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Microhyperbolic Operators in Gevrey Classes

By

Kunihiko KAJITANI* and Seiichiro WAKABAYASHI*

§ 1. Introduction

Kashiwara and Kawai [16] defined microhyperbolicity and proved
that the microlocal Cauchy problem for microhyperbolic pseudo-
differential operators is well-posed in the framework of microfunctions,
which is a microlocalization of the results obtained by Bony and
Schapira [3]. In the microlocal studies of pseudo-differential
operators, the concept of microhyperbolicity is very useful. From
their results one can obtain results on propagation of analytic singu-
larities (propagation of micro-analyticities) of solutions for microhy-

perbolic operators (see [28]). On the other hand, Bronshtein [5]
proved that the hyperbolic Cauchy problem is well-posed in some
Gevrey classes which are intermediate spaces between the space of
real analytic functions and C°° (see, also, [14], [15]). So we can
generalize the definition of microhyperbolicity in the framework of
some Gevrey classes, to say the least of it. In doing so, we expect
to get a clue to a generalization of microhyperbolicity and microlocal
studies of microhyperbolic operators in the framework of C°°.

In this paper we shall consider microhyperbolic operators in
Gevrey classes and prove microlocal well-posedness of the microlocal
Cauchy problem and theorems on propagation of singularities for
microhyperbolic operators. Our aims are to show how one can obtain
microlocal results (microlocal well-posedness and, therefore, a micro-

local version of Holmgren's uniqueness theorem) from methods to
prove well-posedness of the Cauchy problem and to show that
theorems on propagation of singularities are immediate consequences
of a microlocal version of Holmgren's uniqueness theorem, using
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generalized Hamilton flows. We shall prove microlocal well-posedness,
reducing the problems to those in L2. From this point of view one
may assert that consideration in L2 (or C°°) are much more important
than in Gevrey classes. However, in the framework of Gevrey classes
one can easily solve some problems, which seem difficult to be solved
in the framework of C°°, and obtain some conjectures on the problems
in the framework of C°°. We should note that Uchikoshi [27]

investigated a related problem.

Let K be a regular compact set in Rn, and let £>1 and /z>0.
We denote by ff[K}-k(K) the space of all f<=C°°(K) which satisfies,
with some constant C>0,

(1.1) |Da/W \<Chlal\a\\K for x^K and | a | = 0 , l f 2 f . . . f

where x=(xl9..., xn) <E/Jre, D = i~l(d/dxl9 . . . , 3/3*B), a= (al9 . . . ,«„)
is a multi-index and |a|=S"=i «,-• We also denote by &£}-h the
space of all /eC°°(/Jn) with support in K satisfying (1.1). £{K]'h(K)
and Sj£}>* are Banach spaces under the norm defined by

Let 8 be an open set in R". We introduce the following locally
convex spaces (Gevrey classes) :

KCQ

™ =lim

K&Q fe^-oo

where A^B means that the closure A of A is compact and included in

the interior B of B. We denote by 9*' (Q) and f*'(Q) the strong
dual spaces of @*(Q) and <f *(fl), respectively, where * denotes («)
or {fc}e We also write £*,..., instead of £ * (Rn} , . . . (see, e.g.,
[18]). Let us define symbol classes £*, where meJ?0 We say that

a symbol />(*,£) belongs to %(resp. 5fK}) if ^(AT, f) <EC°°(r*l?n) and
for any compact subset X of B" and any ^4>0 there is C=CX>A>0
(resp. for any compact subset K of Rn there are A = AK>Q and

such that
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!/>$ (x, £) | <

for x^K, £=(?!,. . . , fn) eJR" and any multi-indeces a and /3, where

is identified with B»xfl", <f> = d + |6 I2)172 and />$(*,£) =
(x, <?) . We impose the following conditions:

(A-l) p(x9£)^Syl9 where *1 denotes (A^) or {/cj, and ^>1 and
m^R. And p(x,D) is properly supported.

(A-2) There is a symbol />„(#, ?)3 which is positively homogeneous

of degree m in ?, such that p(x9 £) - * (£) pm(x9 f) eS^rS

o-(f)e(f (" l } and ( T ( f ) = l for | f |> l and a ( f )=0 for | f |<
1/2.

Definition 1. 1. Let *°= (^°, f°) eT*/2n\0 and

We say that />(#,£) (or pm(x,t;)) is microhyperbolic with respect to
5 at <;° if there are a neighborhood ^r of ^ in T*l?"\0, /eJVU {0}
and positive constants c and tQ such that

IZJ=o(-^)%(^O/j!|>^ for (*,£)e* and 0<^<^ 0

where ^9= (9,,^) is regarded as a vector field 9=9X • (3/3^;) +^- (3/3f).

Remark, (i) The above definition coincides with the definition
given in [33]. (ii) When pm (x9 f ) is real analytic, the above defini-
tion coincides with the definition of partially microhyperbolicity given
by Kashiwara and Kawai [16].

Let Q be an open conic set in T*Rn\Q. We assume that

(A-3) pn (x, £) is microhyperbolic at each point in O.

For ^°er*J?n\0 we can write

A,(*° + jfe) =s^(p^(8z) +o(D) as s ~> 0,

where /?mzo(^)^0 in dz^Tip(T*Kg)9 if there are multi-indeces a and
/3 such that p£fa (^°) ̂  0. pmzo(dz) is called the localization polynomial
of Pm(z) at ^° and fjt= ft(z°) is called the multiplicity of pm(z) at ^°.
If /?OT (^) is microhyperbolic with respect to $ at £°, then /?m2o (^) is

hyperbolic with respect to $, i. e.,

pmzo(dz-isd)=£Q for dz^T2Q(T*Rn) and J>0

(see, e.g., [11]). Therefore, we can define r(pmzo^-9) as the connected
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component of the set {^ e Tzo (T*Un) ; pm,o(8z)=£Q} which contains $9

when pm(z) is microhyperbolic with respect to 9 at £°. For some
properties of hyperbolic polynomials and r(pmZ9$) we refer to Atiyah,
Bott and Carding [2].

Definition 1.2. (i) t(x9^^Cl(O) is called a time function for
pm in Q if t (x9 ?) is real-valued and positively homogeneous of degree
0 in ?, and if pm(z) is microhyperbolic with respect to —Ht(z) at

every z^Q, where H,U) =S^1{(3f/3fy) (^ (3/3^ - (3^/3^ U) (3/
3£,)}« (ii) Let t(x,£)&Cl(Q) be a time function for pm in Q, and
let z^Q. We define the generalized Hamilton flows K±(z',^',t) by

K±(z',Q',t) = [z(s) e/2; ±^>0, and {z(s}} is a Lipschitz continuous

curve in Q satisfying (d/ds)z(s) (EF(/?m,(s), - Ht (z CO ) ) °
(a.e. s) and *(0) =z}9

where F°= {(dx, 3f) E:Tz(T*Rn) ; a ( ( d y , STJ), (dx, 3f)) (=8^ - ̂ -^ • 3f)
>0 for any (d^d^^F} for ^eT*/J"\0 and Fc:T2(T*Rn}.

Remark. We should note that Leray [21] and Lascar [20] defined
flows similar to K±^\^\t).

Definition 1,3. Let *>*i and J^@(KI\ WFw(f) (resp.
(/) ) is defined as the complement in T*Rn\Q of the collection of all
O°, f°) in T*Un\0 such that there are a neighborhood U of #° and a

conic neighborhood F of 6° such that for every (p£=i& l (U) and

every ^4>0 there is a positive constant C (resp. for every <p&& 1

(U) there are positive constants A and C) satisfying

I^"[^/](OI<C expi;-.!!?!1*] for fer,

where ^*[/](f) =/(f) denotes the Fourier transform of / (see [10],
[28]).

Moreover, we assume that
(A-4) fi (Q} = supz(=Q p(z)< + oo, and ^ < K (Q) = min {2, //

(fl)-l)} if *l = («i), and *!<*(£) if *l = {ici}.

Theorem 1.4. Assume that (A-l)-(A-4) are valid, and let



MlCROHYPERBOLIG OPERATORS 173

H-> & (z) e Tz (Q) be a continuous vector field such that pm(z) is microhy-
perbolic with respect to $(£) at each z^Q. We denote by *(/c) or {/c}, and
assume that Kl<tc<K(Q) and*=(ic) when *l = (Kl) and that KI<K<^K(Q}

and * = [K] when * 1 = {KI} . Ifu^® **', z° e WF* (u) fl ̂  flwrf WF* (/w) n
£ = 0 , £/ztf?2 £/Z£r<? artf ae ( — oo, 0) U { — 00} ^^rf a Lipschitz continuous
function z ( t ) defined on (a, 0] with values in Q such that z

for «e( f l ,0], ( d / d t ) z ( t ) er(^(0, « U ( 0 ) ) f f n {^; ^1=1
^e (fl, 0], fl/zrf ^(0) =^°, fl^rf lim^B+0 ^(0 e 9£ if a>— oo,
denotes the boundary of Q in T*Rn.

Theorem 1.5. Assume that (A-l)-(A-4) are valid and that
Cl(Q} is a time function for pm in Q. Moreover, assume that KI<K<
and *=(«) when *1 = (K^ and that Kl<K<^ic(Q) and *= {A:} when
*l = {jc1}. (i) L^ ^°e^ flwrf ^o^^R Jfl^z'j/^ tQ<t(z°), and assume that

WF*(pu) n JP-(^;fl;0 n feefl; * U) >M = 0
^ ( ^ ) = ^ 0 } = 0 . (ii) Furthermore, assume that

; t(zl)>tQ}GQ for every z^Q. Then

w\Q\i) for some w^(WF*(pu} n

n feefl; f U ) = M ) } /or u

Remark. Theorem 1.5 is an immediate consequence of Theorem
1.4. We note that there do not always exist time functions for pm

even locally (see Proposition 5. 1).

The remainder of this paper is organized as follows. In §2 we
shall give preliminary lemmas on calculus of pseudo-differential
operators. In §3 we shall investigate hypoellipticity in Gevrey classes
for operators which satisfy the so-called (//) -condition (see [9]).
The microlocal Cauchy problem will be studied and microlocal para-
metrices will be constructed in §4. We shall give the proof of
Theorem 1.4 and some remarks in §5.

