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On the Weak Admissibility of Singular
Perturbations in Cauchy Problems

By

Ryuichi ASKING*

1. Introduction

In [3], we have studied conditions on operators for the convergence of
solutions of singulary perturbed non-characteristic Cauchy problems. The
convergence of solutions depends on the Cauchy data. In this paper, we shall
mainly study necessary and sufficient conditions on the Cauchy data for the
convergence of solutions of a given one-parameter family of singulary per-
turbed Cauchy problems.

Let P^D) and P2(D) be linear differential operators with constant coef-
ficients. Let the order of Pl be m and that of P2 be m'. Assume that m>m'.
For x=(xl9 ••- , xn) in Rn, put x'=(x2, ••• , xn). Let us consider the following
one-parameter family of Cauchy problems:

(i-i) | Vx " "_" ", ^~°il
 in *";

where e is a small positive parameter. In [2], we have studied that if the so-
lutions wg of (1.1) converge in a suitable topology, then the limit satisfies the
following reduced problem:

{ P2(D)u = 0, in Rni
(J.2) | ̂ | ^^ .^l _ m,

Let the symbols of P^D) and P2(D) be
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Assume that pliQ is a non-zero constant and ord pltj(^
f)^j9 j=l9 -

e
9m and that

p2tQ is a non-zero constant and ordp2tj(£ ')^j,j=I, • • • , m'. Such an operator
satisfying the above conditions is said to be kowalewskian. Denote the chara-
cteristic roots ofem'm/-P1(£)+P2(f)=0 with respect to ^ by ry(e, £'),j=l, — ,

m, those of ^(0=0 by u/f), j=!9—,m, and those of P2(f)=0 by <7/£')>
7 = 1, — ,/n'.

Assumption 1.1. There exists a point <fo in Rn~l such that for any 7, &,

Remark. If Assumption 1.1 is satisfied, then there exists an open ball
B0=B(rQ; <fo) of radius r0 with the centre £{ such that all 0/f) are distinct on
the closure of BQ.

Condition 1.2. (m—m'=2 and /J2,o/A.o<0) or (^~~ JH' = 1 and p2,Q/Pi,o is
real).

Remark. In [3], we have studied that the characteristic roots ry(e, <f ') are
classified into two classes as follows. One consists of all Tj(e, £') which con-
verge uniformly on every compact subset of /ZjSr1 to one of Oj(£')9j=l9 °°°9 m'
when 5 | 0 and the other consists of all ry(e, <?') which diverge for every fixed
f ' when ^ | 0. Condition 1.2 is equivalent to the condition that the leading
terms with respect to e of all the diverging characteristic roots are real.

Denote 0'=(#19 -, #„/), ̂ -C^,^, .-, 0J, and <P = (fl>/, <P7/). Let the
Cauchy problems (1.1) be given and the Cauchy data space JL consisting
of <D be so chosen that for every sufficiently small e the Cauchy problem
(1.1) with Jl is uniquely solvable. If the solutions we of the Cauchy prob-
lems (1.1) for 0 in JL converge in a suitable topology when s | 0, then we
may say that the one-parameter family (1.1) is a singular perturbation. This
is the reason why we introduced the notion of "admissibility" of singular
perturbations in Cauchy problems in [3]. Let the Cauchy problem (1.2) be
given and the Cauchy data space JL' consisting of 0' be so chosen that the
Cauchy problem (1.2) with JL1 is uniquely solvable. We choose the extra
Cauchy data space JL" consisting of ®" so that for every sufficiently small e the
Cauchy problem (1.1) with JL=JL'xJLf/ can be solved uniquely. If for every
$' in JL' there exists <Z>" in JK' such that the solutions wg of the Cauchy pro-
blems (1.1) for <Z>=((Z> / , 0") converge when e J, 0, then the solution of the
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Cauchy problem (1.2) for Q>' in Jl' can be represented as the limit of the solu-
tions wg of the Cauchy problems (1.1) for a datum 0 in Jl. This is the reason
why we shall introduce the notion of "weak admissibility" of singular perturba-
tions in Cauchy problems.

Let U' be a domain of R1^1 and d be a positive number.

Definition 1.3. The uniquely solvable Cauchy problems (1.1) in (—d, d) x Ur

with the Cauchy data space JL are said to be C-admissible in (—S, d) x U' as a
singular perturbation with respect to a given uniquely solvable Cauchy problem
(1.2) if for every Cauchy datum 0 in Jl, the solutions of (1.1) converge to that
of (1.2) in C((-d, d)xU') and said to be C-weakly admissible in (—fl, d)xU'
if for every Cauchy datum 0' in JL' there exists a datum <Z>" in c^?" such that
the solutions of (1.1) converge to that of (1.2) in C((—d, d) x U').

Remark. Relacing C((—d, d) x U') by L2((-d, d) x U'\ we can also define
the L2-admissibility and the L2-weak admissibility.

