
Publ. RIMS, Kyoto Univ.
25 (1989), 491-498

On the Boundary Value of a
Solution of the Heat Equation

By

Takahiro KAWAI* and Tadato MATSUZAWA**

§ 0. Introduction

Let U be an open subset of R", and let P(x, Dx) be a linear differential
operator with analytic coefficients defined on a neighborhood of the closure [£/]
of U. Suppose that the boundary dU of U is smooth (i.e., non-singular and
analytic) and that dU is non-characteristic with respect to P at each point in
dU. Then it is well-known ([7], [11]) that the boundary value of a
hyperfunction solution of the equation Pu = 0 on U is a well-defined
hyperfunction. However, little is known about the characterization of a
solution whose boundary value determines a hyperfunction near a characteristic
boundary point. The purpose of this article is to discuss this problem for one

n-l

special case, i.e., the pair of the heat operator d/dt — A = d/dt — J^ d2/dxj
def j=i

and the domain {(£, x)eR"; t > 0}. Our main result (Theorem 1 below) asserts
that,

(i) if a C°°-solution u(t, x) does not behave too wildly as t|0,
and

(ii) if u(t, x) uniformly tends to zero outside a compact set K a R"'1 as
*iO,

then we can assign a compactly supported hyperfunction g(x) to u(t, x) so that
the vanishing of g(x) entails the vanishing of u(t, x) itself. Furthermore we can
find such a tame solution u(t, x) of the heat equation for any compactly
supported hyperfunction g(x). [See Theorem 1 for the precise statement. Note
also that a hyperfunction supported by a compact set, say L, is an analytic
functional with the real carrier L.]

Let us note the following two facts: First, if u(t, x) tends to infinity too
rapidly as t j 0, then our procedure will not assign a hyperfunction g(x). (Cf.
§2(i)) Second, we know (see [3], for example) that there exists a hyperfunction
e(t, x) (xeR1) supported by {(t, x)eR2; t = 0, x ^ 0} satisfying the equation
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(d/dt - d2/dx2)e(t, x) = 5(t) (x) 6(x). Putting this differently, we claim that there
exists no reasonable assignment of a hyperfunction g(x) to u(t, x) if the condition
(ii) is not satisfied.

We would like to express our heartiest thanks to Professor Mikio Sato for
the stimulating discussion with him.

§1. Main Results

To state our main result (Theorem 1 below) we first introduce the following
symbol:

For a compact subset K of R""1, we denote by ^%me the totality of C°°-
solutions of the heat equation (d/dt — A)u(t, x) = 0 on {(t, x)eW*; t > 0} that
satisfy the following condition:
(1) For each e > 0, there exists a constant C£ for which

, , „ dist(x, K)
\u(t, x)|^

4t

holds on {(t, x)eR"; t > 0}.
Here dist(x, K) denotes the distance of the point ^(eR""1) and K.

Theorem 1. Let K be a compact subset o/R""1 and let £%K denote the space
of (n — 1)-dimensional hyperfunctions supported by K. Then there exists an
isomorphism b: <9^me -> &K. Furthermore, for each u in y%me, we can find a
hyperfunction u(t, x) satisfying u\{t>0} = u and supp u c {(t, x)eR"; t ^ 0} so that
the following holds:

(2) (d/dt - A}u(t, x) = S(t) (x) b(u).

Remark. Since supp u c {t ^ 0}, the relation (2) implies that b(u) describes
the "boundary value" of u taken from the side {t > 0}. Hence Theorem 1
guarantees the existence of the "boundary value" of u as a hyperfunction on the
condition that the solution u in question satisfies the condition (1), although the
boundary {t = 0} is characteristic with respect to the heat equation.

Proof. Our construction of the map b uses a particular extension of u to
the entire space R". To define such a preferred extension, let us first introduce
an auxiliary set Q = {(t, x)eRn; t / 0 or x£K}. By using the classical estimate
for solutions of heat equations (see [2], for example), we find that the condition
(1) implies

(3) lim P(d/dt, d/dx)u(t, x) = 0 for x£K
ao

for any linear differential operator (with constant coefficients) P(d/dt, d/dx) of
finite order. Hence we can find a C°°-function c(t, x) which satisfies the
following conditions:
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(4) c(t, x) = u(t, x) if t > 0,

(5) c(t, x), together with all its derivatives, vanishes on Q\{t, x)eR"; t > 0}.
[What we actually need in the subsequent reasoning is not the C°° -character of c
but its C2-character.] Since the assumption (1) implies that u(t, x) does not
increase faster than exp(e/t) as £ j ,0 for any e > 0, a result of Komatsu ([6]),
Theorem 2.27) guarantees the existence of an ultradistribution v(t, x)e^(2}/(R")
which satisfies the following:
(6) v = c on Q.