§2. Calculus of Pseudo-Differential Operators

Using pseudo-differential operators of infinite order, we can reduce



174 KUNIHIKO KAJITANI AND SEIICHIRO WAKABAYASHI

the problem in Gevrey classes to the problem in the Sobolev spaces
and prove Theorem 1.4. In doing so, we must establish calculus of
pseudo-differential operators of infinite order. By results in this
section (Proposition 2. 13 below) we can calculate the symbols of the

reduced operators. Throughout this paper we denote by Ca>6....(^»
£ , - • • ) a constant depending on a,by ••• and A,B, °«° which is loca-
lly bounded in A,B, • • • . Let /C>1 and ee/J, and define

^,e= H0 e=C-(/P) ; exp[e<O1/K]Kf) e^},

We say that Vj -» v in &KtB as j -> oo if exp[e<f>ix*]^(f) -» exp[e<f>1/K]
z>(?) in & as j -» oo. Since ^ is dense in ^K.e3 it is obvious that

the dual space ^ of ^ff,E is identified with {exp[£<f>1//c]KQ
For e>0 we can define

We introduce the topology in £fKif. so that J^: <^K,e-» &* K,& is homeo-
morphic. Denote by «$^i6 the dual space of ^.g for e>0. Then we
can define the transposed operators l& and l^~l of 3F and ^r~1

which map £f'KiB and £^iE onto <^iE and ^K,E, respectively0 Since

^._EC^;,e (C^O for s>0, we can define ^«.-. = '#'"1[^«1-.] for
e>0. It is easy to see that ^i_e = Jr[^i_e] is the dual space of

•*Ve, ^.-eC^'c^;,., C^.-.C^'C^7;,, for e>0 and that #- = '#"
on ff"m So we write *& as J^. Define

where m&R and

Lemma 20 1. (i) ^(K) w a rf^ww subspace of ^K,Ee (ii)

..E. (iii) <r (K) 'cUee^.e and ^ {ff}' C n e<o^K .E B (iv)
%.6. C //^E C Hff

m
E' C //^V C ^;,_E. C $(KY, where e>e'>e^ m > m' and

Proof. The assertions (ii) and (iii) can be proved by the Paley-

Wiener theorem in Gevrey classes (see, e.g., [18]). We can also

prove that r0t(£) =%(f/A;)z;(£) -> y( f ) in 5^SiE as k -> oo and that z^-Cf)

= Jz(7)^(f-7/j)^->z«*(f) in ^,E as j^oo, where x^@«\ Z(f)

= 1 if |f |<1 and % ( f ) = 0 if |f |>2, and dr]=(2^~nd^a This proves

the assertion (i). Q.B. D0
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In this paper we shall frequently use the following facts without
quoting.

Lemma 2.2. (i) N\<ce~NNN+l/2 for N>19 where c is a positive
constant, (ii) For t > 1

infN=0ili2,...NlrN<c infN=lt2i...N
N+l/2(et

(iii) \a

(iv) lL\a\=N(a\/N\}K~l<cn
K~l if £>1, where CK is a constant depending only

on K. (v) Sr=o*!1"^* = ̂ (0< + °o if *>0 and K>1. (vi) <f + ̂ >,<

I, where <f>*= (A2+ I f l 2 ) 1 / 2 - (vii) l?f<Oi"*l < d + V " 2 ) l a l ( | a |
*"lal/[*]!, z0A*r* &>0 and [A] <fewote.y */ze Zflrgwf integer

<k. (viii) L*J l^yc^/s: and N<=NtJ {0}, awrf awMW^ that

I5^'JV l a l |/3|! f f ' /or ]a <AT and any p.

Then, for any £>0, and £>0 ^/z^r^ is CAiB,c,a>® such that

\3r^u(^y^\<cA,B,c,dA^d^^
for IflKO?1^, ^>0, |« |<^V anrf any /

Proof. The assertions (i)-(iii), (v) and (vi) are obvious. The
assertion (iv) can be proved by induction on the dimension n. The
assertion (vii) can be proved by induction on |a|. We note that a
similar estimate to (vii) can be also obtained by Cauchy's estimates.
In order to prove (viii) it suffices to prove that

for \^\^y^l<cy |a |<7V and any ft and 7, which can be proved by
induction on |p|. Here Bl depends on A, B and C. Q. E. D.

Let p (? , y, f]) be a symbol satisfying

for (f, 7, 77) ^RnxRnxRn and any multi-indeces a, £ and 7-, where
^4>0, d1^d2^R and the positive constants Ca>/3 depend on a and /3.
Define

u W = ̂  le -*>'* ™p (f, y, ij) u (rf) *ij) dy\ (x
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for u<=@(K\

Proposition 2.3. p(Dx,y,Dy} maps continuously !? K,*2 to &*KI£I if

d2— K (/z^)~1//cO23 e1<ez—dl — d2 and SI<^K (nA)~l/K — dlm In particular,

p(Dx,y,Dy) maps continuously & ̂  to ^K^8l-62 if |e — 32 \<K(nA)~l/K,

Proof, Let u<=@w and write

where

/,̂

/2] + 1 . Then we have

where |tt|^iB., = sup^«i,+,a,^|<fy^?(exp[e<O1/B]^(«) I- Since

" , it follows from Lemma 2. 2 that

Ki

where ^'>^. Noting that ±<^>1/ff- |f-iy |1/s< ±<<?>1/ff
9 we have

if A'^A, d2—e2<^K(nA)~l/K and M^>j + n. This proves the proposi-
tion. Q. E. D.

Corollary. p(Dx,y,Dy) maps continuously &"K,-EZ to &"K,-tl if 82-
/K<^ £i<£2-^-^2 and e^K^Ay^-d,.

Let {?>?.(?)} C (?(ff) satisfy the following conditions; 0<^f( |)<l ?

( f )= l if <O1/K>2^5 ? f ( f ) = 0 if <S>l*<Rj9 and |^(f) l<
lal for any rf>05 where fl>0, j = 0f 1, 2,. . . f and C, is

a positive constant depending on rf. For example, ^(f)=l and
' = l ,2 , • • • ) satisfy the above conditions if

=l if ^>2K and %(0 =0 if
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t<\. A simple calculation gives the following

Lemma 2.4. Let R0>0, ic'>0 and h>Q. If

for any a, ft j -0 ,1 ,2 , . . - and <Ol/K>#cJ, then qR(x, f) = Zr^f
#, (#5 ?) w well-defined and satisfies

/or #>maxCR0 , 2^-151/K'). Moreover, if

\q?&(x,ft\<CA«w»B>(\a\+\p\W

for any a, ft j = 0, 1, 2, • • • and

/or /2 > max (R0 , 2<

Let h<\ and m1? m2^R, and let p ( x , £ 9 y 9 r ] ) be a symbol satisfy-

ing

(2.1) I VtDtfyDlp (x, f, j,,

where LkiA = C or L4M4*A;!* = C*. We set L, = C if Lk,A = C and Ly =
maxo^^^Ci if LktAAkk\K = Ck. We consider only the cases where
CV = JC and ^ = 1" or 'V=l and ^ = ^". For u^@(K) we can define

if ^^^(w^)""1^ when Ar' = l. Here we have applied the same argu-
ment as in the proof of Proposition 2. 3. Put

(2.2) qJ(x9^=^lalssJal-1^Da
yp(x9 f,JS ?) I,-,.,.*, j = 0f 1, 2, • - - .

Then we have

where /(ft w) = |« |! \ P \ \ ( j + ti)\*v\f(\a \ -^ ( \P I +J-W [f.fA ( |« I -
/^ )W( | )S |— y)!( |a |+ IjSI+j)!*}"1. It is easy to see that
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Applying Lemma 2. 2, we have

I
f \m \\^~K

( I ) ( l ? ~^-'f i f * '
) l£NV-(i;1) ^-' i f « ' = i .

where

(2.3) A = 2Kmax(A,A1) and A=42 if £' = *;,

A = 2Kmax(A,A2) and A = ̂  if *'=!,

and B = 2KnA1A2. By Lemma 2.4

(2.4) ? l z(^e)=sr»«*>f(f)?x^e)
can be defined for /?>4^~1(^A^2)1/'C a^d satisfies

(2.5) |?&a)(*,£) l<C^( | a | , L l a l , A, ^9

if ^>4^-1(^i^2)
1/K

3 Ar>A and LkiAAkkF = Ck, and

(2.6)

if ^>4e-1(n^1^2)
1//c and LkiA = C. Therefore, Proposition 2.3 shows

that qR(x,D} maps continuously <fKt to .S^.B-^-^ when |e — dl-~ d2\

Lemma 2. 5a Let %(x) be a function in &™ such that Q<%(x)<l

and %(x)=l near the origin. Then,

if ^i<C^ (nA2) ~l/K when K — K. Here a (p (x, Dx , j;, Dy) ) (#, f ) denotes the

simplified symbol of p, that is, p (x, Dx , y, Dy) u (x) = a (p (x, Dx , y, Dy) )

(x,D)u(x) for uEL@(K\

Proof. Assume that d^ie (nA2) ~l/K when K — K. By the same

argument as in the proof of Proposition 2. 3, we have
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p (x, Dx , y, Z>,) u (*) = G (*, T?) dr, for

where G(*, 3?) = e"'V(l-J"-('-{)/>(*, rj, y, f) u(£)d£)dy is integrable in

)y. And we have also

GO, 5?) =lim^«,GyO, 5?),

where G,(x,i) = ̂ '" V^'"-^^- ?) /J) X«J>~x)/f)p(x, y, j>, f) X

u(l;)d£dy. Moreover, from the same argument as in the proof of

Proposition 2. 3, it follows that there is a function F(x, if) integrable

in i] satisfying \G,(x,y}~) <F(x,rj~) (j=l,2, • • • ) • Therefore, applying
Lebesgue's theorem and Fubini's theorem, we have

(2.7) ^(*,£>,,^,

X/)(*, f + 7,*

Similarly, there is a function FjCx, f) integrable in £ such that

1 « (f )

= I fl (f ) ( « - " ' "<J>>-2M<D,yM {p (x,

X % (7/7) X (y/j) }dy)di]\<Fl (x, f ) ,

where Af=[n/2] + l. So we can apply Lebesgue's theorem to (2.7),

which proves the lemma. Q. E. D.