Denote by O(Cn~l) the space of entire functions defined in Cn~l and by
A(Rn~l) the space of real analytic functions defined in Rn~l. When JL =

O(Cn~l)m, the Cauchy-Kowalewski theorem assures the analytic unique solva-
bility in Rn of (1.1) for sufficiently small e. But even when Jl=A(RH'l)m

9 we
can not prove that there exists a region independent of e such that the analytic
solutions of (1.1) exist in the region. Hence we must choose Jl so as to be
included in Q(Cn~l)m. On the other hand, we shall use the Fourier transfor-
mation. Therefore, we shall only study the C-weak admissibility in Rn when
cJ[=F"1(Co>(f?0))

w, where F"1 denotes the inverse Fourier transformation and BQ

is the open ball in Remark to Assumption 1.1.
The main result in [3] is that Condition 1.2 is necessary and sufficient for

the C-admissibility of the Cauchy problems (1.1) in R* with ?~\Ct(B$T. The
main result in this paper is the following:

Main Theorem. Assume that Condition 1.2 is not satisfied. Let Assumption

1.1 be satisfied and B0 be the open ball in Remark to Assumption 1.1. Denote

nt'=m-m'. Let JL' = F-1(CJ(50))"' and JL" = ¥-l(C^(BQ)T" • Then the
Cauchy problems (1.1) in Rn with JL are C-weakly admissible in Rn if and only

if PI(£) is divided by P2(S) in the polynomial ring C[f]. In this case, the so In-
tions us(x; <Z>) o/(l.l) are identically equal to the solution u0(x; 0') of (1.2).

In this paper, we shall always assume that Condition 1.2 is not satisfied.
The proof of Main Theorem can be found in § 5.
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When the Cauchy data space Jk is {(0, e"90)}9 all the Cauchy problems
(1.1) are C-admissible. Our another purpose is to seek the Cauchy data spaces
<_J included in F"1(C^(B0))

m with which the Cauchy problems (1.1) are C-admis-
sible. The results are stated in Theorem A and B in § 4. Theorem A will be
used in the proof of Main Theorem.

In § 2, we shall list up notation and study algebraic lemmas. In § 3, we
shall study a necessary and sufficient condition on the Cauchy data for the
convergence of the solutions, but this condition depends on e. We shall
show that the convergence of the solutions implies that <Z>" is uniquely deter-
mined by 0'. In § 45 we shall remove the dependency on e from this condition
and distinguish the Cauchy data with which the solutions converge in the
following two special cases.

(1) Theorem A. The case when m' or m' — l characteristic roots of F2(f)=0
are equal to the characteristic roots of P1(f)=0 in B0.

(2) Theorem B. The case when m' = l or (m'=2 and w^

Roughly speaking, when P^g) is divided by P2(f) in the polynomial ring
], <Z>' can be free but otherwise 0' is restricted.

The same results as for Jl=F~1(Co(B0))
m remain true for JL=¥~\CQ(BQ))m

but fail for JL=F-\e'(B^T in general.

2, Preliminaries

In this section, we shall state algebraic lemmas which will be needed.
Similar calculation can be found in computation of the characters of the
classical groups. See Chapter VII, [4].

Notation 2.1. Let XJ9 j =!,•••, m be variables and S k ( X l 9 * " 9 X m ) 9

fc=l, ••• , m be the elementary symmetric polynomials of Xj y=l, • • - , m9 that is,
for k=ly •••, m

Put

S0(Xlt

and for k^—l or k

Denote
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Y m-l ... v m-l
•A I -A.m

for k=!9 •-, m and for functions Qj9j=l9 • --, m

...... f*-!0 #1

»-l . V w*""1 /A

and for fc=0, • • • , m— 1

Dm-l-k = D«-l-*(Jflf ..., jf^) -

Denote C =exp — — and r^C; m/ 1,j=m'+l, — , m. Denote by 0 the argu-
m— m

ment of — p2 Q/p1 0 satisfying 0^0<27r and put ®=e
m—m

Lemma 2.2. Assume that X^Xj l^i<j^m. Then, for j = l, • • - , m — 1

(2.1) D*'(X19 .-, X

and for k = l9 • • • , m

(2.2) A(^, -, JT»

Proof. Expand the Vandermonde determinant DQ(Xlf ••-, A^,) with

respect to the last column and divide it by the Vandermonde determinant

D0(X19 - . . , Xm^=JDP(Xlf -, JT..O. Then

(2.3) J90(JTlf -,

Since the Vandermonde determinants are represented as the difference pro-

ducts, we have
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(2.4) DJ,X19 -f Xm)/DQ(Xlf -.., JT..O - H7--11 (*«-*})

Comparing the coefficients of (2.3) and those of (2.4), we have (2.1).
Expand Dm(Xlt •••,Xm; $19 —9tm) with respect to the last column and

divide it by DQ(X19 • • • , Xm^). Then

(2.5) DM(X19 »., Xm; ^ ..-,

Thus (2.4) and (2.5) imply (2.2) when k=m. Since

(2.6) A(^i, -, Xm; ̂  ..-, ̂ )/A(^i, -,

we have (2.2) when fc=l, — , m— 1. Q.E.D.

Let m=m'+m", where l^m'fgm— 1. When m//^2, we put Yj=Xmr+J.
7=1, — , m^-1. When /n" = l, we put

lf — , Fw//_!) -0, when fc =f= 0 .

Then we have the following lemma.

Lemma 2.3. For k=l, • • - , m— 1,

(2.7) si(jfi, -f JT..J - sA(jrp -.., *„,, ?i, -, F^O
- SJlV1 ̂ -/(^ -. Jr.0-sxrlf -f 3V/J .

Proo/. When m7^!, (2.7) is trivial. We may assume that m"^2. We
can write

Here if A:— 7"^ —1 or fe— J^/w'+l in the suffixes, then we ignore all such terms.
Put 4_y+/ = j'f, /=!,—,/ Then

Since
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it implies that (2.7). Q.E.D.

