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Regular Tensor Algebras

By

DANIEL A. DUBIN* and MARK A. HENNINGS**

Abstract

A convolution algebra is a normal sequence space ^ that is closed under the convolution
product. Let E be a nuclear Frechet locally convex space, and let P={_pr: r eAT U{0}} be a
family of Hilbertian seminorms defining its topology. We define the vector space T(E, /I, p)=
{(*B)e IKgTE: «g)J {?,•(*•„)) eJ, r^O}, equipped with the topology obtained from the semi-

norms 21 un \®&pr where r^O and w e/lx, the Kothe dual of A. For certain sequence spaces,
H^O

the resulting space does not depend on f- and we write T(E, X). Such is the case for sequence
spaces of type h.

Certain properties of X transfer directly to T(E, A, p). In particular, if I is complete
(respectively Frechet, a lopological algebra), then so is T(E, A, p). A regular tensor algebra
is a space T(E, X) for /I a perfect topological convolution algebra with jointly continuous
product which is of type h. T(E, fy is then nuclear, and reflexive if Frechet.

We examine the topological properties of the spaces T(E, A, f). Other than inver-
tibility, these are the same as for £® = © (g)* E. We then consider the order properties arising

«s=o
from a natural involution. The positive wedge K(Z) is always a proper strict-6 cone, and
if X is of type h and A£/z, its closure is proper. Here h is the sequence space isomorphic to
the space H(C) of entire functions. In particular, T(E, h) is a regular tensor algebra which is
locally multiplicatively convex and whose closed cone is proper. Finally, we present three
conditions which are sufficient for K(X) to be normal.

§ 1. Introduction

In multilinear algebra and differential geometry, the contravariant tensor
algebra of a vector space is of some importance. Studying Wightman's for-
mulation of relativistic quantum field theory [9], [26], [29], Borchers [5], [6] and
Uhlmann [28] independently obtained a reformulation based on a topological

generalisation of a contravariant tensor algebra. With E=<S(R), the space
of smooth functions of rapid decrease, they considered E®=(&®nE as a topolo-

»;>o

gical ^-algebra. Our notation is that ®nE is the «-fold tensor product of E
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with itself, completed in the inductive tensor product topology. The sum is
meant to be the locally convex direct sum.

The theory of non-normed topological algebras is rather undeveloped, par-
ticularly in contrast with the theory of C*-algebras. As Borchers [6] points out,
so little was known about such matters that no interest was shown in this alge-
bra until the work of Wyss [30], [31], in 1958. For the last decade and a half
some progress in the analysis of E® has been achieved, but the basic problem re-
mains unsolved: in order to prove the existence of nontrivial relativistic quantum
fields, one must prove the existence of nontrivial positive functional on E®
which annihilate certain ideals.

Now certain other physical systems are, in many respects, similar to
relativistic quantum field theory, notably nonrelativistic quantum statistical
mechanics, and the so-called current algebras. In [4], Alcantara and one of
us (D.A.D.) were able to show that these systems could also be described by the
algebra E® by choosing different spaces E. These considerations lend further
support for more study of E® and its quotient algebras E&/I, where / is a com-
plemented ^-invariant positive ideal. Such quotient algebras are characteri-
stic examples of /^-algebras [4], and Alcantara has even shown that every
/^-algebra is a quotient algebra of this sort [3].

At the risk of oversimplification, the underlying obstruction to proving the
existence theorems of the sort needed for applications is positivity and the rela-
tion between the order properties of E® and E®/I. With this in mind, Lassner
[18] and Yngvason [32] have considered alternative topologies on E® better
suited to the study of the order properties than the original. Subsequently
Hofmann [12], [13], [14], [15] and Schmiidgen [24], [25] further analysed these
topologies on E®.

Given a topology on E®, coarser than the original, with respect to which E®
is a locally convex algebra, one might consider the completion in this topology.
The resulting space will not necessarily be an algebra, but it can be. This is
the theme of this work. We consider certain topologies on E® which lead to
complete algebras.

In so doing, we were guided by the similarity in form between the product
on tensor algebras and the convolution product of infinite series. This has
led us to consider topologies for E® defined by certain sequence spaces. It has
proved possible to transfer a number of properties from these sequence spaces
to the tensor algebras. Some properties, such as nuclearity and metrisability,
transfer directly. Others only transfer indirectly, particularly the order pro-
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parties. This has led us to isolate certain properties of sequence spaces with a
view to obtaining useful classes of tensor algebras.

In the next section we shall consider sequence spaces. After establishing
some notation and terminology, we recall certain results concerning sequence
spaces which will be of use subsequently. With a view towards properties of

tensor algebras, we have introduced the class of sequence spaces that we have
termed convolution algebras. As is well-known, the sequence space /x is stable
under Cauchy's convolution product. More generally, a sequence space stable
under the convolution product is called a convolution algebra.

In §3, for each convolution algebra ^ we construct the tensor algebra
T(E, X) over a nuclear Frechet space E and consider its topological properties.
Following that, we consider the algebraic and order properties of tensor algebras
in §4. Our principal conclusions are these. We define a regular tensor alge-
bra to be a tensor algebra which is a complete nuclear topological algebra with
jointly continuous product, and which is independent of the choice of seminorms
for E. For each such E, there exist uncountably many regular tensor algebras.
There even exist uncountably many with normal positive cones, once we have
introduced an involution to the algebra. A complete analysis of the relation
between the properties of ^ and the propriety or normality of the closed
positive cone K(X) of T(E, ^) remains open. We do however have several
sufficiency conditions for A in order that K(Z) be proper or normal.

We have also found ^ such that T(E, X) is locally multiplicatively convex,
and there exists one 1 such that T(E, ^) is locally multiplicatively convex,
Frechet and regular.

One of us (D.A.D.) is pleased to acknowledge talks with Gerald Hofmann

who convinced him of the interesting possibilities inherent in these exotic topo-

logies, and with Jim Clunie who was helpful on a number of occasions, parti-

cularly with regard to convolution algebras. It is a pleasure to acknowledge a

conversation with Konrad Schmudgen, who suggested consideration of the

left regular representation, and the second author (M.A.H.) would like to

thank Dr. M.J.C. Cover for some interesting ideas concerning sequence spaces

of type p.

§ 2. Sequence Spaces and Convolution Algebras

Sequence spaces were first introduced by Grothendieck [11] to provide the
simplest examples of nuclear locally convex spaces. Many of their properties
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have been studied by Kdthe [17], Garnir et al. [10] and others. Since the results
and notation concerning sequence spaces will be fundamental to our theory

we shall, in the next few sections, summarise these facts for later use. Where

proofs have been omitted, they can be found in Kothe [17].

§2*L General definitions

Definition 2-1. (a) denote by co (respectively <t>) the space of all complex

sequences a=(an)=(a0, alt „„ . ) (respectively which are eventually zero);

(b) a basis for 0 consists of the sequences {e(ri)\ n^Q}, where

e(n)k=dnk n,k^Q; (2-1)

(c) a sequence space X is a subset ofco containing <t> which is a complex

vector space with respect to pointwise operations',

(d) a sequence space % is normal if, whenever x^X and y^o) satisfy

\yn\<L\xn\ for all n^Q, we have y^ A;

(e) ifAc^o) is such that for any n^O we have a^A with <zw=f=0, we say that

A is noosingulaFo If A is nonsingular, let Ax ={u^ o>: (unan)&llf a^ A}.

Clearly Ax is sequence space. If A is countable then A=AX is couetably echelon.

If % is a sequence space, then ^x is called the Kothe dual of /I;

(/) certainly ^Xxx:Xis perfect ifl=Xxx.

Certainly both o> and 0 are examples of normal perfect sequence spaces,

and o)x=<f>, (f>x=o). We now investigate some standard properties.

Proposition 2°20 (a) if A is perfect, it is normal;

(b) A x is perfect for any nonsingular set A c: o> ;

(c) if A, B are nonsingular and A^B^o), then BX^AX.

We shall introduce the following notion, which is a useful aid when pro-

ving the equivalence of topologies on tensor algebras.