Let I<K<C, and let {<pN} ^=0,1,2.... be a sequence in ^W) such that

^(f)=l if |f | < 1/4, &r(£)=0 if !? l>l /2 , and

(2.8) |^+«(f)|<C(^3(A r+l)/2) | a '5^|^!!s for |«|<7V+1,

where ^43, B and C are positive constants. By Lemma 2. 2, for any
d>0 there is C^>0 such that

for

i " " + l ' ' l > i f « = 0 ,

since (A^+l ) i a l <(^+ |a|)!/A^!<2Ar+" l l |«|!- Define for R^ie'1 (nA^AJ 1

r*(x,D-)=p(x,Dt,y,D,)- qR (x,D),
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Then it is obvious that

r* (*, O ( - ff (r* (x,

First consider r^ (x, f ) . We can write

X

where r^ (x, c, ^, 7) - <^>2M5j {^ (7/<f>*) (^5P) (*, f +7, * + Oy, f)}
and M=[w/2] + l.

Lemma 2 e6 0

+ ̂  if ^>0,

3! + 32 if 3!<0,

if K' = K.
(2.9)

(A, A2) if A/ = l,

(2.10)
rJi if K' = K.

! =
Imax Ul5 i43/3) if A/ = l.

(2.11)

Proof. For |^ |=JV+1 we have

X

where 7(ft v) = | /3 (M*' ̂ !K (AT+ 1 + |/3| -^)!K" fot!(|j8| - / / )W(]V+ 1 +

l^l)!1}-1. Here we have used the facts that (j + A;)!<CE(j) (1 +e)kxkl

for 6>0 and that <f>,/2<<f + ?>„<<?>*+ 1 7 I <3<f>*/2 if ^

^0. It is obvious that
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if *' = !.

Therefore, applying Lemma 2. 2, we have

X (7 AA) "+

This gives

<C'( a |, z, l a /, 4, A,
X

where ^(f) is the characteristic function of {fe/2";
2R(N+l)}. From Lemma 2.2 it follows that

(2.12) |rf^,(*,e) i<C"( | a | ,L [ a l , A A, A/A A/A)

X (2M')"31 imo:i+™2~'al+"exp[(3-«5)<O^]
X (l + l/AO^^C^+D^C? • 2*ne2RS-KA1A2R-K')N+l

for 5<0. (2. 12) with 3 = /c/(2/Z) shows (2. 11). Q. E. D.

Lemma 2. 6. implies that

S=o «(*,O l < C ( | a j , L l a l , J, A, A/A A/A)(2M')W

X |/5 !XI>ri+'"2"k"+"exp[(5-/r/(2^))<e>n

for R>2l+3/*(nAlA2)
1/i:. Next let us estimate r& (*»£)• We can write

r?w(*, f) = (^(f) -^iCOjce- '- '^U, f, y,

where r2JV (*, £ , j», 7) = <j,>-« W* {/, (*, f + ,, * + j;, f ) ( 1 - fa (,/<f > „) ) }
and M=[n/2] + l.

Lemma 2. 7. Lef A' be defined in Lemma 2. 6, and let S>0 if
K' = K and B—A2 if K' — \. Then,

,^:<C(\a\,LM,A, A, A/A AJB, 1/5)
X (2M') '"' 3

Proof. The same calculation as in the proof of Lemma 2. 6
yields
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(*,f ,7 ,>?) |<C(H,L, a l , A, A,, A2/A, A2/B,

where ?f(f) is the characteristic function of {fefi"; |£|>1/4J. Thus
we have

<CB.(\a\,Lw, A, A,, At/A, A2/B, 1/5) (2M'

XCXPL-2-MH5')-1" 1 7 r +

if 5'>5, |<51|<2-1«rOfl')-1/": and 5"=51 + 52 + 4-1/'c( |^ | -2-
which proves the lemma. Q. E. D.

Lemma 2. 7. implies that

if |51|<2-3/c(?z5)-1/K. So we have the following

Proposition 2. 8. Let p (x, f , y, ij) satisfy (2.1). Then there are
r0>0 and 3(l/A1} 1/X2)>0 racA fAa* 3(1/4, \/A2) =5(\/A2) A?'" if
K' = K, d(\/A^ \/Az)=d'(\/AdAt1"' if «'=!, a«rf </ze following estimates
hold if a>\ and R = ar0A\/*Al"::

(\a\,LM,A, A-\

if A'>A and Lh.

if Lk.A=C,

,A2(\a\,Lw, A, A2/A) (2M')

X exp [ (3t + «, - 5 ( 1 /4 , 1 /A2) /a

q*(x,g') is the symbol defined by (2.2) awrf (2.4), rR(x,£)=a(p
(x, Dx, y, Dy) ) (x, f) — 9KU, f), ^ A flwrf J1, Al and A' are defined by
(2.3), (2.10) and (2.9), respectively.
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Proof. If, for example, we choose r0 = 21*3An1/K and

, j2-3-3'** (nAiAJ -1/K when *' = *,
U/ '' X 2J 12-s-3-* (^2)-^min(^r1/s, 2^) u>A0n «'=!,

then the proposition easily follows from (2.5), (2.6) and Lemmas
2.6 and 2.7. Q.E.D.

Let A(x, f) be a symbol satisfying

(2.13) MSi^O
and set < w ( 4 ̂ , f) =

Lemma 2.9. // A>A, ^>0 and A^A2 + CQAQp~lA2l(l- A0/A,)-1

<1, ^/Z

(2.14)

/« particular, we can take Al= (1 + (C0/jo) 1/2) J0 and 42= (1 + (CQ/p) 1/2)

Proo/. It is obvious that (2.14) holds for |a |+ | /3 |=0. Assume
that (2.14) holds for |« |+ | /3 |<JV. Let |a +\P\=N and | « | + l « ' l
= 1. Then

which proves the lemma. Q. E. D.

Corollary. For jO>0,

|« | + |jS I)!

Lemma 2.10. Let p ( x , £ ) be a symbol satisfying

(2.15) |$g(*,f
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where m,d^R and LktAAkklK=Ck or LkiA=C, and set ^0=inf^

sup^KMii^L Re A(x, fXOi"1'*. Then (eA) (x, D)p(x, D) maps continuously
<^K,e to ^K,B-p if j0>^0 + d and \e — d <^ic(nA)~l/K. Moreover there are

r(^40)>0 and 5^o>0 such that qR(x, f) =Sr=o^f (f)^(^ f) " ^^~

satisfy the following estimates if <2>1, ^ = flr(^40)^41/A: flwrf

ie;/z^r^ ^(x, f) = 2 i a i = ^ a!"1^^ ; x, f)/? ( a ) (^, f)^u '5) :

^9 1fi"l l /7 5 ( a )^v <fi\£. L\J) 1^(5) V^j C

»/ 4'

(2.17) |?^)(*,f)

(2.18)

. (i) If |£-5|</c(^)-1/K and |6-^0-C0-
then (eA)(x,D)p(x,D)=qR(x,D)+rR(x,D) on ^.e. (ii) For exam-
ple, one can take r(AQ) =21+3/K(nA1)

1/K and 3^= 2~3~3/K Kn~l/K min Ur1//c,

21/ff)? where ^ = max (8^403 ^43/3) and ^43 is the constant in (2.8).

Proof. From the corollary of Lemma 2. 9 it follows that

if ^o^^o + Co. Therefore, the lemma immediately follows from Proposi-
tions 2. 3 and 2. 8. Q. E. D.

Lemma 2. 11 ([6], [7], [17], [19]). Let $<p<\ and
Then, for each s^R there are Cs>0 and a non-negative integer Ns such
that

mu\\L2 for

if flgi(*,f) |<M<Or+( l / ? l" l a l )p for U,f ) er*fi«? A
//s denotes the Sobolev space of order s.
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Proof. Make a change of variables: y = hpx. Taking
X<?>fci-p as a basic weight function, Theorem 1.6 in Chapter 7 of
[19] gives the lemma. Q. E. D.

Proposition 2. 12. There is £0>0 such that p(x, Z)) maps continuously

Hs
KiB to HS

K~™8 if p(x9 ?) satisfies (2.15) awrf \e-d\<e0A-1/K.

Remark. Proposition 2. 12 was proved in [13] and [24] when d = 0.

Proof. It suffices to show that exp [(e — d)<Z)>i/JC]/>(*, D) exp [-£
X <(Z)>i/ff] maps continuously //s to Hs~m. By Lemma 2.10 and its
remark we can write

D) =q(x, D

where q(x, f) - Zr=o?f (f)?, (*, f), ?, (^ f) =

, = max
and o)a(^=Q)a((£ — d ) ^ y l

h
/ K ; #, £)- Moreover, we have

if ^>£+|£-5| and \e-d\+e-d<2e0A-l/K, where £0=
Therefore, we have

(2.19) | ( r (x,f)exp[

if s — SKeo^"17'. On the other hand, a simple calculation yields

<cc |« i, 10 1, L,al,
x ZLo

X ^-B^^-maxCCo,/?-1)}' if <W>Rj,

where C0= |e — 5| and ^4o — 8^40. Since

el-KnAA'0R
l-sm^(C^ R~l)<\ when C0<s0A-1/i:,

we have

(2.20) l ( ? (

if \s-8\<e0A~i/K. Thus (2.19), (2.20) and Lemma 2.11 show that
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, £)exp[-e<£>>JH maps continuously H* to //•-"
if \e-d\<s0A~1/K. Q.E.D.

