \quad$ Let $\mathcal{O}(|x|<r)$ be the set of all holomorphic functions in $\left\{x \in \mathbf{C}^{n} ;|x|<r\right\}$. We also set

$$
\mathcal{O}(|x| \leq r)=\mathscr{C}^{0}(|x| \leq r) \cap \mathscr{O}(|x|<r)
$$

where $\mathscr{C}^{0}(|x| \leq r)$ is the set of all continuous functions on $\left\{x \in \mathbf{C}^{n} ;|x| \leq r\right\}$.

[^0]It is obvious that $\mathcal{O}(|x| \leq r)$ is a Banach space with maximum norm $\|\cdot\|_{r}$.
Let $\mathbb{C}[[t, x]]$ be the set of formal power series with complex coefficients in $n+1$ indeterminates t, x. Let $\mathbb{C}\{t, x\}$ be the set of convergent power series in $n+1$ variables $(t, x)=\left(t, x_{1}, \ldots, x_{n}\right)$. When we set $A=\mathcal{O}(|x| \leq r)$ or $\mathbb{C}\{x\}$, we denote by $A[[t]]$ the set of formal power series in t with coefficients in A. These are subspaces of $\mathbb{C}[[t, x]]$.

We shall use standard multi-indices notations:

$$
\begin{aligned}
& D_{t}=\frac{\partial}{\partial t}, \quad D_{j}=\frac{\partial}{\partial x_{j}} \quad(j=1,2, \ldots, n), \\
& D_{x}^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}} \quad \text { for } \quad \alpha \in \mathbb{N}^{n} .
\end{aligned}
$$

§2. Definitions

Let P be a differential operator with coefficients $\in \mathbb{C}[[t, x]]$:

$$
P=P\left(t, x ; D_{t}, D_{x}\right)=\sum_{j, \alpha} a_{j, \alpha}(t, x) D_{t}^{j} D_{x}^{\alpha}=\sum_{j, \alpha} t^{\sigma(j, \alpha)} \tilde{j}_{j, \alpha}(t, x) D_{t}^{j} D_{x}^{\alpha}
$$

where $\tilde{a}_{j, \alpha}(0, x) \neq 0$ in $\mathbb{C}[[x]]$. Let Q be the second quadrant of \mathbb{R}^{2} and for $(u, v) \in \mathbb{R}^{2}$, we set

$$
Q(u, v)=(u, v)+Q .
$$

Definition. The Newton polygon of P, denoted by $N(P)$, is defined by the convex hull of the union of $Q(j+|\alpha|, \sigma(j, \alpha)-j)$ for j, α such that $a_{j, \alpha} \neq 0$ in $\mathbb{C}[[t, x]]$:

$$
N(P)=\operatorname{ch}\left(\bigcup_{a_{,, \alpha} \neq 0} Q(j+|\alpha|, \sigma(j, \alpha)-j)\right)
$$

Let $0=k_{0}<k_{1}<\cdots<k_{l}$ be the slopes of sides of $N(P)$.
Remark. If P is a differential operator with holomorphic coefficients, this definition is a special case of more general one $[4,5,6]$: If we choose

$$
X=\mathbf{C}^{n+1}=\mathbb{C}_{t} \times \mathbb{C}_{x}^{n}, Y=\{t=0\} \subset X, \Lambda=T_{Y}^{*} X \text { and } O=(o ; o) \in X,
$$

then according to Laurent's notation [5] we have

$$
N(P)=N_{\Lambda, \delta}(P)
$$

Let us notice that this definition is different from that of Mizohata [8]. For example, it suffices to consider the operator $P=D_{t}^{2}+D_{t} D_{x}^{2}+t^{2} D_{x}^{5}$.

To examine the analytic meaning of k_{j}, we define the functions of formal Gevrey class.