Definition 2-3, The sequence space X is the diagonal transform of the

sequence space y. if there exists d^co with dn>Qfor all /?^0 such that a =(an)^ A

if and only if(andn)^ju. We shall write this as l[d]ja. Clearly, if A[d]ju, then

If ^ is a sequence space then (^, ^x) forms a dual pair with respect to

the form

(a, M) = 2 anun a^X, u^lx . (2-2)
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Thus we have the weak topology a(A9 ^x) and the Mackey topology r(^, ^x) on
^. Moreover, another natural topology may be defined on 1.

Definition 2-4. The normal topology r(^x) on /I is the Hausdorff locally

convex topology on 1 given by the family of seminorms {pa: we/lx}, where

. (2-3)

The principal result concerning these topologies is the following.

Proposition 2-5. a(X, ^x)^r(^x)^r(^, /lx), so lx is the topological dual of

U, r(n).

§2-2. Order properties

Let ^ be a normal sequence space. We can define a positive cone in /I as
follows :

: an^Q, 72^0} . (2-4)

Comparison with the definitions of Peressini [21] enables us to establish the
following order properties of <*+. The proofs are omitted.

Proposition 2-6. ^ is generating, and X is an Archimedean vector lattice.
If we equip A with the normal topology r(^x), then ^+ is a closed normal strict-b

cone for the topological vector lattice (^, ?"(^x)).

In general, however, sequence spaces do not have order units.

Proposition 2-7. /I possesses an order unit if and only if X is perfect and

is a diagonal transform of L.

Proof. If ^ has an order unit e, for any n ̂ 0 find a(/2)>0 such that
a(n)e— e(n)^A+ whence en'^a(u)~1>Q. Since Zx={u^a>\ (unett)^li}9 we see
that ;ix|>]/i. Thus r x[e~l]L. If a^lx x, then (an/en)^L, whence a^L Thus
^=^x x is perfect and l[e~l]L. The converse is trivial.

§2-3. Topological properties of (^, r(Ax))

We shall now state various standard properties of the sequence space 1
when equipped with its normal topology.

Proposition 2-8. The completion of (t, r(7x)) is (*x\ r(r )), so (*9 r(T
::))

is complete if and only if X is perfect.

Proposition 2-9. (A, ^"(^x)) is Frechet If and only if I is countably echelon.
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Proof. As observed in Kothe [17], if Z=A* is countably echelon, then
r(7x) may be defined by the countable family of seminorms {pa:a^A}.

Conversely, if (^, ^(^x)) is Frechet, let {qk: k^N} be a countable family of semi-

norms on ^ defining r(/lx). For any k^Nfmd v(fc)e/lx such that qk^pv(k).

It is then clear that A = {v(k): k^N} is nonsingular and that %=AX.

The condition for a sequence space (^, *"(^x)) to be nuclear is well-

known, and was first established by Grothendieck [11] for perfect spaces.

Proposition 50-1 of Treves [27] extends the result.

Theorem 2-10. (&, r(^x)) is nuclear if and only if for every we/lx there

exists ve^x andf e/! such that \uH\<Z \vn\ \f \ n f o r all n^Q.

It is always of interest to try to identify the strong topology on the dual

of a locally convex space. In the case of a nuclear sequence space, we obtain

the following.

Theorem 2-11. If A is perfect and (^, r(^x)) is nuclear, then the strong

dual of(H9 r(r)) is (Jx, r(Xj). Thus (/I, r(7x)) is semireflexive.

Proof. Consider ^-L = {a^ a>: (anun] e /«,, u^ ^x} equipped with the

HausdorfTlocally convex topology defined by the seminormsPu(d)=supn^\ anun \

for a<=**-L, we^ x . Clearly ^c/lx-/oo and p~(a)<*pu(d) for all ae^, we^x .

If aer-L and we^ x , find v^^ x and ee/j such that |wj^ |vj |e j for

w^O. Then (a^wje/! and^/^^prWIIf Hi- Hence it follows that (J, r(^x)) =
^X-L. Hence (Garnir ef a/. [10] V- MO) M is a bounded subset of (/*, r(^x))

if and only if there exists a^A such that \mn\ ^ |«w | for all w^O and m^M.

The strong dual topology on ^x is the topology of uniform convergence on

bounded subsets of (^, r(^x)) which (Kothe [17] 30-2-2) is the normal topology

r(/l). The last statement, which is immediate, should be compared with Pro-

position 4-4-11 of Pietsch [22].

Corollary 2-12. If A is perfect and (<*, r(^x)) is nuclear and dual nuclear,

then (<*, r(^x)) is reflexive.

§2-4. Convolution algebras

We now proceed to try to assign an algebra structure to certain sequence

spaces, by considering as a product law the natural convolution product. If

a, b Go> we look at a*b£=a), where

=2JflA-ft H^O. (2-5)
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We wish to consider sequence spaces which are closed under this binary opera-
tion, which thus become commutative associative algebras with identity e(G).
It is of course well-known that /x is just such a sequence space, and when
equipped with the normal topology r(D- which is the same as the norm
topology -(/19 7(7^)) is a Banach algebra. Consequently, we make the following
definition.

Definition 2-13. A sequence space % mil be called a convolution algebra
if it is closed under the operation *.

We do not have a complete characterisation of convolution algebras.
However, we do have the following partial result, which will completely chara-
cterise convolution algebras of type h (see § 2-5 below).

Proposition 2-14. If X is a normal sequence space such that (na
whenever a^A, then % is a convolution algebra if and only if for any a,
there exists cGE^ such that \am\ \bn\^*\ cm+n \ for all m, w^O.

Proof. If ^ is a convolution algebra and a, b&Z, then setting c= \ a\ * | b \
suffices. Conversely, if a,b^X, choose ce^ as above. Then

2] I ak | | bn_k | ̂ 0*+1) | cn | for all n^O, and hence

We do however have a complete characterisation of topological convolu-
tion algebras.

Theorem 2 • 15. Let X be a perfect sequence space. Then :
(a) (/I, r(^x)) is a convolution algebra with separately continuous multiplica-

tion if and only if for all a^%, u^Ax we have that e(ri)*a^%for all n^iQ, and
V(u, a)e^x, where V(u, d)n=pu(e(ri)*d) for «^0;

(b) (<*, r(^x)) is a convolution algebra with jointly continuous multiplication
if and only if for each we^ x we can find v, we^x such that \ um+n \ ̂  | vm \ \wn\
for all m, n^O.

Proof, (a) if (^, r(^x)) is a separately continuous convolution algebra, for
and we^x we can find ve^x such that pu(a*b)^pv(b) for all 6e^. Cer-

tainly e(ri)*a<=: I for all «^0 and 0^ V(u, a\^pv(e(ri))= \ v J , so V(u, d)
Conversely, if a, b^& and we^x , then

S | «„ | | (a*b)n | ̂ fl S I tf.+.l|a.l|6. 1 = S 2 1 um+n I I (e(n))*a)m+n \\b.
»— 0 m = 0 « = 0 m-Q
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for all N^N. Since this is true for all we /I x and A is perfect, it follows that

a*6e^ and that/7K(a*6)^/7F(llffl)(6) for all b^A.

(b) if (<*, r(;T)) is a jointly continuous convolution algebra, for any we/lx

find v, w^Zx such that pu(a*b)^pv(d)pw(b) for a,b^l. Since e(m+ii) =

e(m)*e(ri) for m, n^Q it follows that | um+n \^*\vm\ wn \ for all m, /?^0.

Conversely, if ae/l and ;?^0, for any we^ x choose v, w^Ax as above.

Then a simple calculation shows that e(n)*a^l and O^F(w, a)w ^ | vrM | /7P(0).

Thus 1 is a convolution algebra andpu(a*b)^pv(l(>a)(b)^pv(a)pw(b) for all

The family of seminorms {pt(: u^Zx} defining the topology T(!X) on <J is

evidently very much larger than necessary, and consequently checking the

conditions of Theorem 2 • 15 is made overcomplicated. We can, of course,

simplify the problem as follows.

Definition 2-16. A subset A of Ax is fundamental if, for every u^Ax we

can find v^A and M > 0 such that \un\^M\vn\ for all n^O.