Proposition 2. 13. Assume that A(x, f) satisfies (2. 13) and that
p(x, ?)« a symbol satisfying (2. 15) with Lk.A = C. Then (eA) (x, D) p(x, D)
K(e~A) (x, D) maps continuously ^s,e to ^f,^-p if /o>^0 + ^ + 5 and |e — ̂
-8\<K(nA)-u*, and #».. to //-% if p>^+ ̂ +8, \e-^-8\<s0A-^
and s^R, where ea and ^ are the constants defined in Proposition 2. 12
and Lemma 2.10, respectively, and ^^inftx, supieS».|f|SL —Re A(x, ?)
<f>*"1A. W«r« ^(e"^) (A:, D) denotes the transposed operator of (e~A)
(x, — D) . Moreover there is CA >0 such that there are symbols pA (x, f )

and rA(x,£~) satisfying the following properties if C0<.cAaA~1/l1 and \S\

(*") (x, D)p(x, D) R(e~A) (x, D) =pA(x, D) +rA(x, D),

(2.21) |{M*,£)-Z

X ( |a |
7

(2. 22) Irjgn (*, f) | <CA/lo( |a |, C) (23

Xexp[(5-^04-

(2.23) ?-,,: ^.e -> ̂ .e-p continuously if p=d-cAoA~l/K and

(2.24) r,,: Hlt^>Hii-p continuously if p=d-cAoA~l/l!,

s, s'fER and |e-5|<2-M~1/(,

Proof. We set ? (*, I) = Zr=oP? (f ) qt (x, f ) and r (*, f) = a ( (O (*, D)
^ (*,/)))(*,«-?(*,?), where R=ar(A0)A^, a>\, ?,(*, f) =Si.i-/«!'1

•""(-^J *, f) AB>(*> f)*'*'*'4' and rG40) is tne constant in Lemma 2.10.
Lemma 2. 10 implies that q(x, f) and r(x, f) satisfy (2. 17) and (2. 18),
respectively. The symbol r'A(x, f) =ff(r (x , D) *(O (*, Z>)) can be
written as

, f) =05-

if K+^+Co+^Kfl-1^^-1^ and 1^ + CoKfl-^x ^-Vt, where «5X is the
0 O g

constant in Lemma 2. 10. Then we have
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„.,(*,?, ?) #7,

[r(x,

where A/=[n/2] + l. A simple calculation gives

l« I, Q (2M) "' |0 !!• \r I

-^ and K+CoKa-1^/-1*. This gives

l/a.,(«, f, 7) I <CA,Ag( \a |, C) (2M) '

(2.25)

if |«|<fl-^-^/2, C0<2-4a-^-^ and c^^fl-^/2. Put

PA(X, f) =Zr-o^(f)2iai-ya!-1{?(*, « («-^-e)(a)} "",
/(*, f) =</(?(*, Z))s(e^) (*, Z») (x, f) -^(x, f),

where ^ = ar(^40) J1A, a>a0(>2), a0 is a constant satisfying
>22+3/%^J//! and r0 is the constant in Proposition 2. 8. Then it
follows from Proposition 2. 8 that

(2.26)

if /o>^0 + ^i+2C0 + 5 and |A0+ ^4- 2C0 + 5|<a-^o^-1/A:, where 3^o =

2~2a0<5(2~3/40~
1) and 5( • ) is the constant in Proposition 2.8. In fact,

| {q(x, De-M>-»)%w\£Cp.A(C, AJA) (22M)'*'

if p>20+tl+2C0+d. (2.25), (2.26) and Propositions 2.3 and 2.12

imply that rA(x,fi=r'A(x,ft+iA(*,ft satisfies (2. 22) -(2. 24) if £AO

<min(2-4a-1^o, fl-^/6, 2-^-^, 2~V, C0<Cyl/-^, |5|<S^-^ and

a>a0. A simple calculation yields

<c(c, A
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where ga,f (x, £ ) = (a!j8!) -%, (x, I) of (A ; *, £ ) a>a ( -4 ; *, £ ) . Here we
have used the inequalities that

X (/ft +«,+*)! (0

X ( |a| + |

i

X

Since <|>^>2(7V-1)/? if j+k<N, pf(f) =1 and f o f ( f ) = l , we have

I S i a i + w<w«:(f) (^i(f)&.fl(*, 0)fa)-^(^ f)18i I
<C(C, AJA, N, C0, J2, A0A) (2M) I41+^

X<f>y-i-i-a-i/rt

Moreover, we have

<C(C,
X e
X {max(C0,

if 24+2Ke1-Kw^0^JR
I-':max(C0, !//?)<!. Thus we obtain (2.21) if a is

chosen large enough and if CA^ is chosen small enough.

Q. E. D.

Lemma 2. 14. TTzere are symbols q(x, f), ^(x, f), r(x, f) awrf f (x, f)
such that

R(e-*} (x, D} (eA) (x,D)=l+q (x, D) + r (x, £) ,
(O (x, £>) fi(e^) (x, D) = 1 +q(x, D) + f ( x , D),

where a (I) (x, f) =1,

(2.27)

(2.28)

, and q(x,t~) and r(x,£) satisfy the same estimates as

(2,27) and (2028)3 respectively. Moreover we have
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(2. 29) (1 +q(x, D} + r(x, £>)) R(e~A} (x, D)

= R(e~A) (x, D} (1 +q(x, D} +f(x,

Remark. With obvious notations, we have q(x, f) — SaxM'a) ( — ̂  5

x, f)/a! and g(#, O^XiaxX?0 (~^; *5 ?)A*!5 and we can define g(^, f),
g (^ , f ) , r U , f ) and f(x, £) as analytic symbols (see [26]).

Proof. From Proposition 2. 8 and Lemmas 2. 4 and 2. 9 the lemma
easily follows. Q. E. D.

Lemma 2.15. Assume that a symbol p ( x , % . y , i r j ) satisfies

\a\\K\$\\K\d\\K

for (x, f),

Iptpud) (x>

where a£=R, cl and c2 are positive constants. Then there are dQ^>Q and

fi?!>0 such that p(x,Dx,y,Dy} maps continuously ^KtB to ^ KiB+p for

\e + p\<ic(nArl/K/2 and Hs
K,e to Hs

K,e+p for |e + P\<eQA~l/K/2 if I^K^
A~l/K and p — rmn(a^dlA~l/K—dl—d2\ where £0 is the constant in Propo-

sition 2. 12.

Proof. By the same argument as in the proof of Lemma 2. 5, we
have

for

if SjOCw^)"17*, where

q(x, f) =Oj- - ' > ^(

We may assume that 0<^<1. Choose %(f) e^(*} (!</C<A:) so that

=l for f | < l / 2 and x ( f ) = 0 for | f |> l . Put

- Os -

Applying the same arguments as in the proofs of Lemmas 2. 6 and

2. 7, we have
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&(*, f) |<C(2

®> (*, f) I <inf^0,i,2,.. |

X (j> • A,) "WW2

X (l-X<j/cJ)}<fy)dii£Ca.p(A)AW ljB|!*exp[XO1/*]
if

where Af=[«/2] + l. Similarly, we have

if p^ + a,- (c1/2)1*(*(fi4)-1'V2- |«! |) and |^ | <*(»4)-1/V2. In
fact,

X 0 (?/ (^<f » ) if p> ~

where ^(f) is the characteristic function of {6^J?; |f |>l/2}. There-
fore, taking d0 = mm(2-1-l/KK{(l-cl)c2/(nc])}

l/K, Kn~l/K/4) and d^min
(Z-^Kttl-cJcz/n}1'", 2-2~l/KK(c1/n)1/K), the lemma follows from Pro-
positions 2. 3 and 2. 12. Q. E. D.

Corollary 1. Let !<>!<£, 0/20? assume that p(x,£) satisfies (A-l),
Then we have

WF* (p (x9 D} u) C WF* (u) for u e a *1/,

=(/c) ty*l = (A:1) and *={/c} if * 1 = {/s^} .

Proof. Assume that (*°, f °) $ W^F* (n) . Then there are xW
and (j) (f) e (f *J such that % (#) = 1 near #°, ^ (f ) is positively homo-
geneous of degree 0 for |£|>1, 0(?)=1 if |f |>1 and f belongs to
a conic neighborhood of f°, and (/}(D)x(x)u^^Kia for any a>0 when
*=(/c) and for some <2>0 when *={*:}. So we have p(x,D)<fi(D)
X%(x)u^£*. Let &(*) eS*1 satisfy supp XiC {^ei?n; %(x)=l} ,and
let 0! (?) e (f *x be a positively homogeneous function of degree 0 for

If |>2 such that supp&n (fefl"; |f | =2} C {f efl" ; ̂ (f) =1}. Then
Lemma 2.15 implies that fa(x)p(x9 D)<f>(D) (I- %(x))ue f*1 and

^(D)xi(D)p(x,DHl-<P(D^u^^^. Thus we have ftO^fcOO^C*,
£)) u e (T *, which proves (*°, f °) $ M^F^ (p (jc, D) M) . Q0 E. D.
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Corollary 2. Let V be a conic subset of r*/J"\0, and let %(x, f) e
** £0 <2 positively homogeneous function of degree Q for |? |>1 JMC/Z

*, £)=! w^flr # D {|£ |>1} flnrf {*<E/Jn; (x, f) e supp % /or
w compact. Then, WF*(u) ft <£ = 0 if x (x, Z>) M <E (T * and

Proof. Let XiO)^^*1 and ^(f)e^* 1 be functions such that
Ii (x) 0i (?) C % O, £) , i. e., & (x) 0! (f ) is positively homogeneous of

degree 0 for | f | > M and supp Xi W0i(O PI { If I = M] c ((x, f) e
T*Rn\ %(x, f) =1} for a sufficiently large M. Since 0i

D)u-^(D)^(x)^(x9D)-l)u and ^(
1, we have 0! (D) %x U) M <E ̂  * if ;p*e<?*. This proves the

lemma. Q. E. D.

Corollary 3. L<tf ^! awrf ^2 6e comc subsets of T*/J"\0

ViC^f t i.^, V^ { | f l = l } C * 2 n { | f | = l } , and Jrf *(*,£)€=*« fe
a function such that %(x, f) w positively homogeneous of degree 0 in ? /or

2. Assume that symbols p (x, £ ) anrf ^ (x, f ) satisfy

supp ?(*,£) n {|f|>l} (n^ 2 \^ i ) =X- Then there is
q(x,D)lp(X,D^I(x,D^f^L2

K,Eiforf^Llte if |e|^ f i

|<5 |+ |<r|<£ l5 where \_A, B]=AB-BA.

Proof. We can write

Let x,- (*, f ) e rf (K) CF*R«) ( j = 1 , 2) satisfy Xi (*, f ) C % (*, f) G %2 (x, f) ,
fc(*ff)=l near^iR {|f |>l} and supp ^(x, f) n {| £ I >!} C ^2,

and put ft(x, f ) = ? U, f), Xi(^ f ), A(^5 f) = P(x, f) %2 (^, f), ?2(^ f) =
? (x, f ) - ?! (x, 6) and />2 (x, f ) - p (x9 c) - pi (x, f) . Then it follows
from Lemma 2. 1 5 that ?1 (*, Z>) ( 1 - x (x, D) ) / ?2 (x, D) x (x, D) /,

q2(x,D}pl(x,D}f and p2(x, D) x(x, D) f belong to LL', if /eLJ.B, |e|

<e;=^-1/c and |3|+ l^l^i, where ^>0. This proves that ?(!-%)
pxfEEL2

Kieiiff£EL2
KiB, |e|<£l=£l^-1/Kand |« |+ \V \ <el5 where e^O. We



192 KUNIHIKO KAJITANI AND SEIICHIRO WAKABAYASHI

can also apply the same argument to qip(\—lO and prove the asser-

tion. Q. Ee D.

To end this section we have to remark that calculus of pseudo-

differential operators in the space of real analytic functions and

Gevrey classes has been studied by many authors (see [1], [4], [8],

[22-26]).

