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Newton Polygons and Formal Gevrey Classes

By

Akiyoshi YONEMURA*

Introduction

Following to the fundamental study of Malgrange [7], Ramis elucidated the an-
alytic meaning of slope of Newton polygon for ordinary differential operators [10]: In
generic cases the index of operator in formal Gevrey class of order s equals to the
ordinate at the origin of supporting line of Newton polygon with slope k = l/(s — 1).
He also demonstrated various comparison theorems.

The purpose of this note is to generalize one aspect of Ramis theory to partial
differential operators. There seems to be three ways of generalization:

1. To consider holonomic systems.

2. To consider operators of Kashiwara-Kawai-Sjostrand type [1, 3].

3. To consider Cauchy problems.

For 1, 2, we refer to Laurent theory [4, 5, 6]. We shall discuss from the standpoint 3.
On the other hand, our study is closely related to the Cauchy-Kowalewski theorem.

Mizohata's inverse Cauchy-Kowalewski theorem asserts that if the operator is not
Kowalewskian, there exists a divergent formal solution [8]. It is well known that the
formal solution of heat equation belongs to Gevrey class of order 2. The problem is
what determines the Gevrey order of formal solutions.

From a different point of view, Ouchi developed the theory concerning the analytic
meaning of formal solutions [9]. It is certain that his theory implies one part of our
theorem. There exists, however, more elementary and straightforward method to our
problem.

§ 1. Notations

For x = (x l9 x2, ..., xn)eCn , we set \x\ = maxi<j<J*/l- Let 0(\x\ < r) be the set
of all holomorphic functions in {x e C"; |x| < r}. We also set

where #°(|x| < r) is the set of all continuous functions on [x E C"; |x| < r}.
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It Is obvious that G(\x < r) is a Banach space with maximum norm || • ||r.
Let C[[t, x]] be the set of formal power series with complex coefficients In n + 1

indeterminates £, x. Let C{t, x} be the set of convergent power series in n + 1 variables
(t, x) = (t, x1 ? . . . , xj. When we set A = G(\x\ < r) or C{x}, we denote by 4[[f]] the
set of formal power series in t with coefficients In A. These are subspaces of C[[f, x]].

We shall use standard multi-indices notations:

Dx = DJi ... D*- for a e N".

§ 20 Definitloe§

Let P be a differential operator with coefficients e C[[£, x]]:

j,a j,a

where 5^(0, x) ^ 0 in C[[x]]. Let Q be the second quadrant of E2 and for (M, t;) e M2,
we set

Q(u, v) = (u,v) + Q.

Definition, The Newton polygon of P, denoted by N(P)9 Is defined by the convex
hull of the union of Q(j + |a|, a(j9 a) —j) for j, a such that ajj!X ^ 0 in C[[£, x]]:

N(P) = cfcf U 6(7+ *U(J,a)-

Let 0 = fc0 < kl < • • • < fcj be the slopes of sides of N(P).

Remark. If P is a differential operator with holomorphic coefficients, this definition
is a special case of more general one [4, 5, 6]: If we choose

X = Cn+1 = CtxCn
X9Y={t = Q} aX,A = TfX and O = (o; o) E X ,

then according to Laurent's notation [5] we have

N(P) = NAfo(P) •

Let us notice that this definition is different from that of Mizohata [8]. For example, it
suffices to consider the operator P = D2 + DtDx + t2Dx.

To examine the analytic meaning of kj9 we define the functions of formal Gevrey
class.

Definition. Let s > 1, p > 0 and r > 0. Then we denoted by G*>r the set of all
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Lemma 1. G*>r is a Banach space with norm \'\s
p,r.

The proof is obvious.

We set

G; = U <?., ^d GS= U GI .
r>0 p>0

Note that G1 = C{t, x}. If we also set G°° = C{x}[[t]], then we have interpolation
spaces Gs between the space of convergent power series and that of formal power series:
for 1 < s < oo,

C{t, x} = G1 c Gs c: G00 = C{x} [M] c C[[t, x]] .

§ 3. Statement of Theorem

Let P be a differential operator of the following form:

0<j<m

where aj?a e Gs. We assume that P is not Kowalewskian:

ord P > m .

We consider the Cauchy problem

where

There exists a unique formal solution u e G°°. The Cauchy-Kowalewski theorem asserts
that, if P is Kowalewskian, u is convergent. We investigate precisely the relation
between the divergence order of u and the Newton polygon of P.

Theorem 1. Let 5=1 + 1/fei- Then there exists a unique solution u e Gs, satisfying
(CP).

Remark I. Particularly for /, ajia[ e C{t, x}, a fortiori the assertion of theorem
holds. We rediscover one corollary of Ouchi's results [9].

Remark 2. This result is best possible: In general one cannot lower the Gevrey
order s. For example, let

n = l , P = Dt-t*D2, / = 0 and g = £ xj' 6 0(|x| < 1) ,
j=o

where a E N, m>2. Then we have

1W . a + 1 , cr + mand «i =x+ I)1*!;'! m - 1 a + 1
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It follows that

u e Gs for s > sl5 but u $ Gs for s < s1

§ 40 Formal Norm and Lemmas

For u e G*5r? we shall use the formal norm:

If \t\ < p, then we have

We set

(D~lu)(t) = £ uj^— for u e 0(|x| < r)[[t]] .
j=o J + 1

Lemma 2. Let a, u e Gs
piF. The following properties hold for 0 < t < p:

(1)

(2)

for 0 < r' < r, i = 1, 2, ..., n.

The proof is straightforward. Inequality (1) asserts that GS
P>J. is a Banach algebra.

Notice that in general Dt nor Dt do not operate on Gs
ptr.