Clearly, if A^A x is fundamental, then A is nonsingular and {pu: u^A}

is a family of seminorms defining the topology r(/lx) on A, while Ax =AX x .

Recalling the definition of a locally multiplicatively convex algebra, we

easily obtain the following results.

Theorem 2-17. (a) let & be a perfect sequence space and let A<^%x be

fundamental. Then (h, r(^x)) is a jointly continuous convolution algebra if and

only if for any ti^A we can find v, w^A and M^O such that um+n\ ^

M | vm | | wn | for all m, 7?J>0;

(b) let A be a perfect sequence space. Then (h, T(^X)) is a locally multi-

plicatively convex convolution algebra if and only if there exists a fundamental

subset AofZx such that \ um+n \ ̂  | um \ un \ for all m, /i^O,

We consider now some of the standard sequence spaces (Peressini [21]):
(a) o>, 0, lp (0</?^oo), c, c0\

(b) j= {ae ©:(»*«„) ecfl, k^N}, s'=\J

(c) h = {a(=a):(2"kan}£Ec0, k(=N}, A ' = U U {a<E<y: \an\ ̂
M^Nk^N

(d) A! = {aea>: (2~'l!''a,^ll, k<=N}, h{= U U {aeca: |
M(=Nkt=N

The correspondence a<-*^anz
n provides a bijection between /? and the space

»^o

H(C) of entire functions, and a bijection between /^ and the space of functions

holomorphic on the open unit disc. All of these spaces, except c, are normal.
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We have the following listing of dual pairings (^, /lx): (cy, 0), (0, <y), (/«,, /J,
(lp, /«) for Kp<oo and p'l+q'l=\9 (lp, /„) for 0<p^l9 (s, s'), (s'9 j), (A, A')*

(A', A), (A1? AO, («, Ai)-
If we define the sequence $=(1, 1, 1, •••), then d(=cr\L, but (£*$)„ =/i+l,

so 5*5$c U/co. For any a>0 let #*=((/?+ 1)--). Then (&%#*),, ̂ (/?+ 1)1'2-,

and so b1/2^cQ but Z?1/2*61/2<$c0. For !<^<oo set a = l . We can then
2/7

show that b*^Ip but 6**6*$/j. Thus we have shown that c, c0 and /^ (1 <p^
oo ) are not convolution algebras. However, all the other sequence spaces listed
here are, and most of them are topological ones.

Theorem 2-18. (a) (0, ?"(<*>)) is a jointly continuous convolution algebra:
(b) equipped with their normal topologies, a>, lp (Q<p^l), s, h, ^ are

locally multiplicatively convex convolution algebras:
(c) sr , h' , h{ are convolution algebras,

Proof, (a) Alcantara [2], Schmiidgen [25];
(b) co, /u s, h, A! are countably echelon spaces Ax with family A = {a(k):

k^N} given by a(k)=^e(r)9 a(k)=3, a(k)n=(n+l)k, a(k\=2k\ a(k}n=2~^
r = Q

respectively. Since each of these families is submultiplicative as in Theorem
2 • 1 7 (b), the result follows. For 0 <p < 1 , if a, b e lp then a*b e lp and

Since If =L, (lp, r(/*)) is a subalgebra of (/19 r(/f)).

(c) if a, b e 5' there exist Af, JV, y, /ce^V with \an\^ M(n+ l ) j , \ b J g

JV(77+l)fe for /i^O. Then |(a*6)J ^AfJV(«+l)y+*+1 for ;7^0? so a*b<=sf. The
other proofs are similar.

Thus there are a reasonable number of topological convolution algebras.
These will form the basis of our theory of tensor algebras. We finish this
section with the following observation.

Remark 2-19. lf(%, r(^x)) is a perfect locally multiplicatively convex con-
volution algebra, then h<^X, since Theorem 2« 17 (b) implies that &x <^h'.

§2-5. Sequence spaces of type h

It will prove to be of interest later to restrict attention to a special class
of sequence spaces. We introduce the following definition.
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Definition 2-20. A sequence space I is of type h if (2nan)&% whenever

Clearly, <f>, a), h are all of type h, and any diagonal transform of a type h

sequence space is also of type h. If ^ is of type h then (2ttunan)^l1 for all we^lx

and ae<* (since (2nan)^Z), and hence (2*wje^x for all we^x , so that ^x is

also of type h. This last fact yields the following result.

Proposition 2-21. If A is of type h, then (/I, r(/lx)) is nuclear. If I is

also perfect then (<*, r(^x)) is nuclear, dual nuclear and reflexive.

Sequence spaces of type h are in a particular sense fundamental to our

theory. It is therefore gratifying to note that there is a large supply of such
spaces. If J is any normal sequence space, for any fce JVU {0} construct the

following diagonal transform of <*,

The normality of X implies that J=<*(0)^(1)2
and so we can define the new sequence space

(2-6)
*2=0

It is clear that if ^ is perfect or countably echelon, then so is Xh.

Proposition 2-22, %h is the largest sequence space of type h contained in %.

Proof. If a<=th then a<^l(k) for all k^ 1, so that (2*an)GA(K) for all &^0,
so (2nan)^^h. Thus Ah is of type h. If & is a sequence space of type h con-

tained in <*, then /*=#(£) ̂ (&) f°r all fc^O, so juCZ4A .

Of course, not all sequence spaces are of type h.

Corollary 2 • 230 Ifh^A^L then Ah =h. Thus s is not of type h.

Proof. (L)h=h> and so s=th=sh.

In order to apply our subsequent theory, we need a good supply of jointly

continuous convolution algebras which are of type h. It turns out that passage

from ^ to &h maintains algebraic properties in the Frechet case.

Theorem 2-24. If I is a countably echelon space such that (^, r(^x))

is a Frechet topological (respectively locally multiplicative ly convex) convolution

algebra, then so is (^&,
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Proof. Multiplication in (-*, r(^x)) is jointly continuous. Now (Kothe [17]
30-8-1) we have %£ = (J^(k)x = \J {(2knun): we^x}. Thus, if A is a funda-

mental subset of /lx, then U {(2knan): a^A} is a fundamental subset of %h. The

result now follows from Theorem 2-17.

§ 3. Tensor Algebras

Let E be a nuclear Frechet space. A natural extension of the demands of
quantum field theory leads us to study the so-called BU-algebra E#=@®nE

(Alcantara & Dubin [4]), which was first introduced by Borchers [5] and
Uhlmann [28]. For purposes of analysis it has proved useful to equip E® with
topologies other than the natural one (Alcantara [1], Hofmann [14], Wyss [31],
Yngvason [32]). When equipped with these topologies, E® is not complete.
Relationships between these topologies are established in Hofmann [14]. In
this paper we shall examine certain of these topologies distinguished by the
fact that the completions of E® are topological algebras.

§3-1. General definitions

Let E be a complex nuclear Frechet space equipped with the topology /.
Then t may be determined by a countable family p={pr\ r^N(j {0}} of
Hilbertian seminorms pr(x)=(x, x^1/2 for r^O, x^E, and without loss of
generality we may assume that the family p is directed, so th^tpr^pr+1 for all

For any n^N, all the usual tensor product topologies coincide on En =
®ttE; €n=an=7cn=£n (Jarchow [16]). When n = l we have e1=a1=7c1=cl=t.

A

The completion of En in this topology will be written En. For rl9 ••- , rB^0 the
map

<*> >»&....'.> = S3 S3 <*i, yi\ - <4, yi>ru, (3-1)
I — 1 3 — 1

* w

where x=^ ^i®"-®^, y=Syi®m"®yi, is a preinner product on En. If
;=i j=i

we setp$l,..,rn}(x)=[<x, *>^,-,'J1/2>then 0^,^«>: r> "'> r^0} is a family of
Hilbertian seminorms which defines the topology on on En. If we consider the

family {p(^\ r^O} of diagonal seminorms given by p(
r
n)=p[r]...tr), then since

(Schmiidgen [25]) the cr-topology is monotonic, we have p$lt...trn-)^P%\ where
jR=max{rl9 ••-,?'„}, and so {p(^: r ̂ 0} is a directed family of Hilbertian semi-
norms which determine the topology an on En.
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For notational completeness, the natural topology on E0 = C may be
determined by a trivial countable family of countable Hilbertian seminorms
{/?<0): r^O} given by p?\f)=\£\ for r^O, £eC. It is of interest to note
that, for 7, fc^O, if x^E,- and y^Ek, then x®y^Ei+k and p¥*k\x®y) =

Prj\x)P(rk\y) for all r ̂  0. This is called the cross-norm property. Clearly
II En can be given the natural universal tensor algebra structure. It is of some
«^o

interest to find subalgebras of H En bigger than E&, and to study topologies on
«^o

these spaces which yield topological algebras. In particular we shall consider
topologies similar to the TM topologies studied by Hofmann [14], which were
originally introduced by Lassner [18].