Definition. Let $s \geq 1, \rho>0$ and $r>0$. Then we denoted by $G_{\rho, r}^{s}$ the set of all $u=\sum_{j=0}^{\infty} u_{j} t^{j} \in \mathcal{O}(|x| \leq r)[[t]]$ such that

$$
|u|_{\rho, r}^{s} \stackrel{\text { def }}{=} \sum_{j=0}^{\infty} \frac{\left\|u_{j}\right\|_{r}}{(j!)^{s-1}} \rho^{j}<+\infty .
$$

Lemma 1. $G_{\rho, r}^{s}$ is a Banach space with norm $|\cdot|_{\rho, r}^{s}$.
The proof is obvious.
We set

$$
G_{\rho}^{s}=\bigcup_{r>0} G_{\rho, r}^{s} \text { and } G^{s}=\bigcup_{\rho>0} G_{\rho}^{s} .
$$

Note that $G^{1}=\mathbf{C}\{t, x\}$. If we also set $G^{\infty}=\mathbf{C}\{x\}[[t]]$, then we have interpolation spaces G^{s} between the space of convergent power series and that of formal power series: for $1<s<\infty$,

$$
\mathbf{C}\{t, x\}=G^{1} \subset G^{s} \subset G^{\infty}=\mathbf{C}\{x\}[[t]] \subset \mathbf{C}[[t, x]] .
$$

§3. Statement of Theorem

Let P be a differential operator of the following form:

$$
P=D_{t}^{m}+\sum_{0 \leq j<m} a_{j, \alpha}(t, x) D_{i}^{j} D_{x}^{\alpha},
$$

where $a_{j, \alpha} \in G^{s}$. We assume that P is not Kowalewskian:

$$
\text { ord } P>m \text {. }
$$

We consider the Cauchy problem

$$
(C P)\left\{\begin{array}{l}
P u=f(t, x) \\
\left.D_{t}^{j} u\right|_{t=0}=g_{j}
\end{array} \quad \text { for } \quad 0 \leq j \leq m-1\right.
$$

where

$$
f \in G^{s}, g_{j} \in \mathbf{C}\{x\} .
$$

There exists a unique formal solution $u \in G^{\infty}$. The Cauchy-Kowalewski theorem asserts that, if P is Kowalewskian, u is convergent. We investigate precisely the relation between the divergence order of u and the Newton polygon of P.

Theorem 1. Let $s=1+1 / k_{1}$. Then there exists a unique solution $u \in G^{s}$, satisfying (CP).

Remark 1. Particularly for $f, a_{j, \alpha} \in \mathbf{C}\{t, x\}$, a fortiori the assertion of theorem holds. We rediscover one corollary of Ōuchi's results [9].

Remark 2. This result is best possible: In general one cannot lower the Gevrey order s. For example, let

$$
n=1, \quad P=D_{t}-t^{\sigma} D_{x}^{m}, \quad f=0 \quad \text { and } \quad g=\sum_{j=0}^{\infty} x^{j} \in \mathcal{O}(|x|<1),
$$

where $\sigma \in N, m \geq 2$. Then we have

$$
u=\sum_{i, j \geq 0} \frac{(m i+j)!}{(\sigma+1)^{i} i!j!} t^{(\sigma+1) i} x^{j}, \quad k_{1}=\frac{\sigma+1}{m-1} \quad \text { and } \quad s_{1}=\frac{\sigma+m}{\sigma+1} .
$$

It follows that

$$
u \in G^{s} \text { for } s \geq s_{1} \text {, but } u \notin G^{s} \text { for } s<s_{1} \text {. }
$$

§4. Formal Norm and Lemmas

For $u \in G_{\rho, r}^{s}$, we shall use the formal norm:

$$
N_{r}^{s}[u](t) \stackrel{\operatorname{def}}{=} \sum_{j=0}^{\infty} \frac{\left\|u_{j}\right\|_{r}}{(j!)^{s-1}} t^{j}
$$

If $|t| \leq \rho$, then we have

$$
\left|N_{r}^{s}[u](t)\right| \leq|u|_{\rho, r}^{s}, \quad N_{r}^{s}[u](\rho)=|u|_{\rho, r}^{s} .
$$

We set

$$
\left(D_{t}^{-1} u\right)(t)=\sum_{j=0}^{\infty} u_{j} \frac{t^{j+1}}{j+1} \text { for } u \in \mathcal{O}(|x| \leq r)[[t]]
$$