See [4] for the definition and basic properties of the space ^{2}'(R"), the space of
ultra-distributions of Gevrey-type {2}.

Since c(t, x) vanishes for t < 0, we find

(7) suppi?c{(f, x)eR"; t^O}.

Further (4) and (5) imply

(8) (d/dt - A)c = 0 on Q,

and hence

(9) (d/dt - A)v = Q on Q.

In what follows, an ultradistribution v(t, x) thus obtained shall be called a tame
extension of u for short.

Now, letting /j(t, x) denote (d/dt — A)v we find the following:

(10) supp// c {(t, x)eR"; t = 0, xeK}.

Since \JL belongs to ^{2}'(R"), a structure theorem for ultradistributions supported

by a submanifold ([5]), entails the following:

(11) At, x)=

where <5<0>(f) = <5(f), 8w(t) = &/dl*d(t) (k = 1, 2 , - - - ) and ^(xJe^'CR"-1) is
supported by K and satisfies the following condition:

(12) For any strictly positive constants L, h and (5, there exists a constant C for
which

holds for any q> in

Here, and in what follows, a = (a l5..., a n _J is a multi-index with Oy being a non-
negative integer, |a| denotes ^aj5 and X5 = (xeR""1, dist(x, K) ^ 5}.

Let us now set
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(13) Q^^d'/dt'J-1-'
t =o

for k = 1, 2 , - - - . Here and in what follows, d°/dt° and A° denote the identity
operator. Then we find

(14) (dk/dtk - Ak) = (d/dt - A)Qk

for fc=l, 2,-... It follows from (12) that both £ Qk(S(t) (x) juk(x)) and
fc=i

oo

<5(0 (8) ( Z ^VfcM) belong to ^{0}x.K> tne space of hyperfunctions supported by
fc = 0

00 00

{0} x K. Denoting ]T Qk(d(t) (x) juk(x)) and £ J^/c respectively by v(£, x) and
fc=l k=0

g(x), we obtain the following equality (15) from (14):

(15)

Let us next verify g(x) thus defined is independent of the choice of a tame
extension v. Let v1 and v2 be two tame extensions of u. Then it follows from
the definition of the tame extension that v1 — v2 vanishes on Q, i.e.,

(16) supp(t;1 - v2) c= {0} x K.

Since both v1 and v2 belong to ^{2}'(Rn), we can find

hk(x) e @{2}'(Rn -1) (k = 0, 1, 2, - • • )

which satisfy the following:

(17) supp/zfe c: K for k = 0, 1, 2 , - - -

(18) vi~v2= f 5(k)(0®M^)
fc = 0

(19) For any strictly positive constants L5 /i and (5, there exists a constant C for
which

holds for any 9 in
Let pk(x) denote the difference of /^fe

5s determined by vl and v2 respectively,
that is,

(20) (5(fe)« (x) pk(x) = (d/dt - A)(v, - v2).
k = 0

Since

oo

(21) (d/dt - A)(Vl - v2) = (d/dt - A)( £ d(k\t) (g) hk(x))
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= f (6<*+ 1((0 (X) hk(x) - S»\t) (g) Ahk(x}},
k = 0

the comparison of the coefficients of 6(k\t) in (20) shows

(22) p0(x) = - /Jfe0(x),

(23) Pk(x) = Jit_ !(x) - <dM*) for /c = 1, 2, . . . .

Therefore we find

(24) Po + I ^Vk

This means that #(x) does not depend on the choice of a tame extension v of
w. Hence we define b(u) by b(u) = g. Since the sum of tame extensions vj(j
= 1, 2) of Wy (j = 1, 2, respectively) in ^^me is a tame extension of u1 4- w2, MW)
thus defined is a linear map from y1™* into ^x.

We shall now verify that the map b is bijective.
To prove its surjectivity, let us first recall that there exists an elementary

solution E(t, x) of the heat operator (d/dt - A) [i.e., (d/dt - A)E(t, x) = S(t) 0
5(x)] in the space ^{2}'(R") so that it satisfies

( (47ct)"(n~1)/2exp( - x2/t), if t > 0
(25) E(t, x) =

10, if t < 0.