Definition 3*1. Let 1 be a normal sequence space. We define the vector

space

T(E, X) = {x = (*„) 6= n En • (P?\xj) €= * , r^ 0} , (3-2)
«^0

and equip T(E, X) with the locally convex topology t(X*) defined by the family

{pUif: u^Xx
9 r^O} of seminorms, where

/>.,,(*) = S I «. I P?\Xn) ^ T(E, 2), (3 • 3)

Since 0^^x , the topology r(/lx) is Hausdorflf. As observed by Hofmann
[14], the space T(E9 X) will in general depend on the choice of seminorms for E.

A

It is clear that T(E9 <I>)=E® and T(E9 o)) = f[ En are defined independently of
«2=0

this choice. In §3° 3 we shall see that for sequence spaces of type /?, T(E9 X) is
independent of this choice. Until then, when necessary we shall write T(E9 X9 p)
and r(/lx, •?) to specify the particular family p- of seminorms.

However, T(E9 1) is independent of the choice of p to the following extent.

Lemma 3a28 (a) ifX is a diagonal transform of p., then (T(E9 A, p), t(Xx , p))
and (T(E9 fi9 p), t(jux , p)) are topologically isomorphic;

(b) (T(E9 X)9 t(X
xJ) is, to within isomorphism, independent of a constant

reseating of the seminorms for E.

Proof, (a) if X[d]u, then clearly the map (xfl)\-+(dnxn) provides a linear
isomorphism between T(E9 X) and T(E9 ju). Since ^X[J~1]^X, this isomorphism
is topological.

(b) if we replace ft={pr:r^0}by^= {qr =Kpr : r ̂ > 0} for some K> 0, then
q™=K*pW for r, /7^0, and hence (T(E, X, 9\ t(X\9)) = (T(E9 /*, p\ t(»\ ^))
where X[(K~»)]v. Thus (T(E, X, P), t(X\ p» = (T(E, X, 9\ t(X\ 9)).
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A

Proposition 3-3. The topology £(0) on T(E, o))=J]L En is the product topo-
tt^Q

logy, and hence (T(E, G>), t(<f>J) is complete.

Proof. The product topology on T(E, G>) is defined by the family of semi-

norms {PU>R: w^0, R<^G)Z+}, where Pu,^x)=52\un\p%ln)(xH) for x<=T(E, o>)
«^o

(o)z+ is the set of all R<=a)+ such that R(n)<=Z for all «^0).
If we0 and r^O, define R<^Q>Z+ by R(n)=r for «^0. Then pUtf=PUiR.

and ^eo)z+, then setting r=max{R(n): un^pQ} we see that PUtR^pu>p.

This result enables us to identify the completion of the space (T(E9 X),

f(/lx)). One difficulty that we have encountered in our analysis is that all the
previous work on these topologies (Hofmann [14], [15], Wyss [31], Yngvason
[32]) has been restricted to the space T(E9 <p)=E® and hence sequences with
only finitely many nonzero components. The following lemma bridges that gap.

Lemma 3-4. T(E, 0) is sequentially dense in (T(E9 ^), ?0*x)).

Proof. For any n e N consider Q*: T(E, X)-*T(E, 0) defined by Qnx=

(X0, ~',Xn9 0, 0, • • • ) •

Then pUtr(x-Qnx)=^\uk\p
(
r
k)(xk)-*Q as «->oo for all w ^ A x , r ^ O and

Let the completion of (T(E9 Z)9 t(Z*)) be denoted f(E, X). We have the
following:

Theorem 3-5. f(E9 X)=(T(E, Ax x), t(t*)).

Proof. Firstly, since ^x is perfect, r(^x) is the natural topology for
T(E9 ^ x x ) . Let 0(Z) be the r(^x)-completion of T(E9 0). Then 0(X) is the
f(^x)-closure of T(E9 0) in f(E9 X)9 and so 0(X)=?(E9 X) by Lemma 3-4. Now
t(<fi)£*t(X*)9 and Theorem 6 (iii) of Yngvason [32] states that the ?(0)-closure
(in T(E9 0)) of any graded subset of T(E9 0) is equal to its r(^x)-closure, and
hence T(E9 0) possesses a base of f(/lx)-neighbourhoods of zero which are r(0)-
closed. Thus (Kothe [17] 18-5-4 (c)) we have that f(E9 X) = Q(X)^Q(G>) =

f(E9 v) = T(E9 o), and hence f(E9 *) = {x^ll En: pu,r(x)<oo,
"

§3-2. Tensor algebras

We now proceed to consider sequence spaces X for which T(E9 X) is a
subalgebra of T(E9 CD). The similarity between the algebra structure of T(E, co)
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and the convolution product in sequence spaces now makes our earlier work
vital, considered in conjunction with the cross-norm property. As usual, let X
be a normal sequence space.

Theorem 3 -60 If ' & is a convolution algebra, then T(E, X) is an algebra.

Proof. If x, y(=T(E, X) and r ^0 define X(r\ Y(r)<=X by setting X(r)n=

/><">(*„), Y(r)9=p<r*\yn). Then

n.k) = X(r)kY(r)n_k = (X(r)*Y(r))n

for all n^Q. Thus (p^((xy)n))^X for all r ̂ 0, so xy<=T(E, X).

We shall see that it is not necessary that X be a convolution algebra for
T(E9 X) to be an algebra. However, not all spaces T(E, X), where X is a normal
sequence space, are algebras. For example, let {QH: «2^0} be the Hermite
function Schauder basis for <S(K), and let p={pri r^Q} be the defining family
of Hilbertian seminorms for <S(R) given by pr(x) = \\Nrx\\2 (*e<S(/Z), r^0)9

where N= — f x2— — -+1 J is the usual number operator, with N£n=(n+l)£n

for 7i ̂  0. Consider x e T(<S(K), col) defined by xn = <g) n£0 (n^l),x0=l. Then
pW(Xn) = l for all r, n^Q, so that x<^T(<S(M), L). However (xx\=(n+\)xn,
so that p?\(xx)n)=n+l for all r, n^Q, and hence xx&T(S(R)9 L). Thus,
with this choice of seminorms for <S(R)9 T(S(R), !„) is not an algebra.

If we equip X with its normal topology, the topological properties of
(X, r(-*x)) are transferred over to (T(E, X), t(Xx)).

Proposition 3B7« If A^XX is fundamental, then {puy. u£=A, r ̂ 0} is a

family of seminorms defining the topology t(Xx) on T(E, X). In particular, if
(X, T(XX)) is metrisable or complete, then so is (T(E, X), t(Xx)).

Theorem 3"8e Let X be a convolution algebra. If the product in (X, T(XX))
is separately continuous (respectively jointly continuous, locally multiplicatively
convex), then multiplication in (T(E, X), t(XxJ) is separately continuous (respec-
tively jointly continuous, locally multiplicatively convex).

Proof. If multiplication in X is separately continuous, for any y^T(E9 X)9

u(=Xx and r^O find v<=Xx such that pu(a*Y(r))^pv(a) for all a^X. Then we
have

for all x^T(E, X), and similarly pu>r(yx)^pVtr(x).
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If multiplication in A is jointly continuous, if w ^ A x find v, weAx such that

\um+n\^\vm\\wn\ form, 7*^0. Then

P..r(xy)£Pu(X(r)*Y(ry)£p.(X(ry)pm(Y(ry)

for all x,y(=T(E, X) .
The preceding paragraph and Theorem 2-17 establishes the last case.