Lemma 2。 Let $a, u \in G_{\rho, r}^{s}$. The following properties hold for $0 \leq t \leq \rho$:

$$
\begin{equation*}
N_{r}^{s}[a u](t) \leq N_{r}^{s}[a](t) \cdot N_{r}^{s}[u](t) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
N_{r^{\prime}}^{s}\left[D_{i} u\right](t) \leq \frac{1}{r-r^{\prime}} N_{r}^{s}[u](t) \tag{2}
\end{equation*}
$$

for $0<r^{\prime}<r, i=1,2, \ldots, n$.
The proof is straightforward. Inequality (1) asserts that $G_{\rho, r}^{s}$ is a Banach algebra. Notice that in general D_{t} nor D_{i} do not operate on $G_{\rho, r}^{s}$.

We detine the operators A_{s}, B_{s} acting on $\mathbb{R}\{t\}$:

$$
\begin{equation*}
N_{r}^{s}\left[D_{t}^{-1} u\right](t)=A_{s}\left(N_{r}^{s}[u]\right)(t) \tag{3}
\end{equation*}
$$

(4) where

$$
\begin{aligned}
& A_{s}: \sum c_{j} t^{j^{\prime}} \mapsto \sum c_{j} \frac{t^{j+1}}{(j+1)^{s}} \\
& N_{r}^{s}[t u](t)=B_{s}\left(N_{r}^{s}[u]\right)(t)
\end{aligned}
$$

(6) where

$$
B_{s}: \sum c_{j} t^{j} \mapsto \sum c_{j} \frac{t^{j+1}}{(j+1)^{s-1}}
$$

Proposition 1. Let T and s be non-negative real numbers. Let $f(t)=\sum_{j=0}^{\infty} c_{j} t^{j} \in$ $\mathbb{R}\{t\}$ with radius of convergence $>T$. If $f(t) \geq 0$ for $0 \leq t \leq T$, then

$$
\left(L_{s} f\right)(t) \stackrel{\operatorname{def}}{=} \sum_{j=0}^{\infty} c_{j} \frac{t^{j}}{(j+1)^{s}} \geq 0
$$

for $0 \leq t \leq T$.
Since the assertion is trivial for $s=0$, we assume $s>0$. It suffices to prove that L_{s} has the following integral representation: for f stated above,

$$
\begin{equation*}
\left(L_{\mathrm{s}} f\right)(t)=\frac{1}{\mathbb{T}(s)} \int_{0}^{\infty} e^{-\tau} \tau^{s-1} f\left(t e^{-\tau}\right) d \tau \tag{7}
\end{equation*}
$$

The convergence of integral is proved in the same way as that of Euler's expression of Gamma-function. For $f(t)=t^{n}$, we have

$$
\begin{aligned}
\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-\tau} \tau^{s-1}\left(t e^{-\tau}\right)^{n} d \tau & =\frac{t^{n}}{\Gamma(s)} \int_{0}^{\infty} e^{-(n+1) \tau} \tau^{s-1} d \tau \\
& =\frac{t^{n}}{(n+1)^{s}} \frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-\tau} \tau^{s-1} d \tau \\
& =\frac{t^{n}}{(n+1)^{s}}
\end{aligned}
$$

This implies that (7) holds for f polynomial. The right side of (7) is a continuous operator in $\mathscr{C}^{0}[0, T]$ and $f_{n}=\sum_{j=0}^{j=n} c_{j} t^{j}$ converges to f in $\mathscr{C}^{0}[0, T]$. In addition $L_{s}\left(f-f_{n}\right) \rightarrow 0(n \rightarrow \infty)$ in $\mathscr{C}^{0}[0, T]$ by the fact that Taylor series are absolutely and uniformly convergent on any compact subset in the circle of convergence. Thus (7) holds for any f stated above.

Since we have $A_{s-1}=B_{s}, A_{s} f=t\left(L_{s} f\right)(t)$, the proposition means that operators A_{s}, B_{s} preserve inequalities.