Lemma 2.4. For fc=0, • • • , m— m' — 1 and l=m'-\-l, • • • , m,

/O Q\ T\(m-m'-l)-k(-f , ... _/ \i^.o; I/' V^wi'-n, "% r»*-u

(2.9)

In particular, (2.8) =1=0 and (2.9)=t=0.

Proof. Put

Oj = M,'+1', -, r;_!0, O^y^in-ifi'-l and

Since

we have

which equals the right-hand side of (2.8).

Multiply the rows (r»'+i^ ••• , r'i-i', f'l+J, •••, T«;) of the left-hand side of
(2.9) by f("-'w,7=l, • • • , m-m'-l andj^k. Then

C(m-0((-»-,»'-D(»,-».')/2-*).£,(»-»'-i}-*(r;/+1; ...f r/_ l f

Since

and

(/-m'-l)(m--/)-(m-/)(m-m / -l)---(m-/)2 = (m-/)2 (mod 2),
it implies that (2.9). Q.E.D..
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Under Assumption L19 we have studied the following asymptotic properties
of the characteristic roots in [2]. Denote the characteristic roots of em~m'°
^1(0+^2(0=0 with respect to f x by ry(e, £'), j=l, — , m and those of P2(O=0

by */£'), J^l,-,™'-

Leinma 2.5. Le£ Assumption 1.1 fee satisfied and BQ be the open ball in
Remark to Assumption 1.1. J/V/ie suffixes {j} of the characteristic roots Tj(e, £ '),
j— 13 ..., m are properly chosen, then there exists a positive number SQ such that
£-Tj(£,S')9 j=l9 •", m are analytic functions of (s, <?') in {M<5o}
Tj(e, £')9j=l9 ••• , m have the following representations:
For j = 1, ••• , m'

(2.10) rj(e, £') = a/

v^ere ^! = - and
OCi

(2.11) Jyi2 - ~

fbrj = m'+l, • • - , /«

(2.12) r;.(^ f)

Remark. If ^>2(f
 r) = 0 in ^0? then P&fi'), £') = Q in 50. This implies

3. The Condition for the Convergence of the Solutions

In this section, we shall study a necessary and sufficient condition for the
convergence when Condition 1.2 is not satisfied. The main result in this sec-
tion is the following:

Proposition* Assume that Condition 1.2 is not satisfied. Let Assumption
1. 1 be satisfied and BQ be the open ball in Remark to Assumption 1.1. Let the
Cauchy data (Z>=(0X, — , 0J of (1.1) belong to F'l(Co(B0)T '. The solutions
^ (x; 0) of (1. 1) converge in C(Rn) if and only if the Cauchy data 0 satisfy

(3.1) SZloC-l)*-^, -, ^/).^/+y.A = 0,7 - 1, .-, m-/n' .

Here Sk(rlf • • • , rw/), A;=0, • • • , w' are ?/?e elementary symmetric polynomials of
the characteristic roots Tj=Tj(e9 E'),j=l, • •• , m' mentioned in Notation 2.1. For
£/ze Cauchy data satisfying (3.1), £/ze partial Fourier transforms of solutions
us(x; 0) of (I. I) are
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(3.2)

Remark. Denote 0=(4>lf • •• , ̂ ^). Let £ belong to C°°(50). If 6 satisfies
(3.1), then ft-0 also satisfies (3.1). Hence if there exists a Cauchy datum 00

such that the solutions us(x; 0Q) converge, then for all the Cauchy data 0 satis-
fying 0=fi'0Q, where ft belongs to C°°(BQ), the solutions ws(#; 0) converge.

In order to prove Proposition, we need the following lemma. Denote L=
{/; Im0r/=£0, /— m'+l, •••,/??}, where O and r/, /=m'+l, • • • , m are mention-
ed in Notation 2.1.

Lemma 3.1. Let the same assumptions as in Proposition be satisfied. The
solutions tfs(x; 0) of (1.1) converge in C(Rn) if and only if the Cauchy data 0
satisfy

(3.3) e'-i.-Zft (-ly-S/Ti, •", r,.!, rm, -, rj.^_y

analytic functions of s for all I in L.

Proof. The partial Fourier transform with respect to x' of (1.1) is

(3.4)

For fixed <?', (3.4) is a one-parameter family of Cauchy problems of ordinary
differential equations. For ry(e, £ ' ) 9 j = l , • • - , m satifying Lemma 2.5 and for
0 in F~l(C%(Boy)m, Put

(3.5) C,(*, f'; fl>) - A(^i, -, rw; ̂ , -, ^J/Afri, "% O 5

fe=l, - - ^m. Since (3.5) are analytic in e for sufficiently small e, (3.5) have
power series representations as

Ch(e, S'i 0) = S7,0 ckj(e'; (Z))-^, fc = 1, .-, m .

The solution vs(xl9 £') of (3.4) is represented as

(3.6) v.(xlf f) - SLi Q(e, f'; 0)-exp frA(e, £') ^ .