(Cf. [9])

Now, for a hyperfunction g(x) supported by K, we define another hyperfunction
w(£, x) by

E(t -s,x-y) (d(s) (x) g(y)) dsdy = E(t, x - y)g(y)dy.
j

Let w+(t, x) denote the restriction of w to {(t, x)eR"; t > 0}. Then one can
easily verify that w+ satisfies the condition (1). (Cf. [8], Theorem 1. 2) Hence
we may consider b(w+). We shall prove b(w+) = g. For that purpose let us
choose a tame extension v of vv+ and set [i = (d/dt — A)v. [Needless to say, v
does not coincide with w in general] Then it is known ([8], p.58) that

(26) v(t, x) = | | E(t - 5, x - y)n(s, y)dsdy.

We can further verify that



496 TAKAHIRO KAWAI AND TADATO MATSUZAWA

(27) lim v(t, x)X(x)<p(x)dx = b(w+)(x)cp(x)dx
rj,0 1 !

aJ eJ

holds for any entire function (p(x), if we choose %(x) to be a compactly supported
C°°-function which is equal to 1 on a neighborhood of K. ([8], (1. 22)) On the
other hand, the definition of w entails

(28) lim w+(t, x)x(x)cp(x)dx
rj.o J

= lim E(t, x - y)g(y)x(x)(p(x)dxdy

= \9(x)x(x)(p(x)dx.
J

(Cf. [8], (1.11)) Since v(t, x) = w+(f, x) holds for t > 0, the equality 6(w+) = 0
follows from the denseness of entire functions in *sf(K), the space of real analytic
functions on K. Thus we have verified the surjectivity of b.

Finally let us prove the injectivity of b. We shall again make use of the
elementary solution E. Let t; be a tame extension of u satisfying the condition

(1) and let /#, x) = £ d(k\t) (x) /^(x) be (d/dt - A)v. (Cf. (11)) Suppose now that
fc = 0

oo

b(u) vanishes. Then it follows from the definition of b(u) that ]T
k = 0

vanishes. Hence (26) entails the following relation for t > 0:

(29) u(t, x) = £(t, x -

= 0.

This proves the injectivity of the map b, completing the proof of Theorem 1.

In the course of the above proof of Theorem 1 (in particular, the part of the
proof of the surjectivity of the map b), we have also verified the following results
as by-products. As they seem to have their own interests, we present them as
theorems.

Theorem 2. Each function u in <9^me is real analytic.

Theorem 30 For a compactly supported hyperfunction f ( x ) on Rm we can find
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compactly supported ultradistributions fk(x)(k = 0, 1, 2,-») in (f{2)(Rm)' so that

f(x) = f zifcAM
fe = 0

and

supp/k c supp/

/z0/<& for any k.

§2. Miscellaneous Remarks

In this section we present some remarks on our main results given in the
preceding section.

(i) It follows from Theorem 1 that, for a solution u(t, x) of the heat equation
that satisfies the condition (1), its "boundary value" b(u) is a well-defined

00

hyperfunction which has the form Y Ak^k(x) with fj,k(x) being an ultradistri-
fe = 0

bution determined by a tame extension of u. Now the following question
naturally arises: What if u(t, x) grows faster than exp(e/t) as t J,0? In this case we
can still find an extension v of u if we allow u to be a hyperfunction. However

00

the series ]T Ak^k(x) given in an analogous way as in the proof of Theorem 1
k = 0

does not define a hyperfunction in general. This explains why Aronszajn [1]
needed a class of generalized functions that is bigger than the space of
hyperfunctions when he discussed the boundary value of a solution of the heat
equation.

(ii) In connection with the above remark, we note that we can prove the
following

Theorem 4. Let K be a compact set in R""1. Then for each jjL(t, x) in
^|O}XK(R")' we can find v(t, x)e^(0}xK and g(x)E$K so that

(30) IJL = (d/dt - A)v + 5(t) (x) g(x)

holds. Furthermore v and g are uniquely determined by IJL.

In fact, the existence of v and g can be verified in exactly the same manner
as in the proof of (15). Since the Fourier transform of v and that of g are both
entire functions, the uniqueness assertion can be readily verified if we apply the
Fourier transformation to the relation (30).

(iii) The same result as Theorem 1 holds if A is the Laplace operator on a
compact Riemannian manifold M (without boundary) and if we consider the
heat equation on R, x M and choose M as K.
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