§ 3. Hypoellipticity

To prove Theorem 1.4 we shall prepare several lemmas on

construction of parametrices in this section. As a consequence of the

lemmas, we shall prove that operators satisfying the so-called (H)-

condition are hypoelliptic in some Gevrey classes, which was essentially

proved by Taniguchi [25].

Let 0<<5<1-1A, l/K<p<l, h>\ and m, ro'e/2. We say that a

symbol p (x, ?) satisfies the condition (H ; C, A, d^ d^ 5, JV0), where

C, A, d0, dl9 B>0 and N0 is a non-negative integer, if

l a l /or any a and ft

Lemma 38 1. Assume that p(x,£) satisfies the condition (//; C, A,

dQ9dl9B,NQ) and that A(x, f) satisfies (2.13). Then there are positive

constants £A, aA, hp<A(a, l/dQ, dly B, NQ), cd, CAiAQ (C) and C(dl) and symbols

p°A(x, f) and r°A(x, f) for 0<a<aAA~l/K such that

(^) (x, D)p(x, D) R(e~aA} (x, D} =p*A (x, D) +ra
A(x, D),

\r^ (x, f) | <CA,Ao ( \a |, C) (24M) w j/3 |!^exp[-3£0<Oi/K]5

ra
A(x,D) maps continuously L2

KiB to L2
Ki2BQ if \e \ <£Q~eAA~1/K, and pA(x, £)

satisfies the condition (H; CA,AQ(C),22KA, d0/2, C(d]), B, N0-r) if h>hpiA

( a 9 l / d Q 9 d l 9 By NQ) and if aCQAQB<cd when d=l—l/ic or p=l/K, where

r=\_(m — m '+ l ) / ( l — \/K)~\. Here aA is a constant depending on AQ and

C0, and h P t A ( * « ° ) is a constant depending on A, C, A^ C0, e ° 9
8

Remark. When d = Q or p=l, we can also obtain similar results,
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which is not necessary in this paper.

Proof. Applying Proposition 2. 13 with A(x9 ?) replaced by aA(x9 f),

we obtain p°A (x9 £) and rA (x9 £) . It is obvious that ra
A (x9 f ) has the

properties in the lemma if 1A and aA are chosen suitably. pA (x9 f )

can be written as

P*A(X, f) =Z

It is easy to see that

<C(C0, A0, a, a, ft

- ( - a^ ; x, f ) - (wF^ (*, f ) ) '} (
(

Therefore, we have

(3.1) | fl$ (

,^(a, 1/J0, J15 5, 7V0)

, .

This shows that there are positive constants hp.A(a, l/d0,dlt B,N0~) and

cdi such that |/fi(*, f) | > |/>(x, f) | /2 if h>hP.A(a, 1/4,, rf1} 5, JV0) and

if aC0A0B<cdi when 5=1 — 1/« or ^=l/«. (3. 1) also gives

if h>htiA(a,l/d!1,d1,B,N0) and |a|, |/8 [ < A^0- r, and if aC0A0B<c^
fll

when 5 = 1— I/A; or p = l/ic, modifying hpi A (a, 1 /d0 , ̂  , 5, 7V0) . This

proves the lemma. Q. E. D.

Lemma 3.2. Assume that p(x,£} satisfies the condition (H ; C, A,

dQ9dl9B,NQ). Then there is C(d1,N0)>0 such that

/or |a |5 | /3 |<A^0 .
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Proof, It is sufficient to show that

(3.2)

Using the identity {/> (*, f ) 3 ( 1 /> (*, f ) } $ - - {o> (x, « //> (x, ?) } $,
(3.2) can be proved by induction on |a|+|j8|. Q. E. D.

Lemma 3. 3. Assume that p (x, £) satisfies the condition (H ; C, ,4,

4 4 B, JVo) ana1 fAaf 5<^. Putq(x, f) = *(/>(*, D) • (\/p) (x, D)) (x, f) -1
and $ (*, f ) = c ( ( I //,) (,r, D) • p (x, D) )(*,£)-!.

(3. 3) |<?$ (*, f) I < {C(dlt NQ,
+ C(C, 4,

/or |or | , I ^ I ^ J V J a n r f JVS^JV0-r-2L(JVJ)-l, a>Aer«r=[(m-m'

^(x, f) a/w satisfies the estimates (3.3) /or |« | <N0 — 2[n/2] -f — 3
|/3|<7V0-f,

Let <f><=&«> (l</c'<«) be a function such that
for |f | < 1/4 and ^(f) =0 for |f |>l/2, and write

o
where ?1(x, f) = Zi<iai<^ ( a ) (*, f) (!//>(*, f)) («>/«! and qt(x, S, 9)

Then we have

(3. 4) !?$,(*, O
for lor |,

(3. 5) 10$, (*, f, 5) | <C(C, 4, 1/rfo, dlt B,

A simple calculation yields

(3. 6) |0®, (*, f , ff) | <

X (rloMo8!^!^!) -1 1 dfD^D^ [pw (x,

<c(c, A
for |a|,|j8 | <^ and ^<7V0-r- 2L -1, where L = L(N£ and Af
[«/2] + l. (3. 4) -(3. 6) prove (3.3). Write
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q(x, f) =&(*, f) + ( f + l ) (!-*)'&(*, f,
Jo

where &(*, f) =Xi<i«i^(l/ />O, f))(a)Aa)(*, £)/«!• Then, it is obvious
that &(*,£) satisfies the estimates (3.4) for |a |, |/3 1 <N0-f. More-
over, we have

If®) (*, f ) I < Sm-r

X

<c(c, 4 i/rfo, 4, J3,
for H<AT0-2M-f-l and |/3 1 <NQ, where 1= [{(3 + /o) NQ+ (1 -/o)
/ z + l w i ' I J / 2 1 + 1, which proves the lemma. Q.E.D.

Proposition 3.4. Let N0 be a sufficiently large positive integer, and

assume that p(x, f) satisfies the condition (H ; C, A, dQ9 rfl5 5, JV0) ond that
§<p. Then there are positive constants e0, hp(l/dQ,dl9 J5), ^ anc? 5(4)

a?2rf an operator Q such that Q maps continuously LJ.e ̂ o H^'& and H%~m'
to H^B and satisfies Qp(x9D)=I on H£e(or on Z£e) and p(x,D)Q=I
on H™-™'(or on L2

Ki£), if |£|<£o=£^-^ and h>hp(l/dQ, dl9 5), and if

\e\B<cd when d=l — l/ic or p=l//c, and if B<B(d^) when p = d.

Here I denotes the identity operator, and hp(* • •) is a constant depending

on A, C, • • • . Let ^ l and ^ 2 be conic sets in T*/Z"\0 such that the

distance between ^fl {If 1=1} and &2n {|f |=1} is not less than

supp
for any d>0 (j=l,2), ^few ^r^ are positive constants

ddz, hPid2(l/d0,dl7B\cdiid2 and B' '(dj such that %2 (x, D} Q& (x, D) maps

continuously L2
K<_a to L2

Kia if Q<a<ddzA~l/K and h>hpidz(l /d0, dl9 5), awfi?

t/ aB<cdiid2 when d=l—l/K or p=l/rc, and if B<B'(d^) when p = d.

Proof. From Lemma 3. 1 with aA(x, f) replaced by £<Oi//c it
follows that there are s0>0 and symbols pB(x,%) and re(x, f) for
|e | <£0=e0^[-1//c such that

if |e|<£0, and &(*,£) satisfies the condition (//;CA(C), 22M,
0(4), 5, JV0 — r), if e and A satisfy the following conditions;

(3.7) |e|<£0 and h>hp(l/d0, dl9 J5),

— I/A: or p=l//c,
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where r=[ ( fn - fn '+ l ) / ( l -!/«)] and CA(\a\, |,8|,C),
fr dl9 B) and Q are positive constants. We set

*, D) +r.(x, D)) (I/A) (*, />)) (*, £) -1.

Applying Lemmas 3.2 and 3.3, we can see that qe(x, ?) satisfies
the same estimates as (3.3) if C(C^ A,\/dQ^d^ B^ NQ) is replaced by

C,(l/4),45,#o) and e and A satisfy (3.7) and if |a |, |/3 1 < Nm_m,

and #o^#m-«'+r+/i+/2 , where /x - \_(m - mr + n + !)/ (1 -3)], /2 =
2[(^-W'+^(/1 + l)+ | m | - m / + n + l ) / ( 2 - 2 ^ ) ] + 3 and ^^ is the

constant in Lemma 2.11. In fact, <7(re(#, Z>) (1//>E) (#, Z>) ) ( # ,£ )= 0J

— \ e~t>77rE (^, £ + 77) /?e (^ + jy, f ) -1 ^57 can be estimated similarly.

Therefore, it follows from Lemma 2. 1 1 that there is the inverse
(l+fcC*,^))-1 of (1+0. (*,£)) such that ( l+fcrHl+fc) =(!+?.)
(l4-^g)-i=:/ on //w-w' if s and A satisfy (3.7), and if B<B(dl}

when p = d, where hp ( 1 /d^ dly B) 9 crfi and JBC^) are suitable positive

constants. Put Q,s - exp [ - £ <£>>i/K] (I/A) (*, -D) (1 +?«(x, D))-1exp
[£<D>i/K]. Then Q^e maps continuously H™~m> to //»E and satisfies

p(x,D)QB=I on //r.I™ if | e |<£o- Here we have assumed that
r, and applied Lemma 2.11 to ( 1 //>E) (x, D) . Put ?E(x, f) =

(*, D) (^B(x, Z)) +r.(*, /)))) (*, f) -1. Similarly (1 +qB(x, /)))
has the inverse (1 +<?e(#, -D))"1 on //m' if £ and /z satisfy (3.7), and
if B<B(dl) when p = 8, modifying the constants. If we set Qe =

exp[ -£<D>i/ff] (1 + qe(x, D)yl (I/A) (*, D)exp K/))^], then QB maps
continuously L^i£ to H£E and satisfies Qftp(x,D)=I on //^E if (e| <e0.
Here we have assumed that JV0 ^^Vm- +r-M3 + 2[?2/2] +3, where /3 =
[(m— m'+ l ) / p ] . It is easy to see that Q,B = Q,e' on H™~m> if e>e7 and
Q,e — Q,e °n Hfj-.™' •) which proves the first part of the proposition.
Choose a symbol A(x9 £) satisfying

(3.8) |^?)H*,«

(3. 9) infL>0 sup,^L \A(x, f)