§5. Proof of Theorem 1

First we show that the assumption $s=1+1 / k_{1}$ implies that

$$
\begin{equation*}
|\alpha| \leq(s-1) \sigma(j, \alpha)+s(m-j) . \tag{8}
\end{equation*}
$$

Indeed, Newton polygon of P has both vertex $(m,-m)$ and side of slope k_{1} through $(m,-m)$. Since the points $(j+|\alpha|, \sigma(j, \alpha)-j)$ are included in the upper half plane defined by $y \geq k_{1}(x-m)-m$, we obtain

$$
\sigma(j, \alpha)-j \geq k_{1}(j+|\alpha|)-\left(k_{1}+1\right) m \Longleftrightarrow|\alpha| \leq \frac{1}{k_{1}} \sigma(j, \alpha)+\left(1+\frac{1}{k_{1}}\right)(m-j)
$$

which proves (8).
Let $P=D_{t}^{m}-Q$ where

$$
Q=-\sum_{j=0}^{m-1} \tilde{a}_{j, \alpha} D_{x}^{\alpha} t^{\sigma(j, \alpha)} D_{t}^{j}
$$

We define a sequence $\left\{u_{k}\right\}$ as follows:

$$
\left\{\begin{array}{l}
D_{t}^{m} u_{0}=f \\
\left.D_{t}^{j} u_{0}\right|_{t=0}=g_{j}
\end{array} \quad(0 \leq j \leq m-1) .\right.
$$

For $k \geq 0$,

$$
\left\{\begin{array}{l}
D_{t}^{m} u_{k+1}=Q u_{k}+f \\
\left.D_{t}^{j} u_{k+1}\right|_{t=0}=g_{j} \quad(0 \leq j \leq m-1) .
\end{array}\right.
$$

Next we set

$$
\begin{aligned}
v_{0} & =u_{0} \\
v_{k+1} & =u_{k+1}-u_{k} \quad \text { if } \quad k \geq 0 .
\end{aligned}
$$

Then we have for $k \geq 1$,

$$
\left\{\begin{array}{l}
D_{t}^{m} v_{k}=Q v_{k-1}, \\
\left.\mathrm{D}_{t}^{j} v_{k}\right|_{t=0}=0
\end{array} \quad(0 \leq j \leq m-1) .\right.
$$

We also set $w_{k}=D_{t}^{m} v_{k}$, then we have for $k \geq 1, v_{k}=D_{t}^{-m} w_{k}$. Then the sequence $\left\{w_{k}\right\}$ satifies the following equation:

$$
\begin{gathered}
w_{0}=D_{t}^{m} u_{0}=f, \\
w_{k+1}=Q D_{t}^{-m} w_{k} \quad(k \geq 0)
\end{gathered}
$$

where

$$
\begin{equation*}
Q D_{t}^{-m}=\sum_{0 \leq j<m, \alpha} \tilde{a}_{j, \alpha} D_{x}^{\alpha} t^{\sigma(j, \alpha)} D_{t}^{-(m-j)} w_{k} . \tag{9}
\end{equation*}
$$

Let T and r_{0} be positive real numbers such that $f, \tilde{a}_{j, \alpha} \in G_{T, r_{0}}^{s}$. We fix $\left.r_{1} \in\right] 0, r_{0}[$. It follows immediately that for $0<\rho<T$ and $0<r<r_{0}$,

$$
u_{k}, v_{k}, w_{k} \in G_{\rho, r}^{s} .
$$

Let K and M denote positive constants such that

$$
N_{r_{0}}^{s}[f](T)=K \text { and } N_{r_{0}}^{s}\left[\tilde{a}_{j, \alpha}\right](T) \leq M
$$

for any $\tilde{a}_{j, \alpha}$ which appears in P. We prove the following inequality by induction on k : There exist a positive constant C such that for $k \in \mathbb{N}$ and $r \in] r_{1}, r_{0}[$,

$$
\begin{equation*}
N_{r}^{s}\left[w_{k}\right] \leq K C^{k} \frac{e^{d k} t^{k}}{\left(r_{0}-r\right)^{d k}} \tag{10}
\end{equation*}
$$

