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Lower //-Bounds for Scattering Solutions
of the Schrodinger Equations

By

Tohru OZAWA*

Abstract

In this article, the asymptotic behavior in time of scattering solutions to the
Schrodinger equation

u(Q, x)=$(x),
is investigated.

Under rather natural assumptions, Lp(Rn) -lower bound estimates of the form

liminf | t \ n / z ~ n / P \ \ e -

for 0ec#cont(#) with 0^0 are established, where c#"Cont(#) denotes the continuous spectral
subspace of H.

This shows that the estimates obtained by the author in [10] are optimal.

Introduction

We study the asymptotic behavior in time of scattering Lp-solutions to the
Cauchy problem for the equation

i3tu=Hu, (t,

where H is a self-adjoint operator in the Hilbert space Lz(Rn}. A scattering
solution means a solution of the form e~itH(j) with $ in the continuous spectral
subspace ^Cont— &cont(H) of H. Our main attention is on the case where H
takes the form

H=HQ+V, ff0=-A

with a potential F which should satisfy some conditions specified later. Roughly
speaking, for a short-range potential V satisfying the conditions

i)-a and
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for almost every x^Rn, where a>max(2, 4— ri) and C>0, it is known that
every scattering solution e~itH<p with a nice initial datum $ decays in the Lp-
norm if p>2. In fact, the following estimate holds:

(0.1) \\*-itH<l>\\LPw^C\l\-'«*\ | f |^ l ,

where dn(p)=n/2—n/p. For l^p<2, we also have the same estimate as (0.1)
with more general potentials. But they do not imply the decay of solutions.

The above results have been obtained by the author in [10].
We shall show that these estimates are really optimal. To be more precise,

under certain hypotheses it is shown that for any

holds. We deduce from this lower bound estimate the result that any scattering
solution with its Lp-norm decaying faster than 0(\t\~3n(ip^ (2^p<oo) or growing
slower than O(\t\ ~8n<ip:>)(l^p<2) vanishes. We shall prove these facts by mainly
using Strauss' argument in [13].

§ 1. Preliminaries

We use the following notations. For an open subset QdRn and jbe[l, oo],
we denote by LP(Q} the usual Lebesgue space of p-th integrable functions on Q.
The associated norm is denoted by IHUpcfl)- We abbreviate Lp(Rn} by Lp.
Lfoc denotes the space of locally p-th integrable functions on Rn. For x =

( n \1 /2
S x,2j] , o>(^)=(l+ %|2)1/2. For m, s^R, the
j=~

weighted Sobolev spaces H™"s and H™"s are defined respectively by

and

For an operator T in L2, we denote by D(T) its domain. A denotes the genera-
tor of dilations: j4=(l/20(*-V+V-Jt). Strauss' lemma will be used in the fol-
lowing form :

Lemma (Strauss [13]). For any 0eL2\{0}, there exist k, £'>0, ?0>0, and
C0>0 such that

for all t>tQ.
J kt<\Xl<k't

Proof. Although the lemma in [13] is stated in a rather restrictive form,
we see that the proof in [13] with some modifications shows the lemma above.
So we omit the details. Q. E. D.
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§2. The Case 2^p^oo

We consider the following hypotheses on a self -adjoint operator H in L2 :

(HO) H has no singular continuous spectrum.
(Hl)+ The wave operator

W+=s-limeUHe-itH°
£->+oo

exists and is complete.

For sufficient conditions of (HO) and (Hl)+, see, e.g., [1], [2], [3], [8], [9],
[11] and [12].

In this section we prove:

Theorem 2.1. Suppose that (HO) and (Hl)+ hold. Let 2^£^oo and
ntMO}. Assume that there exists tQ>Q such that

(2.1) e-itn$eLl*c for all t>tQ.

Then, there exist &>0 and k'>k such that

(2.2) li

Proof. Let 2<^p<°o and let ^e^COat satisfy (2.1). Assume 0^0. It
suffices to prove that there exist ^>0, k'>k>Q and Ci>0 such that

(2.3) lk- i" /^|Upc lxSJ l» :* t<ix.<*'»)^C1ra»cw for all

From the assumptions on H, we conclude that

(2.4) Range (I/F+)-^cont

and that

(2.5) s-lim eltH^e-UHPco^=WI
£^+00

where PCOnt is the orthogonal projection on JCCO lt and W% is the adjoint of W+.
Consequently,

(2.6)

By virtue of Strauss' lemma, there exist £2>0, kf>k>Q and C2>0 such that

(2.7) { \(e-ttu<Wty)W\*dx>C2 for all t>tz.
Jkt<\x\<k't T

By Holder's inequality, we see that

(2.8) (f |(e-»^
\ J* t< l* l<* ' t

n; kt<\x\<k't}-)
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for any £>0, where a)n= xn/2/F(n/2+l) and F denotes the gamma function.
We estimate the L. H. S. of (2.8) from below as follows:

(2.9) (f
\J kt<\x\<k't

kt<\x\<k't

kt<ix\<k't

= C\i*-\\eitH*e-UH<j>-W%<l>\\z for any t>U.

Hence, there exist f3>0 and C3>0 such that

(2.10) (( |(e-"7VX;t)|2</xY/2S:C3 for any t>tt.
\Jkt<\x\<k't /

(2.8) and (2.10) give

(2.11) \\e-UH0\\LPUx<=Rn; kt<lx\<k't»

^(Cza)n(k'n-kn)l/p-l/z)'t-8^ for any t>t3,

as required. Q. E. D.