(3. 10) infL>0

(3. 11) supL>0

For example, let <p(x,g) be a function in Cl(T*Rn) such that the
first order derivatives of <p are bounded, and \<p(x,g) |<5/3, (p(x, f)

--4/3 in tfjfl {|f |>l/2} andp(*, f )=4/3 in ^2n {|f I >l/2}. Put
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f) and ^(*,0=pX*,£/<O*XOi/IE, where £,(*,£) =
/(47r)-"exp[-j(i^|2+ |f |2)/4]. If j is sufficiently large, then A(x,$)

satisfies (3. 8)-(3. 11). Let symbols pa
A(x, Q and rj,(x, £) be as

defined in Lemma 3.1 for Q<a<ddA~l/K, where dd is a positive

constant. By Lemma 3.1 ra
A(x, Z)) maps continuously L2

KiE to Z2
 i2Ei

for |e| <£1=ld2^[~1/'c:) where £d >0. Applying the same argument as

in the first part of the proof to pA instead of p, we can show that

there is an operator Qa
A which maps continuously L2

KiB to H£'B and

satisfies Q?Apa
A = I on H%e, if e <£0/4 and h>hp^(a, 1/W0, rfl5 5), and if

|e|5<^ and aCdAdB<c'^ when 5 = 1-1 A or p = lA, and if B<Bf

(rfi) when |0 = 5, where /^ irf (a, l/rf0, rfl5 5), ^ and B' (d^) are positive

constants. Here we have assumed that N0>Nm_m, +2r + /1 + /2, N0>Nm

+ 2r and NQ>Nm. +2r + /3 + 2[>/2] +3. Lemma 2.14 and the same

argument as in the first part of the proof show that R(e~aA) (#, Z))

(^ayl) (A:, D) can be written as 5 (^-flyl) (*, D) (^fl^) (x, D) = 1+ q*A (x9 D)

+fa
A(x,D) and that (1 +4'A(x, D) +fa

A(x, Z))) has the inverse on L2,E

if J £ | < £ 0 and h>hd^(a,e^. In fact, using an oscillatory integral, we

can estimate a symbol 0-(exp[£<Z>X/ff]f^(>, Z)) exp [— £<Z)>i//c]) (*, f).

Let 0<fl<min(4^-^, £0/12, £l/3), and put !< = &;&(*,/>)/(«=#?,_.)

for /£//?.-*'. By Lemma 2.10, Proposition 2.12 and (3.10), we

have (eflyl) O, Z))&O, D)f<=Hm~m'. Similarly, Propositions 2.8 and

2.12 and (3.11) imply that %2(x, D)R(e~aA} (x, D} maps continuously

#l.e to //J.e^ if |e |<e0- Thus we have

e~aA} -r*A)eaA(l

lL2R(e-aA}QaA^

which completes the proof. Q. E. D.

Let (*°, f0)eT*E"\0 and |6°| = 1, and let ^ be a convex conic

neighborhood of (#°, f °) . Choose a neighborhood [/ of A:° and a

conic neighborhood F of £° so that C/X.Tc^. Moreover, let ^j be

a conic neighborhood of (#°, ?°) such that tf^UxF. Choose <pl

(x) ^@(K'} and 02(?) e (f ( / c>) for a fixed «'<« so that ^2(f) is positively

homogeneous of degree 0 for |£|>1, 0<^(A;)^2(O < 1, supp <I*i(.x)

and ^W# 2 ( f )= l on ^ ^ { I f l ^ l } . Let
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be a function such that 0(£)=Q for |£|<1 and
for |f |>2, and write <^(f)=*(£/A) for /z>l. We set

= (! -&(*))*"+&(*)*,

), **(£)).
Then it is obvious that &(*, ?)=/?(*, I) if (x, Oe^ and

Lemma 3.5. Assume that h>\ and that

(3.12) |^o+£|> (^+ |£| ) /2 /or ^>0 and (^

Lemma 3.6. Assume that (3.12) is satisfied. If a symbol /K#5

satisfies

^ for Or.

then

m&(x,& \<c(c,
for h>2ha and (x, I) e T*JB",

Proof. It is sufficient to verify that

(3. 13) | $ffl$#Zj (*(*), 5,(O) |< (2V5)"»lC^{al+w(2V5^)W+"'i

x ( |« I + |/5| + Irl + M)!'<Orl"MrlEI-Jo+l"&V*!'-1

for h>2ha, where i^iCl/^j). (3.13) can be proved by induction
on |a | + |j8 1 if A^>Ca.^A. Q. E. D.

Lemma 3.7. Assume that (3.12) is satisfied. If a symbol p ( x , g )
satisfies

(3.14) !/>(*,£) I >4,<Om>,
(3. 15) \p%(x, &/p(x, f) l ^ r f i - i + i " " " - " "

for (*,

(3.16)
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for (x,£)<ET*Rn and h>2h0

(3. 17) !#&(*, ?)/&(*, f) |£W+""<Or-"a

for (X,^^T*R", |«|, \P\<N0 and h^

where B, = Ca,^B, C,itl.^>Q and h(l/B1} ha, 7V0)>0.

Proof. (3. 16) is obvious. We can prove by induction on |a|4- 1/3 1
that

+ \»\/£ \*

if /z>/Kl/5i, A0, Ag, | a |+ | r l<^ 0 and |/3 ]+ |v| <^0? using ?<! and
This proves (3. 17). Q. E. D.

Proposition 3.8. Let U°,f°) eT*lS"\0? anrf /*f <g be a conic
neighborhood of (x\ f°). ^J5wm^ fAflf 0<3<l-l/«, l /«</o<l

fl^rf that p(x9 5)^5? satisfies (3.14) anrf (3.15) /or (*, £)
| f | > A 0 ( > l ) ^rf | a |, | ^ |<JV 0 ? and p(x,D} is properly supported,

where NQ is a sufficiently large positive integer, m? mf ^R and h0, dQ, dl

and B are positive constants. Moreover assume that 5<^l — l/ic and p^>l/K
if *=(«). Then there is an operator ££, which maps continuously &*' to
&*', such that

-f) U WF*(&pf-f) for
\ f °)

Remark, (i) Taniguchi [25] essentially proved the proposition by
his method of multi-products of pseudo-differential operators, and
constructed Q as a pseudo-differential operator, (ii) The proposition
implies that p (x, Z)) has a microlocal parametrix at (#°, ?°) modulo

^ * and, therefore, /? (*, D) is hypoelliptic at O°, f °) (in ^ ) with
respect to ^*. (iii) When p=l or 5 = 0, the proposition is valid,
modifying p and d.

Proof. We may assume that for any ^4>0 there is C =
(resp. there are ^4>0 and C>0) such that

l^ ((Sl(*,f)I^C^ l a l + w ( |a | + |j8|)!XO""lal for U, f) eT*fi»

if *=(«:) (resp. if *={*}), and that |£°|=1 and (3.12) is satisfied0
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By Lemmas 3. 5-3. 7, Proposition 3. 4 can be applicable and there is
an operator Q^, which maps continuously L^e to //*'e and H™~m' to
H™B and satisfies Q,hph = I on //*B and phQh = I on //£lm (/" £ and A
satisfy the following conditions ;

(3.18) \e <e1=fZ7xr.y1-4~1/" ^ ^^s.z/xr.^O 74, ̂ i, A0)

5=1— I//: or p=l/K.

Fix A>0 so that A satisfies (3.18). If *=(A:), then ^4 can tend to
zero. So, for any e^R we can define

where A' (>A) is sufficiently large according to |e|, when *=(«).

In fact, M/=/ and Qj>hf=f+ (&, - &) (&-£,)/- ft* (#*--?*•) (!*-
(&-&-)/ = / for /e//-r ', since A ( ^ f ) = ^ ( * , f ) for j f | > 2 A ' .
This implies that Q. does not depend on AX

0 When *={A:}, we define
& = &*. Then we have

(3. 19)

e! and |s <sl5 and if A' (>A) is sufficiently large
according to ex (or ^l"1) when *=(«), and if e and A' (>A) satisfy
(3.18) when *={^}, modifying luxr.^ Let ^(^)e^ ( /c ) and %(^, f)

e ^ (/c) (T*Rn) be functions such that ^(#)=1 in a neighborhood of
U, %(A:, f) is positively homogeneous of degree 0 in f for !?|>1,

0 < % ( x , f ) < l , supp x C ^ O n l l f N l l G * ! and %(x, f) - 1 if (x, £ )
belongs to a conic neighborhood of (#°, ?°) and |? >1. We write
X^^i for (#°, ?°) if x(^j f) has the above properties. Let Xi(#,O
e^w(7^JR») satisfy %i^X for « f°), i.e., ^e {(*, ^) ; *(*, f) - 1,
|f |>1 and ^>0} for (x°, f°). We set QJ= Qx(x,D)<p(x) f. Then it

follows from (3.19) that (^ maps continuously ^*x to ^*/ and ^*
to ^ *. In fact, if *=(«), then ^4 can tend to zero and e1 can tend
to +ooa So, for any %>() Q^h. maps continuously L^E to H™'B if
*=(/c), |eKej_ and A' is sufficiently large. We have also

- Ii9f= UP (19 ~

for f^@*f. Taking A' sufficiently large according to fa and %, it
follows from Proposition 3.4 (pseudo-locality of Qh-) and (3.19) that

iAk' (wP -
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and HOi, and if \e\ is sufficiently small according to B,

d^ & and % when 5 = 1— I/A: or ^l/*:, modifying ££7Xr,<gy This

implies that faQpf-fof^tf* for/e0*', since <5<1-1A and /o>!A
when *=(*:). Assume that /GE^*' and (*°, f °) $ WF* (/) . We may
assume that /eef*'. Then there is &(*, f) <E <£ °° (r*jRB) such that
&C& for (*°, ?°) and & (#, D) /e <? *. In fact, by definition there
is £ (*, O e <f u> (7^/j») such that x^Zi for (x°, f°) and Rf(x,D)f^

ff*. If X2<^% for (*°, ?°), Lemma 2.15 implies that &(*,!>) ^%
(x,D)f-'h(x,D)f^ ff*. Let ZS(A;, O (Eg(K)(T*Rn) satisfy %3^x2 for
(x°, f°). Taking A' sufficiently large according to %2 and %3, Lemma
2. 15 and Proposition 3.4 give

where ^(/zO^O and ei(h') -> oo as /zr — > oo when *=(A:). In fact,
we can write

*i(*, O =z(*, O (i -x*U, O), ^2(^, f) =x(
where x4(^ O e <? (A:) (T*/2n) satisfies x3(^&C%2 for (x°, c°). On the
other hand, we have &O, D)Q%2(x, D)/e <f*. Therefore, by (3.19)
we have & (x, D) Qf e ^ *. Corollary 2 of Lemma 2.15 implies that

Q.E.D.