Denote M8W=F"1(v«(^i*f'))• % the same argument as in [3], we can prove
that if there exist integers / in L and j with 7^0 such that cl}j(£

f; 0)^0, then
uz(x) can not converge in C(Rn). When Condition 1.2 is not satisfied, L is not
void. Therefore it is necessary for the convergence of uz(x) in C(Rn) that
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cfj (£'; 0) = 0 for all / in L and all 7^0, that is, Ct(e, f; 0) = 0 for all / in L

and sufficiently small £, which implies the convergence of solutions. Since

in BQ for sufficiently small e, we can apply Lemma 2.2 to C/(e, £ '; 0) for 3fy =

*y (*»£')» 7= 1> ~',m- Then

C -

'
lB V^""1 f 1V. 9f-r .00 T- 7- ...
'2j/-0 V, — Ay '^Arl' ' r/-l' T/+l' '

The denominators are equal to

and analytic in 5 and not zero in J50 for sufficiently small e. This implies that

C/(e, f '; (2>) = 0 if and only if the numerators

are zero as analytic functions of e. Thus we come to the conclusion. Q.E.D.

Proof of Proposition. Fix / in L and apply Lemma 2.3 to (3.3) for

Then the convergence of solutions is equivalent to

(3.7) ^-SJl-o1 (~iy^y(^ -, rf.lf r/+1, -, rw)-

= ^-^ay.-o1 (-iy-(s?.-o« -1 ̂ --^ -,
«^(rm/+1, —, r/.p rl+1, •-, rj-^.y) = 0 .

Substitute (2.10) and (2.13) for rj(e,S'),j=lf —,m. Then we can write for

7=1, •••, in— I and fc=0, ••- , m—m' — l

(3.8) Sy_,(rlf ..-, r^) = Sr=0 S}-*.,-^')-^"1"^ .

(3.9) e* • Sk(rm,+v • • • , r/ml, r/+1, — , rw)

- 54(er,/+lf -f er^, erm, .-, erj - Sf-o Sl..'(f ')•«' -

Here (3.8) and (3.9) are analytic and converge absolutely for sufficiently small
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e in B0 and

(3.10) S}-*

(3.ii) sue') - e
Put for K=Q, 1, ...

fl 19\ TT _ Npw-1 / iy <s
^J.iZJ 7 l f i e — 2Lj/~0 (,— I/ '2

T _ ^r\m— 1 / i\; **C
*2,K — 2j/ = 0 V — A/'

and

7^ _ "^riw-l/ iy **r\m-m'-l(*sr*\°o ol -iCw-m'^ ^V*00 C2 . *»-l-*+h .rt^ 3 , K — 2jy=o I — ij '2j*=o v2jt=K+i^/-*,« '£ jH^Li^oo^^'-e j '9m_y.

Since T2>K and r3>K converge absolutely for sufficiently small 5, we can change
the order of summations. Then (3.7) is rewritten as Ti>0+r2>0+r3j0=0. The
least order with respect to e of Tli0 is ra', that of T2t0 is ra'+l, and that of
r3>0 is m. The coefficient of sm' in T1>0 is

(3.13) sy^c-iy-sj.c^^^.o-isu.'-i.o-^.y
= 'S'm-m'-i.o'Sy'^w-w'-i ("ly'^y-ciB-w'-iJ.o'^m-y

and this must be zero. Lemma 2.2 implies that

SL-*'-i.o = 0w-"''-1-5m_M/_1(r^+1> •», T{_lf r{+1, -, r'm)

Lemma 2.4 implies that

'-V-' - 1. -, r

Hence SL_w'_i.o^O. Dividing (3.13) by 5^,_M'_i.0, we have

(3.14) 27r,i-.'_i(-iy.5}_(1._1./_1).o.^.y

= (-l)"--'-1.S7^o(-iy.S}.o'#.'+i-y = 0 .

When (3.14) is satisfied, we have

T _ •sr^m—lf \\j .•*r\m—m'—2( cl c<2 -ra-l-i £J J ,0 — 2j;-oV. — 1) '2j*-0 l.'Jy-*,o''Jft.O'« •'Pm-

and

r2>0 = sy.-oX-iy-^-c-.'-D.o.Gr.! si../...!-.-'̂
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,s}_M.csr-i

Thus we can diminish by one the ranges of summations with respect to k in

rif0 and in T2tQ. Repeat this process m—m' — l times until the ranges of sum-

mations with respect to k are diminished to {0}. Then we have for j=l, • • • ,

m—m'

(3.15) 2?:o(-l)*-Si.o-^+y.*=0

and TltQ= T2tQ=Q. Hence

-*!, 0~t~-*2 ,0~l~-*3,0 == -*3,0 == ^l,l~f~-*2,l ' -*3,1 = ™ •

Repeating the above argument for «=1, 2, ••• , we have for /c=Q, 1, •••

(3.16) SrloC-iy-Si..-*^.* =0, j = l, -,/ii-m',

which are equivalent to (3.3). Multiply (3.16) by eK(m~m^ and sum up from

/c=Q to K = 00. Even if we change / in L, we have the same conclusion.

Hence (3.16) are equivalent to (3.1) as far as (3.8) converge absolutely. Since

(3.16) are independent of / in L5 it implies that (3.3) remain true for all l=m'+

1, — , m and Ct(e, <?' ; <Z>) = 0 for all I=m'+l, — , m. Then (3.6) implies (3.2).

Thus we come to the conclusion. Q.E.D.

Put

&.*(£') = -P2.k(niP2.*, k = 0, .-, m' ,
p2tk =Q9 for k^—l or k^m'+l .

Here p2,k(£f)> k=®, **•, m' are polynomials of £', because /?2,o is a non-zero
constant. Denote

= (-A.y-*(f '); J i 1, -% w-wi', Ar->l, -, m-m') ,

') = (P2.»'+y-*(f ); j I 1, -, ^-^'^ *-*!> -, W) .