§3-3. Nuclearity and sequence spaces of type h

Given any normal sequence space ^, a family of seminorms p can be chosen
such that (T(E, <*, p), t(Zx, p)) is nuclear. Since the choice of p is crucial, it is
clear that, in order to discuss the nuclearity of our spaces T(E, ^) sensibly, we
are led to look for sequence spaces ^ such that (T(E, /I), t(A*J) is independent of
the choice of seminorms for E. Consequently this space will also be nuclear.
We shall find that sequence space of type h serve our purpose.

Work has already been done by Alcantara [1], Yngvason [32] and others
in the case ^=<f>, and we shall use the techniques of Alcantara here.

Definition 3-9. A family of Hilbertian seminorms for E is a-directed if there

exists a>l such that pr+l^apr for all r^O.

Of course, replacing the directed family p={pr: r^O} by the equivalent
family p-^—^pr'- r^O} if necessary, we see that E can always be given an
a-directed family of seminorms.

Theorem 3 • 10. Let p={pr: r ̂  0} be a family of seminorms for E. Then

f(/tx, p) may be defined by the family {puy. we/lx, r^>0} of Hilbertian semi-
norms given by

P..r(x) = E I un 1
 2p?\xJ¥» x^ T(E9

«2>0

if either (A, r(/lx)) is nuclear or the family p- is a-directed.

Proof. Clearly pUfr^Pu,r f°r w^x> r ̂ 0. If (A, r(^x)) is nuclear, for any
we can find ve/lx and c^/2 such that | W B | ^ | V B | |£J for all /i^O.

Then pUtr£\\e\\2p,.r for all r^O.

Otherwise, if p- is a-directed, for r^>0 we have pr^
a~lPr+i-> and so

pP^a-'p™! for w^O. Thus^M r^E a~2*]1/2pu r+l for all

The results of Alcantara might lead us to hope that if (^, ^(^x)) is nuclear,
then so is (T(E, ^, p), /(/lx, p)) for any choice of seminorms p. However this
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is not the case. To see this, equip <S(R) with the family of seminorms p-
defined by the number operator. The normal topology r(V) is the usual nuclear
Frechet topology on s. If (T(<S(R), s, p), t(s', p)) were nuclear, for any u^s'
and k^Q we could find v^s' and in>k such that the canonical mapping

y: ^v.m-^^u.k is nuclear, so Hilbert-Schmidt, where MUtk is the Hilbert space
completion of T(S(R), s, p)//vKO). We can also choose m large enough so
that the canonical mapping c: Mm-*Mk is Hilbert-Schmidt, where Mk is the
Hilbert space completion of <S(R)/pjl(Q).

Now i(nJ
rl)~

m£n+pm1(Q)'. ft 2^0} is a countable orthonormal basis for Mm

and so the Hilbert-Schmidt norm of c is given by

where C is the Riemann zeta function. If we set N(v) = {t*tQ: v, =1=0}, then
{Enif...>nt+p7,1m(0)i nl9 '~9nt*zQ9 t^N(v)} is an orthonormal basis for M9tM9

where

Eni,..,nt = (0, -, 0, vrfyi+l)-" - (^H-l)-"^® -®^, 0, 0, .-) .

Thus||y||!= 2 23 23A.*(£.i.-.«)2= 2 l^vr1!2^!!!^-, so wecanchoose
/ejzyco » = i »/so *eJTC»)

ve^x such that v^lH^I^J for w^O. Hence, putting u=d we see that
(|H|?)e/, so we can find M, k^N such that IHIS^A/C/i+l)* for w^O. This
contradiction implies that (r(<5(/2), 51, p), ^(j', p)) is not nuclear.

However, regardless of the nuclearity of ^ or otherwise, we do have the
following result.

Theorem 3-11. If p- is an a-directed family of seminorms for E, then
(T(E9 ^ p)9 t(*\ P)) is nuclear.

Proof. For r^O, choose s>r such that the canonical mapping csr: Ms->

Mr is Hilbert-Schmidt (Mr being the Hilbert space completion of E/p^1^)).

For any t>s the map ttr is Hilbert-Schmidt, and since Ctr=csroets
 we have that

IUI2^x/TiUI ll^llz^ V^Ta'-'HUk (Retsch [22] §2-5), where ||*,f|| is the
operator norm of cts: Mt-*Ms. Thus we can find s>r such that csr is Hilbert-

Schmidt and H'J|2<1.
For any w e ^ x , consider the canonical mapping jsr: MU}S->Mu>r. An

argument similar to the one above shows that jsr is Hilbert-Schmidt and that

\\jsr\\2 is less than [ S IkJIi*]1'2- Since the composition of any two Hilbert-
feJFOO

Schmidt operators is nuclear, it follows that (T(E9 ^? p), t(^, p)) is nuclear.
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One advantage of our proof over that of Alcantara is that we took a global
change of seminorms to ensure that ||^r||2<l5 whereas the change of semi-
norms used by Alcantara was local.

Theorem 3-12. If X is a normal sequence space of type h, then (T(E, X),
t(X*)) is independent of the choice of seminorms for E, and hence is nuclear.

Proof. Let p={pr: /*^0} and <? = {qs: s^Q} be two equivalent directed
families of Hilbertian seminorms for E. Let x^T(E, X, p). For any s^O we
can find r, fc^O such that qs^2kpr. Thus qp^2k»p™ for /7^0 and hence
(q**\x*l)^*' Also, for any utEX* define v=(2knun)<=Xx. Then qu,s(x)^pv>r(x).
The result now follows by symmetry.

The converse to this result is almost true.

Theorem 3-13. If p is an a- directed family of seminorms for E, and & is a
normal sequence space, then T(E, X, p) = T(E9 Xh, p) algebraically, and t(Xx, p)^g
t(X%). If I is countably echelon, then t(Xx, p)-f(^), and so (T(E, X, p), t(X*, p))
and (T(E, Xh), t(X%)) are isomorphic.

Proof. Certainly T(E, Xh)^T(E, X, p). If x^T(E, ^ p), for any r, k^Q

we have (p?\xn))9 (pttk(xn)) e ^. But p f t k ^ a**p?\ so that (a**p?\xn)) e ^ for
all r,/c^0. Thus (p?\xu))^lk for all r^O, so x^T(E9*h). Certainly
r(/lx,p)^r(^)5 since ^7lc^. If ^ is countably echelon, so is AA, and hence r(Ax, p)
and f(^) are two Frechet topologies on T(E, Ah}. Hence (Treves [27] Theorem
17-1) it follows that t(Zx, p)=t(^).

Corollary 3-14 //(-*, r(^x)) is a Frechet space such that (T(E, X), f(^x))
is defined independently of the choice of seminorms for E, then without loss of
generality we may assume that X=Xh is a space of type h.

We notice that if p is an a-directed family of seminorms for E, then
T(E, c0, p) = T(E, (c0}h)=T(E, h) is an algebra, even though c0 itself is not a
convolution algebra. Thus there is in general no two-way result about algebraic
properties of X and those of T(E, X). However, if we restrict ourselves to

sequence spaces of type h, then such a result does exist.

Theorem 3 • 15. If X is a perfect sequence space of type h, then (T(E9 X),
t(X*J) is Frechet (respectively a separately continuous algebra, a jointly continuous
algebra, locally multiplicatively convex) if and only if (X, r(/lx)) is.

Proof. Choose x^E such that p0(x) = l. The map <? : a)-*-T(E, co) given
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by £(a)n=an®
nx is an algebra homomorphism which maps ^ to T(E, X), and

whose restriction to /I is (r(^x), f(^x))-continuous. Also pu(a)=pUt^(a)) f°r

x. Thus, if {q^: z e/} is a family of seminorms defining t(Ax), then
is a family defining r(/lx), where #,•(#)=#,-(£(#)) (since the family

r^O} does).
If the seminorms q{ are submultiplicative, then *fo (£(0*6))^ #,-(«)#,•(&) for

a, Z?e^, z'e/, and so a*b^X and #*(0*&)^ #,(#)#,•(£) for a, 6e^, z'e/. This
establishes the final result. All the others are proved similarly.

We complete our preliminary discussion by making the following definition.