§4. The Microlocal Cauchy Problem

Modifying p (x, Z)) and using pseudo-differential operators of
infinite order, we shall reduce the problem in Gevrey classes to the
problem in the Sobolev spaces and construct the inverses of the
reduced operators in this section. Then we can construct microlocal
parametrices of the microlocal Cauchy problem in Gevrey classes and
prove microlocal well-posedness (see Theorem 4. 1 1 below) . Theorem
1.4 easily follows from Theorem 4.11 (see §5). In this section we
assume that p(x,£) satisfies the conditions (A-l) and (A-2) with ^
replaced by K (>1). Let ^° = (*°, f °) e T*R»\Q, | c ° | = l and £e
7^o(T*/J"), and assume that pm(x9 f) is microhyperbolic with respect
to -9 at <;°.

Lemma 4.1. ([30], [33]). Let M<^r(pmz*,$). Then there is a
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neighborhood <% of £° in T*Rn\Q such that pm is micro hyperbolic with
respect to &^M at z<=<%, and MdF(pmz,^ for

Define for v<=T2o(T*Rn)

pm(x, £ ; v, 0 =Si-o(-to)'A.(*,

where l = [i(z?) and v is regarded as a vector field. By definition
there are a neighborhood <% of £° in T*Rn\Q and positive constants
c and tQ such that

(4.1) \pm(x,G;$,t) \2:ctl for (*,£)€=# and Q<t<t0.

Lemma 402B Let M be a compact subset of F(pm^,&). Modifying
^, c and £0, we have

(4.2) IA.(*,£;M) !:><*'
(4. 3) I d>p<$> (*, £ ; v, t)/pm(x, f ; », 0 | <C(a, p)r™-w-J

if (AT,

Remark. Without applying the Malgrange preparation theorem,
we can also prove the lemma if only />„(*,£) eC/+5(r*R") and 0<<5

Proo/. Let xU, f ) eC0°° (T*Rn) satisfy supp %C { \x \ + \S I <2/z} and
X ( ^ f ) = l for kl+ |f |</z, where A>0, and define an almost analytic
extension of pm (x, f ) by

(itf a ( - J yp$n (x, f )
(x,Z}^€ and (y, 77)

where i0=l and {6A} c/J is a rapidly increasing sequence. Then
we have

(4. 4) \Vt%D>{pm((x, f) -to) -pm(x, f ; », 01 I <^o I* ll+1'y

if £<EJJ? U | < ^ 0 ? (x, £)&<&, j<l and |a |+| j8 </. From Lemma 2. 6
in [33] it follows that

\Pm((x,ft-itv) \>c,tl for (x, £)<=<%, v<=M and 0<t<t0,

modifying ^ and t0 if necessary, which proves (4. 2) . Applying the
Malgrange preparation theorem, there are a neighborhood Vl of £°,
<5>0, «fe,o,OeC-(*"1xMx[-3,3]) and flyfe»)
</) such that fl,-(^»)=0 for y<EAf and \<j<l, pm
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(*,M)=£0 for (*, 0, 0 e^xMX [~M], and g(*, M)
U ? y)^~ 1 H ----- h ^ z f e y)=£0 for fe 0, 0 e#i X M xC and Im
In fact, by Mather's proof of the Malgrange preparation

theorem we can obtain the above assertion without dividing M (see
[30]). Applying Theorem 2 in [32] to gfe v, 0? we have

if O, £)^#i, y^M, £<=C and — l<Im £<0. On the other hand,
(4. 4) yields

|3{ (A,(*, f ; M) -*(*, e, », -iOg(*, f, », -a))® I <c; \t \i+i-j

for ^e/J, \t\<t09 (x, f) e*, j</ and | a | + | j 8 | < Z , modifying * if
necessary, where 0 O, 6, y, t + z'r) is an almost analytic extension of
*(*, ?, M) in ^ This proves (4.3) for j<l and |a |+ | j8 |</ . It is
obvious that (4. 3) is valid for j+ \a\+\p \>l. Q. E. D.

Corollary. Let M be a compact subset of F (pmzo, -S) . Then there are

a conic neighborhood ^ of £° and positive constants c and tQ such that

!/>»(*, £ ;» (£ ) , * l f l

, »s) /or o=(»,,o f

Proof. It is easy to see that

#& (*, f / 1 f I ) = Z i=o ( - 0 'Wi, (*, I/ 1 f I ; »,
On the other hand,

Therefore, we have

\P^(x,^

< If |- |BlZi-o <y 1 9<^) (*, f/ If I ; », 0^.(*. f/ If I ; », 0

if (AT, f / | f |) e1^, ye A/ and 0«<<0. This completes the proof.
Q. E. D.

Now assume that K><£0= min {2, //fe0)/ (f*(z°) — 1)} if * = (*:)
and l</eO0 if *= {«}. Let <p(x, f) eC2(T*/Jn\0) be a real-valued
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positively homogeneous function of degree 0 in f such that £>(£0) =0

and -H9 fe°) = -£?=1 {(3p/3f,) (*°) (3/3^) - (3p/3*y) fe°) (3/9?,)} e

r(pmzv,$). Choose a compact subset M of F(pmzo^-9) so that $eM

and —H9(z?)G.M. Then there is a neighborhood ^ of £° such that

M^r(pm,9$) for £<E<^. For given /<EE^*' with PfF*(/) n {?(*, f)

<0} n^— X, we shall consider the microlocal Cauchy problem at £°

(MCP)

where

Lemma 4.3. Z,e/ Afj ie a compact convex subset of r(pmio,&) such
that McMlcF(pmz,-9') for zf^W . Then there are symbols Ah(x, f)
(A>1), a convex conic neighborhood "^ o/ ^°, ana? positive constants e1; C0,

^40, Cj and cz such that

(4. 5) i Ah (X, e ) i <
(4.6)

(4.7) 1 4 (*°, «°) | < c^W-* for *>h,

(4. 8) Ah(x, f) < - (p(*, f) + |x-x0 ]2+ |f/ |
/or (x, f )e^ and

(4. 9)

- (3
/or (x,&f=V, \£\>h and \y

Proof. Put

(4. 10) ft(*, f) =ft(*, f) (1 +ft(«, f)2)-^2,

and choose 5,,ejR so that (p(x, f) < ft(*, f) - 2( |x- A;° |2+ |f - f° |2)
for k-x°|2+|f-f° |2<l and |f| = l. If we set Ak(x, f) = -%(*, f/

<OsJ <!? )i//c and 0 (0<0<1) is chosen appropriately, we can show
that 4k(*>£) satisfies (4. 5) -(4. 9). It is obvious that Ah (x, f )
satisfies (4. 5) . Noting that ft (#, 9) is a polynomial of (x, 9) , there
are L>0 and (1» c>0 such that Re ft(x, 5j) 2>0 if (X,T?) eC"X
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C\ |Re x-x°\>L, |Im x\<c\Re x-x°\ and |?|<3. Then Cauchy's
estimates yield

for (x, j?) eT*R" with 1 /2< |3? |<2. From Lemma 2.2 (4.6) easily
follows, where J0 depends on 6. (4. 7) is trivial. It is easy to see
that

/ if I) -?>(*, f) - ift(*, f/ 1? I) -ft (*, f/<f>») I
*,f/<f>«)-ft-(*,f/<f>»)i,
If I) -ft (*, f/<f>«) I <^2 l^fe°) KOii1 If -V2

and that there are ^>0 and 0,,>0 such that 9f<\ and

lft(*, f/<f>«) -ft(*, f/<f>«) I < lft(«, f/<f>») IV2

|x-^°|2+|f/ | f |-f°|2<^ and \£\>h, where cj>0. Here
we have used the inequality that |f/<f>»-f/ If | | < ^XOw1 If I"V2.
This proves (4.8), taking 0<09. A simple calculation gives

^(*,f)=ft%(*,f)d+ft(*,f) !)-w for |a | + | /3 1 = 1,

ftU (*, f) =P<3i (-2°) +25
/or |«

*'' (* f) = -Si-?*' (

where e,= (0, • • •, i- • •, 0) <= (7VU {0})". Moreover, with Cv>0, we
have

lft(*,f/<f>«)
/or |x-*»

i-iP?*' (*, f /<f >«) f »<f v; I < ( I r# («•>) i + 2 1 5 ,

since f°'F^(^0) =0. Therefore, we have

ep (*, f) +ve'} a°) I + Kf >»-1A4s., (*, f)
<c;{(k-^° 2+
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if 0<l/2, |*-*°|2+ I f / I f | - f° | 2<l/2 and | f |>/z. Taking V and
6 sufficiently small, Ah(x, £) satisfies (4.9). Q.E. D.

Lemma 4.4. Modifying a conic neighborhood *% of £°, there are
symbols Wh(x, f ) ( / z > l ) and positive constants C'Q and A'Q such that

*"{ If I2 I W(*, o
/or (*,

where e1(<^2) and cl are the constants in Lemma 4.3.

Proof, There is a conic neighborhood ^ of £° such that
and

modifying ^. Choose w(x, f) eC2(T*/Jn) so that the first and second
order derivatives of z0 are bounded, and 3^/4 <! z0 (#,?)< 2, w(x,£)

= 3^/4 for (*,£)£* with | f | > l / 2 and a ; ( j c , f )=2 for (x,f)$*
with | f | > 1 /2. Put wj (x, f ) = £,*«; (x, e ) and Wk (x9 f ) - zi;, (*, 6/<O*)
X<Oi/fi

? where £,(*,« =jk(42r)-»cxp [- j ( |x |2+ |f |2)/4]. If j is
sufficiently large, then M^A (A;, f ) satisfies the conditions in the lemma.

Q.E.D.