Here 2(f ') is a lower triangular matrix all whose diagonal components are

1. Hence QT\E') is a matrix with polynomial components. Denote <P' =

(*i* o e ' ^ #«') and #" =(<£„'+!, 0 0 ° 5 ^J-

Corollary 3020 Le? ?Ae ^ame assumptions as in Proposition be satisfied.

Then the convergence of solutions implies that



SINGULAR PERTURBATIONS 959

(3.17) Sf.loft.*(f')•&,'+>-*(£') = 0 , j=l, -, m-m' .

Then (3.17) are equivalent to

(3.18) 'A// = e-1(O-W)-^/-

The inverse Fourier transforms of (3.18) are

(3.19) <0" = Q-l(D'

Proof. Since

it implies that

Hence (3.10) and (3.15) imply that for j=l, • •• , in—m1

(3-20) SJTlo A.*'$*'+j-k = 0 ,

which is equivalent to (3.17). By (3.20), we have

\ru-i A mf ~ A • /—S&=o p2,km$m'+j-k = S*-y p2,km(f>)ii'+j-k -> j — 1* ""> m—m »

which are equivalent to (3.18). Q.E.D,

Remark. In [3], we used the function rf(<?'; 0) to decide the divergence of

solutions. Corollary 3.2 implies that d(£'; <Z>) = 0 is equivalent to SJ'-o/^.fcCf')
•*A«'+i-*(£') = 0. We had better use (3.18) instead of </(£'; <Z>) = 0 because (3.18)
are more accurate and algebraic relations between the coefficients of P2 and the
Cauchy data.

Denote

for /=!, ••- , 77t;

6,- =(6M-; fci 1, —,w')
= ((_!)*-!.S^, ..., ff^lf f?m, ..., ^); /C

Here we define S0=l even when m' = l. Denote
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where sif2 = —P1(ah £')'^i P2(
Gi> £ T1* ' = 1, •", W. Then we have the following

corollary.

Corollary 3.3. Let the same assumptions as in Proposition be satisfied.

Then det B=J]Ll^i<j^m'(oj— o^^Q in B0. The convergence of the solutions im-

plies that ABs=Q9 which are equivalent to

(3.21) S7li J,-.2 2?:o1(-l)*-SfcK -, <7,_ l f a,.+lf ..-, *„,)

•cL'-H-/-* = 0 , 7 = 1, — , m-m' .

Proof. Since for &=1, • • • , m' — 1 and /=!, • • • , /??' — 1,

and

it implies that for z = l, • • • , m'~ 1

*•— 6»/ =(^— ff»,')

X((-l)k-2-Sk.2(alf -, fff._lf a /+l, .- (7 ,„,_!); fc | 1, -, m-m') ,

where 5_1==0. Then

det (6lf -, M - det (b^-b^, -, b^^-bj, b,}/)
= (-l)" /+1-nr:iV"M-det(6M;7il,--sm'-l,fc^

Hence det J? is equal to the difference product of oj}j=l, • • - , 777'. Since a;-

1 ̂ j<k^mr in £0, it implies that det B^=Q in ^0. Since So,i=0 and

(3.16) for K = l implies that

X0w / /+ J-_* = 0 , 7 = 1. •"» m—m' ,

which are equivalent to ABs=0. Q.E.D.

In the rest of this section, we shall study conditions on the Cauchy data

in special forms for the convergence of the solutions.
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Corollary 3.4. Let the same assumptions as in Proposition be satisfied.

Let &'=($!, — , #fB/)=0. The solutions uj(x\ 0)of(l.\) converge in C(Rn) for

this Cauchy data if and only if &"==($ m
f+i> "*, 0i»)=0.

Proof. Assume that the solutions converge. Substitute <Z>'=0 in (3.19).
Then ®"= 0. The converse is trivial. Q.E.D.

Corollary 3.5. Let the same assumptions as in Proposition be satisfied.

Assume that m—m'^m' and p2 |W'^0. Let ®"=(<l>m'+i, • • • , <t>m)=®. The solu-
tions uj(x\ 0) of (I. I) converge in C(Rn) for this Cauchy data if and only if ®' =

(0i, -,0,0=0.

Proof. Assume tha tthe solutions converge. Substitute $/=0, j=m'+l,

• • - , w in (3. 17). Then

S?-y/>2.*'<£w'+>-* = 0, J = 1* —,m—m' *

j=m'^m—m', we have p2t,n''<f>m' = Q. Since /?2>IJI/ is a polynomial with
A A

0 and 0»i' is a continuous function, it implies that 0,H/ = 0. Hence

When j—m' — 1, we have p2,m'm<$>»'-i = Q' Since /72>w/^0, it implies that 0,,/_i
= 0. Repeating this process m' times, we come to the conclusion. The con-
verse is trivial. Q.E.D.

Corollary 3.6. Let the same assumptions as in Proposition be satisfied. Let

(Case 1). The case when l^l^m'. Assume that there exists a positive integer
jf with ;?z' + l— /^y^min {m—ltm'} such that /?2;/^0. Then the solutions
iie(x; 0) of (I. I) converge in C(Rn)for this Cauchy data if and only if<f>l=0.

(Case 2). The case when m'-\-l^l^m. The solutions we(.v; <Z>) of (1.1) cow-
verge in C(Rn)for this Cauchy data if and only // 07=0.