Definition 3-16, A regular tensor algebra is an algebra of the form
(T(E9 ^), f(^x)), where (A, r(^x)) is a sequence space of type h which is a jointly
continuous convolution algebra.

A regular tensor algebra is thus defined independently of the choice of
seminorms for E, and is a nuclear jointly continuous topological algebra.
Certainly 0, h, o> all generate regular tensor algebras. If ^ is a countably
echelon topological convolution algebra, then so is Ah, and so Xh generates
a Frechet regular tensor algebra. Any Frechet regular tensor algebra is nu-
clear Frechet, and standard locally convex space theory (Pietsch [22], Schaefer
[23], Treves [27]) implies that it is Frechet, barreled, bornological, Mackey,
nuclear, reflexive and Montel, while its strong dual is barreled, bornological,
complete, Mackey, nuclear, reflexive and Montel.

§ 4e Algebraic and Order Properties

We shall now consider some of the properties of a regular tensor algebra.
In §4-1 we summarise the results found originally in Borchers [6] for E&9 which
extend simply to a more general tensor algebra. In later sections we introduce
an involution to the algebra, and study the structure properties of the algebraic
cone of positive elements. This cone has been extensively studied for E9 by
Alcantara [1], [2], Hofmann [12], [13], [14], [15], Lassner [18], Lassner &
Uhlmann [20], Schmiidgen [25], Wyss [31] and Yngvason [32]. Extending these
results to a more general regular tensor algebra can be done, but involves careful
checking of the exact forms of sequences used. This is because, in the case E&9

all sequences considered belong to 0x = cy, and so no care needs to be taken
to control their behaviour. Now we need to know that all sequences belong
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Hereafter, let /I be a perfect sequence space of type h such that (X, r(^x)) is
a (complete) convolution algebra with jointly continuous multiplication, and let
(T(E, X), t(X*J) be an associated regular tensor algebra. It should be observed
that most of these results can be proved more generally for a tensor algebra

(T(E, X, p), t(X*9 p) where p is a family of seminorms for E and 1 is just nuclear,
and not of type /?, but we shall for convenience assume the stronger condition.

§ 4 • 1. Algebraic properties

The results of this section may be summarised in the following Proposi-
tion.

Proposition 4-1. (a) T(E, X) has a multiplicative identity e=(l, 0,0, ••• ) ;
(&) T(E, X) has no zero divisors',
(c) the only idempotents of T(E, X) are 0 and e\
(d) the centre of T(E, X) is Ce.

Proof, (a), (b), (c): Borchers [6].
(d) if y belongs to the centre of T(E, X), write y=yQe+z, where z belongs

to the centre of T(E, X) and zQ=Q. For any x^T(E, X) we have that (xz\=
(zx)2, so xl®zl=zl®xl for all x^E. For any S ej£', choose Q^px^E such
that S(x1)=09 and pick T<=E' such that T(x1)^=Q. Then T(xl)S(z1) =

(T®S)(x1®z1)=(T®S)(z1®x1) = T(zJS(xd=Q, so that S(z1)=0. Hence zl=Q.
If z0=0, z^O, •• - , zfll_1=0, then (xz)m+1=(zx)m+1 for all x<=T(E, X), so xl®zm=
zm®xl for all X!<=E. For any Sl9 -~, Sm<= E', find O^FXI <E £ such that
S'1(jCl)=0, and pick re£' such that r^O^O. Then (Si®, • • - , ®S'lll)(zJII)r(jt1) =

C^® — ®5'lll®r)(2rlll®jc1)=0 as above, so that (Si® — ®SfJ(zJ=0. Since
®mE' is dense in E'm, it follows that zm=Q. Hence, by induction, z=0, and so
y=

§4-2. Involutions and the algebraic cone

Let us now suppose that E possesses an involution * which is continuous,
and let p be a family of Hilbertian seminorms for E which are ^-invariant, so
that pr(x*)=pr(x)foT r ̂ 0, x^E. This is equivalent to saying that <**, j*>r=
(x, y\ for r^O, x, y^E. Thus, if we extend * to an involution on En

by defining (j^® — ®#n)*=x|ic® — ®x? and antilinearising, it is clear that

<*?, ^*XW)-<^O?} for r ̂ 0, jc,, ^e^., so that^(x*)-/7^fe) for r ^0,
A

xn^En. Hence each En has defined on it an involution which is invariant with
respect to the seminorms {/?£M): r 2^0}. Thus we may define an involution on
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T(E, X) by setting (x*)n=x* for x=(xn)&T(E, X), and it is now clear that
pUir(x*) =pUir(x) for u^X*, r;>0, x^T(E, X). The following result is now
evident.

Proposition 4-20 (T(E9 X), t(X*J) is a topological * -algebra.

We now consider the algebraic cone of positive elements for T(E, X) given
by

= {2 a(i)*a(i): a(i)^T(E, X)} . (4- 1)

For technical reasons, we shall need to consider the subcone K($)9 defined
similarly. Clearly K(<f>)^K(X). Since T(E, 0) is dense in T(E9 X), the involu-
tion is continuous and multiplication is jointly continuous, it follows that
is *0*x)-dense in K(X). Thus K($f=K(xf9 where Zx denotes the ?(/lx)-closure in
T(E9 X) of any subset L. Let us now consider the elementary properties of the
cone K(X).

Proposition 4-3. K(X) is a proper strict-b cone in (T(E9 X)9 f^")).

Proof. That the cone is strict-6 follows from joint continuity of multipliac-
tion. The proof of the propriety is a simple generalisation of the method of
Borchers [6]. If Q±y=J}a(i)*a(i)GK(X)9 let A(i) be the index of the first

l<~

nonzero component of a(i). If we set L=min,- A(i)9 then the index of the first

nonzero component of y is 2L and 72L
=S«(0?®fl(OL> so ^at (T*®T)(y2L) =

• _
J|2 for any T(=E'L, where T*<=E'L is given by T*(xL) = T(xf) for

Thus9yQjFyGK(X)n(—K(X))9 then the index of the first nonzero
component of -y is still 2L9 and we see that Q=(T*®T)(y2L)= 2 | T(a(i)L)\2

»<°°
for all re E'L. Thus T(a(i)L)=0 for all TsEE'L and all /, so that a(i)L=0 for
all /. This contradicts the definition of L.

Corollary 4-4. If X is countably echelon, then (T(E9 X), t(Xx)) is an /*-
algebra in the sense of Alcantara & Dubin [4],

§4°3, The closed cone JE(X)

Of course the closure K(X) of K(X) is a cone, but is it proper? The
importance of this question lies in the fact (Peressini [21] Proposition 1 -19) that
K(X) is proper if and only if the continuous positive linear functionals K(X)'

separate points in T(E9 X), where
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K(X)f = {TtET(E, X)': T(x)^09 x^K(X)} , (4.2)

and so we have an adequate supply of continuous positive linear functionals.
Before we start our analysis of this problem, we need the following charac-
terisation of the dual T(E, X)' of (T(E, X), t(Xx)}.

Theorem 4-5. If S: T(E, X)-+C is linear, then StET(E, X)' if and only if
we can find a sequence (5J, r^O and u^Xx such that:

(a) SHt=E'aforalln^Q'9
(b) \Sn(xn)\^\un\p<?\xn)for alln^O and
00 S(x)=- 2 Sn(xn)for all x=(xn)<=T(E, X

Proof. If S<=T(E, Xf we can find r^O and utEX* such that \S(x)\ ^
A

pUtr(x) for all x^T(E, X). For any ;?^0 define the linear map 5H: En->C by
setting Sn(xn)=S(x»)9 where ~: En-+T(E, X) is the natural injection. Clearly
\Stt(xn}\^pUir(x^=\u}l\p^(xa) for 7?^0 and xn€=En, so certainly Sne=E'n.

Finally S(x)—^Sn(xu) = S(x—QNx) for any JV^O and x^T(E, X), so the
» = 0

desired result is obtained by letting JV-» oo .
Conversely, it is clear that if (Sn), r ̂ 0 and we^x satisfy (a) and (b), then

(c) defines Se T(E, X)' such that | S(x) \ ̂  pUtf(x) for all x^T(E, X).