We define the operators As, Bs acting on R{t}:

(3) AFCA'1

(4) where As: ]T

(5) N;[>

(6) where Bs: Y c 'u- s-1

Proposition 1. Let T and s be non-negative real numbers. Let f(t) = X?=o Cjtj E
} with radius of convergence > T. If f(t) > 0 for 0 < t < T, then

/or 0 < t < T.

Since the assertion is trivial for s = 0, we assume s > 0. It suffices to prove that Ls

has the following integral representation: for / stated above,
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(7) C

The convergence of Integral Is proved in the same way as that of Euler's expression of
Gamma-function. For f(t) = t", we have

tn 1
(n + l)s T(s

t"

(n + \Y '

This implies that (7) holds for / polynomial. The right side of (7) is a continuous
operator in #°[0, T] and fn = ̂ ocjtJ converges to / in ^°[0, T]. In addition
Ls(/ — /„)-> 0(n -» oo ) in ^°[0, T] by the fact that Taylor series are absolutely and
uniformly convergent on any compact subset in the circle of convergence. Thus (7)
holds for any / stated above.

Since we have As^ = BS9 Asf = t(Lsf)(t), the proposition means that operators AS9

Bs preserve inequalities.

§50 Proof of Theorem 1

First we show that the assumption s = 1 4- l/k1 implies that

(8) |a |^(s-lM7,a) + s(in-7).

Indeed, Newton polygon of P has both vertex (m, — m) and side of slope k1 through
(m, —m). Since the points (j + |a|, o(j, a) — j) are included in the upper half plane
defined by y > k^x — m) — m, we obtain

ff(j, a) - j > k t ( j + |a|) - (k, + l)m<=»|a| < — a(j, a) + ( 1 + — )(m - j) ,
K1 \ K1/

which proves (8).
Let P = Dr

m - Q where

m

We define a sequence {uk} as follows:

For k > 0,
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Next we set

VQ = UQ,

vk+1 = uk+1 -uk if k > 0 .

Then we have for fc > 1,

We also set wfc = D?vk9 then we have for k > 1, vk = D~mwk. Then the sequence {wfc}
satifies the following equation:

GA"mw& (k > 0)

where

(9) QA~m = I a^D*xt*^D-^wk .
0<j<m,a

Let T and r0 be positive real numbers such that /, ajt(l e Gfiro. We fix TI e ]0, r0[.
It follows immediately that for 0 < p < T and 0 < r < r0,

uk, vk, wk e Gs
pft. .

Let K and M denote positive constants such that

Ns
rom(T) = K and N;o[aJtU](T) < M

for any ajtQi which appears in P. We prove the following inequality by induction on fc:
There exist a positive constant C such that for fc e N and r e ]rl5 r0[,

edktk

(10) A?[Hfc] < KCk- -- - ^
lro — rj

where ^ = max {|a|; ajt(X ^ 0}.
Let us take r e ]rl9 r0[ and r' > r. From (1), (2), (9), we have

M
(1 1) A?Ofc+1] < £ - — ̂  Nf. [ff'-'A-^-V]

I f / I

M

M

where we set v(;5 a) = o(m —j, a) for 1 <j < m. Then from (8), we have

(12) |a |<(s-l)v(;5a) + sj.

If we assume that (10) holds for fc, we get from Proposition 1 and (11),
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KMCV*

We now choose r' = r + (r0 — r)/(k 4- 1), so that r0 — r' = (r0 — r)/(l + l/k). Then for
the coefficients of tk+^u,ct) uncier sigma sjgnj we have

1 1
(r' - r)w(r0 - r')dk ((k + 1) . . . (fc + j))s((k + j + 1) . . . (k + j + v( j, a))5'1

(fc + l)|a|_
o _ ((fc + l) . . . (fc + j))*((/c + j + 1) . . . (fc + j + V( j, a))5'1

By (12), the second fraction is less than or equal to

(/c+l)v°'a)

which is less than or equal to 1. Thus we obtain

' I(?o - r
It suffices to take the constant C by

f _ juf V (r —— / \ o

If we choose 8 e ]0, T] such that

Ceds

it follows from (10) that ££L0 wfc is convergent in G£
s
>r. Since Dt

 m is a continuous
operator in GE

s
>r and that Dt

m, Q: GE
s
>r -> GE

s
i)ri are continuous operators for sl e ]0, e[, it

follows that

00

u = lim uk = £ t;fc e G£% c Ge
s
i>ri

fc-»oo fc=0

and w satisfies (CP) in G*ljri. The proof is complete.

§ 6. Further Generalizations

To make the assertions clear, we stated Theorem 1 under more restrictive assump-
tions, which we shall make less strict as follows.

1. Theorem 1 also holds for operators of the following type:

where am^(t, x) is a unit in C[[t, x]] and the point (m, — m) is a vertex of N(P). Notice
that in this case order of P with respect to Dt may be larger than m.

2. For F, we denote its principal part by
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where £' means that sum is taken for all (j, a) such that a(j, a) — j = min [a(j, a) — j]?

namely sum of the terms of P which correspond to the points lying on the side of N(P)
parallel to abscissa. The operators discussed so far have the term Df

m as principal part.

Theorem 2, The assertion of Theorem I also holds for operators P such that a(P) is
Fuchsian in the sense of Baouendi-Goulaouic under the usual conditions on characteristic
exponents [2].

Needless to say we have to modify the number of Cauchy data in this case.

These assertions are proved in the same way as Theorem 1.

Acknowledgement. I would like to thank the referee for his critical reading the
manuscript and useful comments. Especially, I owe to him the example in Remark 2,
section 3.
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