Proo/. Assume that the solutions converge. Let 1^/^m'. Substitute

0y=0,7=l, • • - , / — 1,7—1, • • - , / « in (3.17). Then p2,m'+j-r$i = 0,j=l, - - ^ / w —
w'. We use the case when /=/ +l—m ', that is, /?2 > y / « 0 / = 0. Since /72t/^0, it
implies that 0/^Q. When 7??'+l^/^7?7, Corollary 3.4 implies the conclusion.
The converse is trivial. Q.E.D.

4. The Admissibility of the Caiichy Data

In this section, we shall remove the dependency on e from (3.1) and
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classify the Cauchy data space F'^C^C^o))^ into two classes in the two special
cases mentioned in §1. One class is the set of all the Cauchy data 0 with
which the solutions u^x; <Z>) of (1.1) converge in C(Rn) and the other is the
complement.

Denote the characteristic roots of sm"m^P1(f)+P2(()=0 with respect to (1

by T j ( e 9 £ ' ) 9 j = l , —,m, those of P1(S)=0 by t>j(£'),j=I, —,m, and those of
A(0=0 by <jy(£ '), 7=1, • • - , m'. Then we have the following lemma.

Lemma 4.1. Let B be a fixed arbitrary open set in Rn~l. For every inte-
ger i with I r f j f^gm' , there eixsts an integer j with l^j^m such that crz- = u;- in
B if and only if Pj(f) is divided by P2(£} in the polynomial ring C[S].

Proof. We may assume that Oj = uj9j=l9 -•, m' in B. Applying Lemma
2.3 for Xi=ohi==l, • • - , m' and Y~oj+m,, j=l, ••

Since

SiK. - s ° . ̂ /^ w«'+i- •". "J = (-l)*'/?if*(f ')/A.o> *•=!' ""> w

and

Si^i* — , *»') = (-\)k'P2,k(£')IP2& k=l,—,m'

are polynomials of f ', we have inductively that Sk(um/+j9 • • - , u;B), fc=l, •••, w/7

have polynomial representations in B. Hence

has a polynomial representation in MxB. Thus there exists a polynomial
P3(O such that P1(S)/P2(f)=P3(f) in J?x^5 which remains true in Rn. The
converse is trivial. Q.E.D

Theorem A. Assume that Condition 1.2 is not satisfied. Let Assumption
1. 1 be satisfied and B0 be the open ball in Remark to Assumption 1.1. Let the

Cauchy data 0=(^lt •-, 0J 0/(l.l) belong to F'^C^B^ .
(Case 1). The case when for every integer i with l^i^m' there exists an inte-

ger j with l^j^m such that Oi = Uj in B09 that is, when Px(f) is divided by P2(£)
in the polynomial ring C[f]. The solutions wg(;c; 0) converge in C(Rn) if and
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only if the Cauchy data 0 satisfy (3.19). In this case, the solutions uz(x; 0) are
identically equal to the solution UQ(X; 0') of (2.1).
(Case 2). The case when a^o^ for all j=\, • •- , m and for every integer i with
2^i^mr there exists an integer j with l^j^m such that Oi = 0j in BQ. The

solutions uz(x\ 0) converge in C(Rn) if and only if the Cauchy data 0 satisfy

(4.1) ^f^(-l)k'Sk(a2f .... cv) •&'+,-* = 0 , 7=0, -, m-m'.

Here if w' = l, then S0 = l and (4.1) is equivalent to 0~ (0, •••, 0). In this case,
the solutions u^(x; 0) depend on e in general.

In order to prove Theorem A, we need the following lemma.

Lemma 4.2. Assume that the characteristic roots satisfy r,-(e, £ ')=ay(£ '),
7=1, •••, m' in BQ. Then for the Cauchy data satisfying (3.17),

Proof. Put for /=!, • • • , m' and for k = l, -• , m

d,.k = Wl, -, ^i-.*-1, ̂ *. ̂ i*'1, -. r.*-1) .

Since for /=!, • • • , wzr and 7=!, • • - , m—iri

Srlo^T,^^-! = O^-PJtOi, f ') - 0 ,

it implies that

2?-o A.*' *.«'+;-* = '(0, -, 0, ^V^-P^r^, e7), -, rJ-^Pfc*, f )) •

Then

AOi, ••% rm; &, — , 4i) = det '(</M; A:->1, — , m)

= det (rf/§1, •-, di,m-l,p2,Q~l'l>lf=QP2,k-di,,)l-k)

= det(rf / t l, -•, dltm',p2>Q-1-mfLQ

where we use the fact that P2(Tk, £')3rQ in BQ, k=m' + l, ~-,m for sufficiently
small e, because ry(e, f '), 7 = !, • • • ,«? are distinct in B0 for sufficiently small s.
By the same argument,
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Since />0(
T«'+i> '"> ̂ HIK-m'-n PJfrk* <? O)^0 in ^o for sufficiently small e except

e=0, we come to the concuusion. Q.E.D.

Proof of Theorem A.
(Case 1). By Remark to Lemma 2.5, we have

(4.2) rfa O = */£') , ./ = 1, .-, m' in B0 -

Substitute ay for TJ, j=l, • ••9m
f in (3.1) and (3.2). Then (3.1) are equivalent

to (3.19) when (4.2) are satisfied. Lemma 4.2 and (3.2) imply that us(x; 0)==

u0(x; 0').
(Case 2). By Remark to Lemma 2.5, we have s1>2^0 and

(4.3) r/6, £') = */£'), j = 2,-9m
f.