Corollary 2.1. Suppose that (HO) and (Hl)+ hold. Let 2^£^oo and
^contx{0}- Assume that there exists tQ>Q such that

(2.12) e~UH(j>^Lp(Rn) for all t>t0.

Then we have

liminf ^»(W||e-"^||p>0.
t-»+cx>

Remark 2.1 For sufficient conditions of (2.12), see [10].

Corollary 2,2. Suppose that (HO) and (Hl)+ hold. Let 2<p<°o and let
c^cont- Assume that for each kf>k>Q,

£-• + 00

Then we have ^=0.

Remark 2.2 (HO) and (Hl)_ :

(Hl)_ W -— §-Y\meUHe~ltHQ exists and is complete,

imply that the above statements for £<0 analogous to the case £>0 also hold.
For example, for every 0e^Tcont\{0} satifying (2.12), we have
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liminf \t\'»™\\e-itH$\\p>Q.

Remark 2.3. The asymptotic behavior as £-»±oo of the L. H. S. of (2.10)
has been studied in numerous articles by different approaches (see, e.g., [3],
[4], [9] and [11]).

Remark 2.4. When H=H0 and p=oo} some classes of initial data actually
give lim instead of liminf in (2.2). Such examples can be found in [11].

J->±00 £->±00

§3. The Case l<

In the case 1<^£<2, we need some more additional assumptions:

Theorem 3.1. Suppose that (HO) and (Hl)+ hold. Let l<p<2 and let
Assume that there exist t0>Q such that

(3.1) e~itH(f>^LToc(R
n) for all t>tQ.

Assume in addition that there exists an increasing function a: R~>[0, oo) such
that for each k'>k>Q,

£>J0

and a(*0)>0. Then, there exist hf>h>Q such that

J-»+oo

Proof. Put

t>t0

Since

v l / 2

(3.4) f\ ]
\Jkt<\x\<k't

*'*\\e-"nf^

a slight modification of the preceding proof works. We omit the details.
Q. E. D.

In view of (2.10) and (3.4), we easily obtain:

Corollary 3.1. Suppose that (HO) and (HI)., hold. Let l^.p<2, and let 0e
i^cont- Assume that there exists tQ>Q satisfying (3.1). Then, we have ^=0 if
either (A) or (B) holds:

(A) There exists an increasing function a: R—»[0, co) such that a(f0)>0 and
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that for each kr>k>Q,

and
lim inf

J-> + 00

(B) There exists an increasing function a : /2->[0, oo) such that a(t0)>Q and
that for each kf>k>0,

and

§ 4. Lower Bounds of Growth Order in Time
for Scattering ^-Solutions (l^

We consider the following class of potentials V, which is identical to that
of [10; Theorem 6.1].

(H2) The form i\_A, 7] on D(A)r\D(H), defined by

extends to a bounded operator V*^j:(Hz-°; #-2-°).
(H3) There exist a>max(2, 4-n) anfi( C>0 SMC/Z rtaf fl>a7eL°
^Ccy"a as forms on H2'°.

In order to describe lower bounds for growth order of scattering /^-solu-
tions for 1<;^<2, we put

m l / a-1 / p for n = l,

j8(0=Ul1"2/p(logUD1/a-1/p for 72=2,

Theorem 4.1. SM^OSS rtaf (H2) cnrf (H3) hold. Let max (2, 4-n)< /o<a.
^4, suppose in addition that the generalized eigenspace for zero (see [10;

Theorem A]) equals {0}. Letl<p<2 and let 0^c#coat\{0} satisfy the following
regularity assumptions :

(1) $t=H°>f>'* for n=l.

(2) <f>^H2>(>/2 for n=2.

(3) $€=H<n-w>P'* for n^39

kf>k>Q such that



LOWER LP-BOUNDS OF THE SCHRODINGER EQUATIONS 585

limjnf p(t)\\e-itH$\\LpaxeRn;k\t\<\x\<k'\t\»>0.

Proof. All we have to do is to determine the L°°-decay rate a(t) in (3.1)
of Theorem 3.1. See [10] for details. Q.E.D.

§ 5. Remarks on the Non-Linear Schrodinger Equations

In this section, we shall give some comments on lower bounds for solutions
to the non-linear Schrodinger equations. We restrict our attention to the follow-
ing non-linear Schrodinger equation with a single power interaction:

(5.1) idtu=

where l+2/n<p<a(n) with a(7z)=oo for n^2and a(w)=(n+2)/(n— 2) for n^3.
We recall the following theorem of Y. Tsutsumi & K. Yajima [14] :

For any ^e//1-1, there exist u±^Lz such that

(5.2) lim||0-"*oMh_M(f)| |2=o
J^±oo

where u^C(R\ H1-1) is the unique solution of the integral equation

(5.3) M(0=e-"H°0--* f V*c'-°*° I u \p-lu(r}dr .
Jo

We note that for any fi^H1'1, the solution u in the theorem satisfies
Lq(Rn] for any t^R provided 2<q<a(n)+L

Now we have:

Theorem 5.1. Let 2<q<a(n}+l and let <j)(=Hl'l\{§}. Then, the unique
solution of (5.3) has the following estimate:

for some kr>k>Q.

Proof. We note that 0=0 implies u±=0 in (5.2). By virtue of the theorem
above, almost the same argument as in the proof of Theorem 2. 1 yields Theorem
5.1. Q.E.D.

Remark 5.1. For the decay estimates (from above) of the solutions of (5.3),
see [5] and [6]. Theorem 5.1 tells that their results are best possible with
respect to the decay order in time. See also [7] for detailed analysis of L°°(Rn)-
decay for the classical solutions of (5.1).
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