Now Alcantara [1], Hofmann [12] and Yngvason [32] have all shown that
K((f>) is a normal cone in (T(E9 0), t(o))). Hence K(<ftf is also normal, hence
proper. This result is not true for all convolution algebras X of type /?. Indeed,
a simple application of the Cauchy-Schwarz inequality shows that the only
elements of K(o>)' are positive multiples of the functional N9 where NQ = l and

To begin with, we notice that some convolution algebras X possess non-
trivial multiplicative functionals. If S^E' we can find r^O, />0 such that

\S(x)\^Jpr(x) for x<=E. For n^N we have ®nS^E'tt and |(®"5)(xn)|^

J*(pr®i~' ®«/V)(*i.)^ ./WJ for xneEn. Thus the sequence (®B5) defines
an element Ms in T(E9 X)' provided that (/ lf)e^x, which is certainly true if

The map Ms is multiplicative and positive if 5=5*; it is clearly the same
1as the map of Borchers [6]. Thus if X^h we have a large supply of

nontrivial positive linear functionals on T(E9 X). Indeed, a conversation with
Professor K. Schmiidgen led us to consider the following argument using a
generalization of the left regular representation.

Theorem 4-6. IfXcih, then K(X) is proper.
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Proof. For any x^E we consider n(x): T(E, X)-* T(E, ^) given by
7c(x)y=xy for y^T(E, X). Fix r^O. If ^er(£", <*) we have ^«.r[rc(x)v]2 =
pr(x)2Ps,r(y)2> so we may define a continuous linear map nrr: E~^^(M8tr) such
that ||£r(*)|| =/>,(*) for *e£. Define or: E-*£B(Ms>r) by setting *,(*) =

*r(*)+*r(**)*- Then ar is linear, ||ffr(*)ll^2/?r(*) and a/x*) = *,(*)* for a11

x^E. Let 2r be the *-algebra representation of £"® = 0®n£ defined by ar
«;>o

(and the requirement that 2)r(e)=/).
I f ̂ -S*;®---®4e®w£ then & S

for all £ € = < % . Thus

Ps.rffi f°r all Xn^En an^ £^M$>r. A simple generalization of Proposition
7-3-2 of Pietsch [22] shows that there exists ^> 05 s^Q (depending on r
only) such that ®lpr^Knp(?} for all ;?^0. If we define ?;-((2^:)M)e/2'c^x, it

is clear that Ps.r&M^^Pv.s^PsA^ for a^ ^e^® an(l S^M^>r. Since £^ is
dense in T(E, /I), it follows that ^r extends to a continuous ̂ -representation 2r

of T(£, ̂ ).
For any 0^/f^l it is clear that the map x\-*x(ju) is a continuous *-endo

morphism of T(E, X), where x(#)=(ju*xn). Thus if jtetfpf then x(v)

), for any r^O and fe^s>r the map
belongs to AW, and hence <e, 2r(jc(/«))f>=0 for all 0^/(^1. Since
is self-adjoint, a standard argument shows that S #wSr(*J<f =Sr(A'(jtt))f ^0 for

«^o A

0^/£^1. Thus Sr(*».)£=0 for all ;?^0, and so />«,r[Sr(jc,>]=0 for all r3 w^O.
Looking at the nth term of this sum, we see that/??0 (*„)=() for all r, 77^0, so x=0.

Thus we can find a large number of regular tensor algebras with proper
closed cone, and (T(E9 A), t(h')) is a locally multiplicatively convex regular
tensor algebra with closed cone. Indeed T(E5 h) is the only such algebra,
because it turns out that the reverse implication in Theorem 4*6 is true. We
shall prove this in two stages, starting with the simple case E=C. Clearly then
(T(E, X), t(F))=(X, r(Jx)), and

, (4-3)

ae^} , (4-4)

so that k(X)f is precisely the collection of sequences in ^ of positive type.
Thus, if u^k(X)' we can find a positive finite measure JUL on R such that

un = \ t*dt*,(t) for ;?^0. If ju(R — {0}) = 0 it is clear that u = v(E)e(0).
JR
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Otherwise we can find e>Q such that Ms=jtt({t: \t \ ̂ e})>0, and then u2tt^

£2ttMe for all H^O, so that (1, 0, e2, 0, e\ • • • ) belongs to ^x. Since X is of type
A, {u<=o): (w2M)<EA', (w2«+i)=0}^^x. If ae-* then (^wje/j for all we//, so
that (ff2ll)eA. But also a*e(l)e^ and so (02w+1)eA. Thus #e/z. We have
proved the following result.

Proposition 4 • 7. £/f Aer X^h or k(X)' = {ae(0) : a ̂  0} .

Corollary 4-8. /r(^) w proper if and only if^^h.

To extend this result to the general case, we need some more technical
equipment. For any s^N define

As = {a^o): a = (bsn)n for some b^A} .

Clearly Zs is a sequence space, and we notice that X1=X. The following results
are easily proved.

Lemma 4 -9. (a) (AS9 r(A*)) is a complete convolution algebra with jointly

continuous multiplication ;

(b) (*,)" =(**),;
(c) 2S is of type h, and As^h if and only if

We also introduce the following notation. If <ze^s, let a[s]&A be given
by setting a[s]H=anjs if s divides n, and a[s]n=Q otherwise.

Theorem 4 • 10. Either J c A or ̂ (^ - {aTV: a ̂  0} ,

Suppose that ^ is not contained in A, and pick T&K(X)' '. Fix

, and choose ^:=^:*e£"s. For any ae^s consider x(a)^T(E, c») given by

=«»®11^ f°r «^05 and x(fl)B=0 if s does not divide n. Clearly p^H\x(a)n)
= I a[s]n \ p

(
r
s\x)n/s for all r, n ̂  0, so that x(d) e r(£"5 /I). Now the map a ̂ > x(a)

is a *-algebra homomorphism from As to r(£, ^). For any we^x and r ^0, if

we define v=(p(
r
s\x)nusn)n^(tsY, it is clear that pVtr(x(a))=pv(a) for all a^ts,

and so the homomorphism is continuous from (Zs, T(^)) to (T(E9 X), t(A*)).

Thus the map Tx\ ai— > T(x(d)) belongs to Ar(^s)'. Now ^s is not contained in A,

so Tx=fie(Q) for some ^^0. In particular 0=rt(e(l)) = r(x(e(l))) = r5(jc).

Thus r,(x)=0 for all jc=jc*e£'a, and hence Ts= 0. This is true for all

so T=aNfor some

Corollary 4 • 11. £(<l) is proper if and only if 1 c A.
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§4 °4, Criteria for normality

There are few simple results concerning normality of the cone K(X) in
(T(E, X)9 t(X

x)}9 and those which can be tested are highly restrictive, like those

of Hofmann [12]. We start with a few general observations. For any
T<=K(X)f the map

pT(x) = T(x*x)1/2 x e= T(E9 X) (4 - 5)

is a continuous seminorm on (T(E, X)9 t(X
x)) (Lassner [19]). The topology

defined by the family of seminorms {pT: T^K(X)'} is called the state topology,

written ts. Clearly ts is Hausdorif if and only if K(X) is proper. We say that

the states determine the topology if ts=t(Xx). Since (T(E9 X)9 t(X*)) is nuclear,

results of Alcantara [1] and Yngvason [32] yield the following result.

Proposition 4*12. K(X) is t(Xx)-normal if and only if the states determine

the topology.

It should be noted that there exist no locally multiplicatively convex regular

tensor algebras with normal cones. To see this, if (T(E9 X), t(Xx)) is a complete

locally multiplicatively convex regular tensor algebra, for any Te=K(X)' Brooks

[7] has shown that the Gelfand-Naimark-Segal representation (nT9 MT> <@T) of

T(E9 X) is a continuous representation of T(E9 X) on ^B(MT}. Thus the function
qT(x)=\\nT(x)\\(x^T(E, X)) is a continuous C*-seminorm on T(E9 X) such

that pT^qT9 provided that T(e)=l. Thus the collection of C*-seminorms
{qT\ T^K(X)'} defines a topology tGNS on T(E9 X) such that ts^tGNS^t(Xx).