where $d=\max \left\{|\alpha| ; a_{j, \alpha} \neq 0\right\}$.
Let us take $r \in] r_{1}, r_{0}\left[\right.$ and $r^{\prime}>r$. From (1), (2), (9), we have

$$
\begin{align*}
N_{r}^{s}\left[w_{k+1}\right] & \leq \sum \frac{M}{\left(r^{\prime}-r\right)^{|\alpha|}} N_{r^{\prime}}^{s}\left[t^{\sigma(j, \alpha)} D_{t}^{-(m-j)} w_{k}\right] \tag{11}\\
& =\sum \frac{M}{\left(r^{\prime}-r\right)^{|\alpha|}}\left(B_{s}^{\sigma(j, \alpha)} A_{s}^{m-j}\right) N_{r^{\prime}}^{s}\left[w_{k}\right] \\
& =\sum \frac{M}{\left(r^{\prime}-r\right)^{|\alpha|}}\left(B_{s}^{v(j, \alpha)} A_{s}^{j}\right) N_{r^{\prime}}^{s}\left[w_{k}\right]
\end{align*}
$$

where we set $v(j, \alpha)=\sigma(m-j, \alpha)$ for $1 \leq j \leq m$. Then from (8), we have

$$
\begin{equation*}
|\alpha| \leq(s-1) v(j, \alpha)+s j . \tag{12}
\end{equation*}
$$

If we assume that (10) holds for k, we get from Proposition 1 and (11),

$$
N_{r}^{s}\left[w_{k+1}\right] \leq K M C^{k} e^{d k} \sum \frac{1}{\left(r^{\prime}-r\right)^{|\alpha|}\left(r_{0}-r^{\prime}\right)^{d k}}\left(B^{v(j, \alpha)} A^{j}\right)\left[t^{k}\right] .
$$

We now choose $r^{\prime}=r+\left(r_{0}-r\right) /(k+1)$, so that $r_{0}-r^{\prime}=\left(r_{0}-r\right) /(1+1 / k)$. Then for the coefficients of $t^{k+j+v(j, \alpha)}$ under sigma sign, we have

$$
\begin{gathered}
\frac{1}{\left(r^{\prime}-r\right)^{|\alpha|}\left(r_{0}-r^{\prime}\right)^{d k}} \frac{1}{((k+1) \ldots(k+j))^{s}\left((k+j+1) \ldots(k+j+v(j, \alpha))^{s-1}\right.} \\
\quad=\frac{(1+1 / k)^{k d}}{\left(r_{0}-r\right)^{|\alpha|+d k}} \frac{(k+1)^{|\alpha|}}{((k+1) \ldots(k+j))^{s}\left((k+j+1) \ldots(k+j+v(j, \alpha))^{s-1}\right.}
\end{gathered}
$$

By (12), the second fraction is less than or equal to

$$
\left(\frac{(k+1)^{j}}{(k+1) \ldots(k+j)}\right)^{s}\left(\frac{(k+1)^{v(j, \alpha)}}{(k+j+1) \ldots(k+j+v(j, \alpha))}\right)^{s-1}
$$

which is less than or equal to 1 . Thus we obtain

$$
N_{r}^{s}\left[w_{k+1}\right] \leq K C^{k} \frac{e^{d(k+1)} t^{k+1}}{\left(r_{0}-r\right)^{d(k+1)}} M \sum_{j \geq 1, \alpha}\left(r_{0}-r\right)^{d-|\alpha|} t^{j-1+v(j, \alpha)} .
$$

It suffices to take the constant C by

$$
C=M \sum_{j \geq 1, \alpha}\left(r_{0}-r_{1}\right)^{d-|\alpha|} T^{j-1+v(j, \alpha)}
$$