Substitute GJ for r; j=29 ••• ,»? ' in (3.1) and (3.2). Since

it implies that (3.1) are equivalent to

(4.4) sr:0(-i)^K -, om,)«4>m

7=1, — , w-w'. Substitute (2.10) for rl in (4.4). Then the coefficients of
in (4.4) are

(4.5) Srlo'C-l)*^^, -., awO-(^+y-*-^-^+y-*-i)

and those of ew"IB/ are

which must be zero. Since s1>2^Q and slt2 is an analytic function in ^0, it
implies that

(4.6) S^oX-l)*'^, ..-, a^-^+y-*-! ^ 0

in {£ 'e^0; slt2(( ')=$=$} and therefore in j50. By substituting (4.6) in (4.5), we
have (4.1), which are equivalent to (3.1). Obviously (3.2) depends on s in
general. Thus we come to the conclusion. Q.E.D,

Remark. When Px(c) is divided by P2(f) in C[f], there exists a datum <D"
for an arbitrary datum 0 ' such that the solutions converge. In fact, we may
take <f>j=Dl

j~1 UQ(X; 0f)^j=m' + l) • • - , m, which belong to F'^Cr^)) and are
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independent of e. Corollary 3.4 implies the uniqueness of such data <b" as the
solutions converge and the Cauchy-Kowalewski theorem implies the uniqueness
of the solutions for fixed e. Hence we can prove (Case 1) without Lemma 4.2.
Our aim to use Lemma 4.2 is to prove (Case 1) only with algebraic calcula-
tions.

Theorem B. Let m' = l or (m'=2 and m^4). Assume that Condition
1.2 is not satisfied. Let Assumption 1. 1 be satisfied and B$ be the open ball in
Remark to Assumption 1.1. Let the Cauchy data 0=(<f>l, • •• , <f>m) of (1. 1) be-

long to F-^crw.
(Case 1). The case when m' = l.
(1-a) If there exists an integer j with l^j^m such that Oi = i>j in BQ, then the

solutions us(x'9 0) converge in C(Rn) if and only if the Cauchy data 0 satisfy

(4.7) £.(0 = ̂ (e'HiCnj - 2, ..-, m .

(1-b) If o^o J9 j=l, • • • , m in BQ. Then the solutions uz(x\0) converge in

C(Rn) if and only i/<Z>=(0, — , 0).
(Case 2). The case when m'=2 and m^4.
(2-a) If there exist integers j\ and j2 with l^j\9 j2^m such that a^Uj^ and
o2 = uJ2 in B0 then the solutions us(x; 0) converge in C(Rn) if and only if the
Cauchy data 0 satisfy (3.19) for m'=2.

(2-b) If there exists an integer j with l^j^rn such that GI = UJ and a2^uk,for
all k=l, •-, m in BQ, then the solutions u^(x\ 0) converge in C(Rn) if and only if

the Cauchy data 0 satisfy (4.7).
(2-c) Ifa^Uj, /=!, 2 andj=\, - " f m in BQ. Then the solutions u^(x; 0) con-

verge in C(Rn) if and only ifQ=(Q, -",0).

Except (2-b), the solutions u^(x\ 0) are identically equal to the solution
uQ(x;0')of(L2\

In order to prove Theorem B, we need the following lemma.

Lemma 4.3. Let the same assumptions as in Proposition be satisfied. Then
the following three conditions are equivalent.

(1) There exist an analytic function r(O in BQ and a C^(B ^-function /?(f)
with ^(f')^O such that the solutions of (I. I) converge for the Cauchy data sat-
isfying

(4-8) &(O
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This implies that &=£.
(2) There exists integers i with l^i^m' and] with l^j^m such that

(4.9) a,(O = »/O in V

Here uk, k=l, ••• , m are characteristic roots of Pi(S)=$ with respect to fx and
ak9 k=l, — , m' are those of P2(g)=Q.

(3) There exists an analytic function r(O in BQ such that for all the C%(BQ)-
functions P(£r), the solutions of (1.1) converge for the Cauchy data satisfying
(4.8).

Proof. We shall show that (1) -* (2) -» (3) -> (1).
First step: (l)-»(2). Substitute (4.8) in (3.17). Then

Since

it implies that if /0 (£{)=}= 0, then there exists a neighbourhood ^ of f { such that

IKl i (r (f ') — **(£ ')) = 0 in 5j . Hence there exists an integer / such that r (f ') =
af-(f ') in B^ The analyticity implies that r(£') = *••(£') in 50. We may assume
that /=!. We have for j=l9 ••- , w'—l,

(4.10) S/rp --, rwx)

Then (3.1) for 7=! implies that

^ SfcX-iy-S/r* -, ^)'(^4-i-;-rl.4,_/) = 0 .

Since

(4.11) implies that

-^^""•'^•Sr-o^-iy-SXr,, •-, rw/).c71"
/-1--'+0(52«-2«/) = 0 .

The least order of e is m~m' and the coefficient of £«-"»' is

-Ji^-^-syioX-iy-SyK -s ̂ )^/^"; ,
which must be zero. Since y0(£')iO and
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SyloX-iy-S/fo, -, cv)-*/-1-' - njU*i-ay) =*= 0 in £0 ,

the analyticity of jlf2 in J?0 implies that ,slj2(<? ') = 0 in £0. Then Pfa^ f ')=0 in
BQy which is equivalent to (4.9) for z = l.