If K(X) were also f(^x)-normal, then t(X*) = tGNS, and so T(E9 X) would be a

&*-algebra, and so symmetric. As observed in the previous section, the only

serious candidate for yielding a locally multiplicatively convex regular tensor
algebra with normal cone is /?, and certainly T(E9 h) is not symmetric in general.

To see this, choose 04=*=** in E and let y=(—®*x}^ T(E, /?). Then

y*y = [—2*®*x\ If T(EJi) were symmetric, then Ms(e + y*y)^Q for all
\n ! /

S^E'. But since Ms(e+y*y) = l+exp[2S(x)] and we can find S^E' such

that S(x)=—/X we obtain the required contradiction.

A variety of conditions for normality of the cone can be found by generaliz-

ing the arguments of Lassner & Uhlmann [20], Hofmann [12] and Schmudgen

[25]. These criteria demand that X be (essentially) very "close" to 0, since Xx

must contain a large number of sequences which diverge to infinity very
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rapidly. To be able to apply the techniques of the above authors, we notice
that since K($)*=K(xf9 the normality of K(X) in (T(E, X), t(lx)) is equivalent
to the normality of K($} (Peressini [21] Proposition 1-5, Corollary 1-6).

As in Lassner & Uhlmann [20], Hofmann [12], if g=^a(i)*a(i)^K(<fi)9

for any r, 77^0 define the number

#(*) = [P?"}[ ^ a(i)*®a(i)n]]lf2 . (4-6)
,'<«,

Clearly the components L"(g) depend on the representation of g, but this turns
out to be unimportant. The fundamental properties of the components L"(g)
are as follows:

k(g) , (4-7)

-2 ± Lr\g)Ln-\g) , (4-8)

and Lffa+g^LXgJ for all r, /zO, g, glf g2e= £-(*).
We now introduce various types of sequences. If aeo>, define the infinite

symmetric matrices H(a)=\\H(a)ij\\i>J-^Q
 and ^(«) = IM(«)ivlli.yaj bY setting

H(d)ij -

an

an 1 4=7, i+j = 2n (4-9)

0 otherwise,
and

A(a)u= l a t f d t j . (4-10)

Definition 4-13. If it ̂  CD, we say that a^o> is o/type (p; u) if

A(ii)x (4-11)

for all x^<f>R (real-valued sequences in 0). Clearly, if a is of type (p; u), then
If a Is of type (p; d), we say that a is of type jp.

A simple generalization of the results of Lassner & Uhlmann [20] proves
that sequences of type (/?; u) exist for any z/ecy. However, such sequences
tend to be highly divergent. For example, a simple manipulation of the tech-
niques of Hofmann [15] yields the following result.

Proposition 4-14. If (/(»)) is a sequence of positive Integers such that
and f(n+l)^2f(ri)+n+2 for 77^0, then (2/("}) is a sequence of type p.

Thus setting /(w) =3" or f(n)=2n+2—n—3 gives us sequences of type p, but
we do not know of any smaller ones. The practical use of sequences of these
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types lies in the following result.

Proposition 4-15. If u e o> , a is of type (p ; u), g e K($) and r ̂  0, then

The following fundamental result, leading to criteria for normality of the
cone in T(E, X), uses the techniques of Schmiidgen [25].

Theorem 4-16. If, for any u^Xx we can find ae<»+ and v^Xx such that

for g^K(<t>) and r ^0, then K(X) is t(Xx)-normal.

Proof. For u^Xx find aeo>+ and v^Xx as above, and let K=|M| +
\v\ eAx. For any wEE^x and s^Q we define Uw>s = {x^T(E, X): pWtS(x)^l}
and we let [Uw>s]=(UWiS+K(<f>))n(UWtS-K(<j>)). If x^[Uv>r] we can write

x=yi+gi=y2-g2 for yl9 y2<= Uv,r and gl9 g2e AT(0). Thus pUtr(gi)^pv,r(giJrg2)

^Pv,r(8i+82)=Pv,r(yi-y2)^2, and hence pu.r(x)^P
2^3. Thus [UVtr]^3UUtr9 and so K($) is ̂ x)-normal.

We now consider some conditions on the sequence space X which guarantee
that the conditions of Theorem 4s 16 are satisfied.

Definition 4- 17* (a) X is said to be o/type (Nl) if, for any u^Xx there
exists v^X* such that (v2n) is of type (p; u);

(b) X is said to be 0/type (N2) if, for any u^X* we can findv^k(X)r such
that \vn\^\un\ for all w^O, and also find w^Xx and a of type p such that

|H>2» I ̂ an | u2n 1 for all n^O.

Theorem 4-18. If X is of type (Nl) or (N2), then K(X) is t(Xx)-normal.

Proof. Suppose that X is of type (Nl). For u^X*, choose w^x such

that \um+a\ ^ |u'J I M ^ I for m, n^Q. Choose z^Xx and fe/2 with | W M | ^
|zj |f t t | for w^O and ||£||2 = 1. Find v<=Xx such that (v2n) is of type (p\ z).

For any g^K($) and r ^>0 we have

|vrJL?(g)]2^ 23 \zn\*L*r(g?2

and so the result follows.
Suppose now that X is of type (N2). For u^Xx, choose z^k(X)' such that
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|2fJ^ |wJ for w^O. Pick w(=Z* and fe/i such that |z2J^|<5j \w2n\ for
«^0 and | |f ||=1. Pick W^k(X)' such that | Wn\ ^ | wj for n^Q, and finally
choose -ye /I x and a of type p such that \v2tt\ ^an\ W2n\ for ft^O. For any
g ^K(<f>) and r ^0 we have

2 kJ ±L'(g)Lrk(g)£ 2 2 1*2*
?i^o k=o «^o &=o

^[S |z2J
1/2^fe)]2^ S k2J£»fe)2^ S I ^a, I life)2.

»^0 «SO "^0

Since P^e^(/l)', the Cauchy-Schwarz inequality shows that the numbers
| W2n\

l/2Lr(g) and \Wn\p^(gn) satisfy the same inequalities as do Lr
n(g) and

P(gn) in (4-7), (4-8). Thus an adjusted Proposition 4-15 yields that

implying the result.

Finally, we notice that the criterion for normality given by Hofmann [12]
also applies.

Definition 4-19. /I is of type (N3) if for any u^Zx we can find

such that:

(a) \vn\^\un\
(6) ^^-
(c) v2n+2^[8nv2n]

2

Theorem 4-20. If * w of type (N3), then K(X) is t(^)-normal.

We notice that the other condition found in Hofmann [12] has been sub-
sumed in the fact that (^, r(/lx)) is nuclear.

The conditions (Nl), (N2) and (N3) are all fairly similar, but do seem to
be different. It should be noted that nontrivial regular tensor algebras with
normal cone do exist. For example, if ^ is the countably echelon space
defined by the family of steps A = {u(k): k^N}, where u(k)n=2kn, then & is of
type /?, of type (Nj) for y'=l, 2, 3, and (/t, r(^x)) is a Frechet convolution algebra.
Thus (T(E, ^), f(^x)) is a Frechet regular tensor algebra with normal cone.
Similarly, we can find other such spaces X by taking larger steps, so there
certainly exist uncountably many regular tensor algebras with normal cones.

§ 5e Open Questions

An analysis could be made of the symmetric regular tensor algebra TS(E, ^),



998 DANIEL A. DUBIN AND MARK A. HENNINGS

the quotient of T(E9 X) by the kernel of the symmetrisation operator, parti-
cularly with regard to the moment and integral representation problems.

One the one hand, if x is a representation of T(E, <f>) arising from a state,
then TC(X) is not generally essentially self-adjoint for symmetric x. On the
other hand5 if T(E9 ^) is a locally multiplicatively convex regular tensor algebra,
then n(x) is bounded, and hence essentially self-adjoint. It might turn out
that there is a class of type h spaces ^ such that representations are always
standard; such a class would be interesting for applications.

Finally, we mention the perennial problem for applications of tensor
algebras to quantum field theory—can we use the particular properties of
T(E, X) to find a partical extension theorem for positive functionals? In
particular, can we prove the existence of Wightman states of T(S(M\ fyl
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