If we choose $\varepsilon \in] 0, T]$ such that

$$
\frac{C e^{d} \varepsilon}{\left(r_{0}-r\right)^{d}}<1
$$

it follows from (10) that $\sum_{k=0}^{\infty} w_{k}$ is convergent in $G_{\varepsilon, r}^{s}$. Since D_{t}^{-m} is a continuous operator in $G_{\varepsilon, \mathrm{r}}^{s}$ and that $D_{t}^{m}, Q: G_{\varepsilon, r}^{s} \rightarrow G_{\varepsilon_{1}, r_{1}}^{s}$ are continuous operators for $\left.\varepsilon_{1} \in\right] 0, \varepsilon[$, it follows that

$$
u=\lim _{k \rightarrow \infty} u_{k}=\sum_{k=0}^{\infty} v_{k} \in G_{\varepsilon, r}^{s} \subset G_{\varepsilon_{1}, r_{1}}^{s}
$$

and u satisfies (CP) in $G_{\varepsilon_{1}, r_{1}}^{s}$. The proof is complete.

§ 6. Further Generalizations

To make the assertions clear, we stated Theorem 1 under more restrictive assumptions, which we shall make less strict as follows.

1. Theorem 1 also holds for operators of the following type:

$$
P=\sum_{j, \alpha} a_{j, \alpha}(t, x) D_{i}^{j} D_{x}^{\alpha}
$$

where $a_{m, 0}(t, x)$ is a unit in $\mathbb{C}[[t, x]]$ and the point $(m,-m)$ is a vertex of $N(P)$. Notice that in this case order of P with respect to D_{t} may be larger than m.
2. For P, we denote its principal part by

$$
\sigma(P)=\sum^{\prime} a_{j, \alpha} D_{t}^{j} D_{x}^{\alpha}
$$

where \sum^{\prime} means that sum is taken for all (j, α) such that $\sigma(j, \alpha)-j=\min [\sigma(j, \alpha)-j]$, namely sum of the terms of P which correspond to the points lying on the side of $N(P)$ parallel to abscissa. The operators discussed so far have the term D_{t}^{m} as principal part.

Theorem 2. The assertion of Theorem 1 also holds for operators P such that $\sigma(P)$ is Fuchsian in the sense of Baouendi-Goulaouic under the usual conditions on characteristic exponents [2].

Needless to say we have to modify the number of Cauchy data in this case.
These assertions are proved in the same way as Theorem 1.
Acknowledgement. II would like to thank the referee for his critical reading the manuscript and useful comments. Especially, \mathbb{I} owe to him the example in Remark 2, section 3.

References

[1] Aoki, T., Kashiwara, M. and Kawai, T., On a class of linear differential operators of infinite order with finite index, Adv. in Math. 62 (1986), 152-168.
[2] Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure App. Math. 2 (1973), 455-475.
[3] Kashiwara, M., Kawai, T. and Sjöstrand, J., On a class of linear partial differential equations whose formal solutions always converge, Ark. Mat. 17 (1979), 83-91.
[4] Laurent, Y., Théorie de la Deuxième Microlocalisation dans le Domaine Complexe, Progress in Math. 53, Birkhäuser, 1985.
[5] , Calcul d'induces et irrégularité pour les systèmes holonômes, Astérisque $\mathbb{1 3 0}$ (1985), 352-364.
[6] -, Polygône de Newton et b-foctions pour les modules micro-différentiels, Ann. Sci. École Norm. Sup. 20 (1987), 391-441.
[7] Malgrange, B., Sur les points singuliers des équations différentielles, Enseign. Math. 20 (1974), 147176.
[8] Mizohata, S., On the Cauchy-Kowalewski theorem, Mathematical Analysis and Applications, Part B; Adv. in Math. Supplementary Studies, 7B (1981), 617-652.
[9] Ōuchi, S., Characteristic Cauchy problems and solutions of formal power series, Ann. Inst. Fourier (Grenoble) 33 (1983), 131-176.
[10] Ramis, J.-P., Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Memoirs of the Am. Math. Soc. Vol. 48, No. 296, 1984.
[11] Treves, F., Basic Linear Partial Differential Equations, Academic Press, 1975.

[^0]: Communicated by S. Matsuura, March 22, 1989.

 * Faculty of Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, 535, Japan.