Second step: (2)->(3). If (4.9) is satisfied for /=!, then we may assume

that T&, f ')==*i(O = r (£') in 50 and that <£=(&, -, &0 =&•(!, ̂  - ^m~l\
where ^ is an arbitrary C%(BQ)-function. Hence for 1=2, ••- , m

and

A(ri» e"' r»; ^p "*> 0J = ^rA(ri' • • • » T«) •

Thus

Mi(x; (Z>) = F-^Cf ')-exp fa^O xO s

which is the solution of (1.2). Since the solutions uz are independent of s,
the solutions uz converge.

Third step: (3)->(l). This is trivial. Q.E.D.

Proof of Theorem B. (Case 1). First we assume that the solutions uz con-
verge. In this case, (3.18) implies (4.7). When ^(f ) = 0, (4.7) implies that
<Z>=(0, ••- , 0) and the solutions i/e are identically zero. When ^(f )^0, Lemma
4.3 implies that there exists an integer j with l^j^m such that o^o^ in BQ.
Hence if there exist data 0 such that ^(f ')$0 and the solutions converge, then
it leads to (1-a). Otherwise it leads to (1-b). The converse can be proved
with the same argument as in Lemma 4.3.

(Case 2). The case (2-a) is the special case of (Case 1) in Theorem A.
The case (2-b) is that of (Case 2) in Theorem A, where we must exchange al

for o2. Therefore we may assume that ^1>2^0 and s2i2^Q in ^o- ?ut s=
*(si,2>s2,2) anc^ ^i=(^3+2-k'^J I 1,2, fc-»l,2). Assume that the solutions con-
verge. Then Corollary 3.3 implies that A1Bs=0. Since det J^^O and 5-^0 in
B09 it implies that det ̂ =0, that is,

(4.12) fc-h-fa.

By Corollary 3.2, we have

Then (4.12) and (4.13) implies that
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(4.14) P2,o'<t>22+P2,i*<i>n'><t>2+P2,2'<f>i2 = 0 -

Assume that 0-^0. Divide (4.14) by ^>l and put z=(j>2/(})1. Then

(4.15) P2.

Hence there exists an open ball B1 with centre f { included in B0 such that

4=0 in 1?! and 2 = 0^') or z = <j2(f') in ^i- We may assume that 2 =

that is, <j>2=Gia4>i in A- Since (3.17) are equivalent to

(4.16) 4>j+2-(

= 4>j+2-Gia<$>j+i-G2a(<t>j+i-Gi'4>j) = 0> 7 = 1, — , w z — 2,

it implies that

4>j+2—Gi°<f>j+i = 0 , 7 = 0* e o < > ™— 2 in £j .

Choose ft in CTC^) satisfying ft(fi)=t=0 and put /5=ft-^1 and r=^. Then
Remark to Proposition implies that the solutions converge for the Cauchy

datum 01 satisfying

By applying Lemma 4.3, we have (^(f) = ^(5, £') = () in J?0, which contradicts

that J1>2*0. Hence ^ = 0. Then (4.12) and (4.13) implies that 4 = <&» = 0.
Thus (4.16) implies that (Z>=(0, • • • , 0). Q.E.D.

50 The Weak Admissibility

In this section, we shall prove Main Theorem.

Proof of Main Theorem. Assume that for every 0' in <_A' there exists

®" in Jl" such that the solutions ns(x; 0) of (1.1) converge in C(Rn). We have

only to show that it leads to (Case 1) in Theorem A. Assume that the condi-

tion in (Case 1) in Theorem A is not satisfied. We may assume that s=

(sit2',i 1 1, ••• , /w /)^0. We can apply Corollary 3.3. Since det 54=0, it im-

plies that JRs=J=0. By (3.21) for 7 = 1, we have (<£,„/, •-, $x) •& = (). Hence 0'

can not be arbitrary, which contradicts the C-weak admissibility. The con-

verse is proved by (Case 1) in Theorem A. Q.E.D.

Obvoously the C-admissibility implies the C-weak admissibility. When

the Cauchy problems (1.1) are not C- weakly admissible, (1.1) are not suitable

as a singular perturbation. Because the Cauchy data 0' of the reduced pro-
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blem (1.2) are restricted. One of the reasons why (1.2) does not admit ade-
quate Cauchy data $>' is that the Cauchy data ®" are independent of e. If we
allow that the Cauchy data 0" change as e, then we can find a sequence of
solutions of (1.1) whose limit is the solution of (1.2). In fact, we may take
the solutions satisfying

A ( r £>\ __ xW £J(TI, • ••, rm/; j>1, • • » , <ftm/) . , =.,x
"eV*i> f ; — 2-u=o - —7 - - - eexp IT j(s, c ; ̂  .

When the Cauchy problems (1.1) are not C-admissible but C- weakly admissible,
(l.l) are trivial as a singular perturbation. Because the solutions u^x; 0) of
(1.1) are identically equal to the solution UQ(X\ 0') of (1.2). Thus the interest-
ing cases are limited to the cases satisfying Condition 1.2.

When JL' is wider, there is a difficulty in the choise of Jh" . But the proof
of Corollary 3.2 suggests that <X>" is uniquely determined by <&' for wider data.
There is another difficulty. For example, when 0 belongs to <S'(B0)

m, the
situation is so delicate that we can not analyze with algebraic methods only.
In fact, we used the fact that the product of an analytic function not identi-
cally zero and a continuous function can not be identically zero except that
the continuous function is identically zero.
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