We may assume that for any A^>Q there is C=C^>0 (resp. there
are ^4>0 and C>0) such that

if *=(jc) (resp. if *={A:}). From (4.1) it follows that

(4.11) Re{(^0

for (*,£)e# and ^0/3<^<^, where c0 = pmzo(-ify ( = pm(x\ 5° ;«, 0
X f ~ ' ) , modifying ^ if necessary. Let # and V j ( j = \ 9 2 ) be conic
neighborhoods of ^° such that ^ 0 ( 1 1 1 = 1}^^, ^^^2^^ and
Lemmas 4. 3 and 4. 4 hold for V . Let & (*, f ) e * (K) (T*«»\0) (j= 1, 2)
be positively homogeneous functions of degree 0 such that 0 < fa (x, ? )



MlCROHYPERBOLIC OPERATORS 207

< 1, & (*,?)= 1 on #„ supp &C #2 and supp
ff(f)e^w be a function such that 0 < f f ( f ) < l , ff(£)=l for |?|>1
and ff(£)=0 for |f |<l/2. We set for h>\

&,.»(*, f) =**(£)&(*, £)£.(*, £ ;

AC*, f) =&,.»(*, O +ff»(f ) (^(*, f) -^«(*, O),
where «74 (f ) = a (f /A) , 5 = (S, , ̂  ) and 5 (f ) = (8, / | f | , ̂ ) . Note that

&,.*(*,£)=/>„(*,£) and A (*,?)=/» (*,O for (*,?)£«-! with | f |>2A,
and that ^(x, f) =^v (*, f) if A '^A and |f | >2A'.

Lemma 4.5. There are positive constants C'=C'K ,x ,,.ji(C) and d0

and ha>\ such that

(4.12) |^ )U,f)|<C'(22^) !a |+^(|«|+|^|)! t<f>r | a !,

(4.13) !&(*,£) | 2>4><O? z/ (*,«$«' 2 ^ |f \<h and if h>ha.

Proof. Since <f ><<?>„ < VXf> for A > 1 and || | > h/2, (4.12)

easily follows. If |£ |<A/2, then A.*(*, f) =co (*o/3)'A". If A/2 <
| f |< /z , then / o / 3 ^ < o { A / i e i + d-Xi(*,f))}/3^*fl . Therefore, (4.11)

gives

where m+ = max(m,0). Since <0/3<*0{(1 -ff2A (£)W|f | +l}/3 < «0 for
|f |>/z, it follows from (4.11) that

Re {&/kl)A,.*(*,£)}^k>l(*o/3) '

i f i f i ^
So there is d0>0 such that

!&,.»(*, f ) I >2a?0<O? i/ (*, f ) $ ^2 or \£\<h.

This proves (4.13). Q.E.D.

Applying Proposition 2. 13, we can write
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(x, Z»*exp[-fl4] (x, D) =pl"(x, £>) + rf»(* f D)

if 0<a<M~1//c and -\<b<\, where ^ (*, £) =4*(*, £)
d0>0, !>0 and

C) (22+2M) ""
X /f \m~(1~1

*(*, f) =ft'*U, O -Siai

X {A(/D (

|a |9 C)

Lemma 4.6. For ^ /^rf ^0 there are positive constants ap, hp(a)9

CA(C), Cp, c and cl such that pa
h'*(x,$) satisfies the condition (H ;

CA(C)9 c^A, ca\ CP, a~\ N0) with m'=m-(l-l/k)l, d=l-l/K and
p=l/K defined in §3 if Q<a<d0A~l/K, -l<b<l and h>hp(a)9 and if
a>ap when K = KQ. Here ap, hp(a) and Cp do not depend on the choice of
A when *1 = (K^.

Proof. When (x, ?) $ ^2
 or \£\<h, by Lemma 4. 5 we can apply

Lemma 3.1 with 3 = ( 1 — 1/*)/2 and p=d + l/K. So it is sufficient to
estimate #•*(*, f) for (^, f) e^2 with |f | > h. Let (^, f) e^2 and
|f |>/z. Then we have

#*(*, f) =/4.* (*, f)
#«.*(*, f)=^(*,f ;*(f) , 4 (*,«),

where

!l8!)-1^-U(*, f)

x Ca)

C*, f) +S
- Ca)

Put

^t* (*, O =£.(*-*(*, 0, f-^(*. c) ; »,(*, f), »«(*, f), d(*, ?)),
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», (x, f) = rf (*, f) -' ft (
z>« (x, £ ) =</(*, f ) -1 fa (*, f )^ -«Mi (x,

where {/, g} = S^ { (3//3£ ,) (3g/3x,) - (3//3x,) (3g/3f,) } . Note that
there is A(a)>0 such that (*-JSr(x,f), £-S(x, £)) e«if if /z>/z(a)
and — 1<6<1, ((x, f ) ^ ^ 2 and ?|>//). From Lemmas 4.3 and
4. 4 it follows that ( £\vz(x, £), of(x, f)) eMj. Therefore, by Corollary
of Lemma 4. 2 we have

(4.14) l&.'* (*,£)!£«*(*,£) 'I

if h>h(a), modifying h (a). A simple calculation gives

h

a |

where ^(a)>0. It is easy to see that

(*, e)«,/iei)'
I (*, f ) ) a (aFf ̂  (x,

x

x
x
X (^ (x, f ) / I f I ) gJ) (iaF,^ (x, e) ) «y (flT^ (*,£)) ̂ J' (

where N=\a\+\p\^l. Then we have
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-1 if h>ht(a),

modifying hp(a). Therefore, we have

#.»(*, f) =Ziai|+l^, + l^ l+,,2

x />„$:$(*, f) (-£(*, or'c-iJrC*, £)/(-«/(*, £)»«

X (rf(*, ?)»,(*, f))"2+^=ft.l»(*, O + ^2 + ̂ 3,

where l^/fti.U*, f) l^flCKf)!/-1 if A>A,(«) and

X (-iX(

It follows from (4.14) that IV^tU*,?) < a^'XOf"1 if * ^
So we have

\Ki\(x, f ) -#i\(*, f) I/ I#S.\(*, f ) I < 1/6
if h>hp(a). The same argument as in (4. 15) yields

!&>(*, O/^iU*, f) i^c^-""-'"^*0-17""1-""*
if h>ht(a) and |a|+||8|</. This implies that

1 51: ? (*, O /#1A (*, e ) I < 1 /6 if h>hp(a\

since

| K ( - a^ ; x, f ) - (iaTA (x, e ) ) «} gi | < C (a, a, ft a)

a, ft a)
a|

• x, ^a>a(-aAl • x, £)} f|> | <C(«, ft a, ft a)
X <(f \l«l/*-<i-i/*>l f ll-l*l

It is obvious that

I Jl:5(*, f)/#i*U, f) I < 1/6 i
When K = KQ, we have also

.*U, f)
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where ap^>0. Thus we have

if h>hp(a), and if a>ap when K — K^^ where c'^>Q. Similarly, we have

if h>hp(a), and if 0>fy when AT^/CO. Here we have modified hp(d)9

if necessary. This proves the lemma. Q. E. D.

From Proposition 3. 4 (or its proof) and Lemma 4. 6 it follows
that £?•*(*, D) + rS-*(x, D) has the inverse Q^6, i, e., &J-6 maps
continuously L2 to Hm-(l~wl(c:Hm) and H(l~lMl to //m, and satisfies

fit5(?f*(^/))+r;-*(^/)))=/ on H- and (#f * (*, D) + rf» (x, D) ) a?'6

=/ on H(l~lMl if fl, 6 and h satisfy the following conditions;

(4. 16) Q<a<dQA~l/K
9 -l<b<l and h>hp.a9 and a>ap when K = KO,

where hpiff and ^ are positive constants. By Lemma 2. 14 and
Proposition 3.4, for any s>0 there is /zflO)>0 such that 1+gJ *(*,/))
= *exp [-<L4J] (*,/)) expMJ](Ar, Z)) has the inverse (1 +ql'*(x, J9))'1

which maps continuously Z£E. to L|iE- if |s'|^£
5 h>ha(e)9 a>Q and

— l<b<l. Let us introduce the following spaces.

Definition 4.7. Let A(x,£) satisfy (2.13). For je/J we define
, and write L*A = H°A, Hi.t = H'mJ and LJ.,

Lemma 4. 8. (i) /e//s if and only if R(e~A} (x, D}f^Hs
A. (ii) //

and k(x,£) satisfies

for \a \<cAA^l/lc, where cA>0.

Proof. By Lemma 2. 14 we can write

*(f-A) (x, D) (e"A} (x, D) =\+q°K (x, D) +r{. (x, D),
(e°A) (x, D)R(e-A} (x, D) = 1 +ft (*, D) +ft (x, Z)) ,

where h'>\ and

|?:% (*, f) I <c,A/lal+w ( |« | + 10 D " - 1 ' 1 " 1
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9fr(*,O=0 for |6 |</i',
ri* (*, D) : L2

KiB -* L* .. /or a*? s, s'

and % (#, f ) and fa
h- (#, f ) have the same properties as qa

v (x, £ ) and
rj- (# ,£ )> respectively, From Proposition 3.4 it follows that l+ql-
(*, D) and 1 4- ̂  (*, D) have the inverses (\ + ql> (x, D)) -1 and
(1 +<?fc''Cx3 D))"1, respectively, which map continuously Z£e to L2

Ki£

and //|,E to //|ie? if hr is large enough and \£\<Ail/K. Then the
assertion (i) is obvious. Using (2829)9 we have

(emA) (x, D)k(x,

if f^HaA and |fl|<^-4r1/K9 where c^>00 Here we have chosen h'
sufficiently large according to A±. Modifying CA if necessary. Proposi-
tions 2.12 and 2.13 imply that (eaA) (x, D) k (x, D) R(e~aA) (x, D} maps
continuously Hs to Hs~m for \a\<cAAil/K. This proves the assertion
(ii). Q.E.D.

Lemma 4890 Let A(x, £) and A'(x,£) satisfy (2.13), where h>l,
and assume that a symbol q (x, ? ) satisfies

\q®(x, f) |<<V*'+W |a |!'

7/infL>0 supu.{)6suppgU,?).l?|aL(/l(^f
(eA) (x, D) fl(e-^') (*, D)f and (eA) (x, D)q(x, D) R(e~A") (x, D)f belong to

It..-t for

Proof. By Proposition 2. 8 we can write q (x, D) (eA) (x, D) —

q (x, D) + f (x, D) , where q (x, f ) = Z,-_0 Z ,«,.y "I'1 ^f (f ) ?(a) (*, f) X
0^') <a) and f(x,Z)):LJ. .->£,»„. continuously for any a, a'&R. It
follows from Corollary of Lemma 2. 9 that

Xexp [XO1/ff + ^(x, O] /or any

and that supp q(x, f) Csupp q(x,£). Since ^(*, f) and ^'(x, f)
satisfy (2.13), there are ^>0 and c2>0 such that infL>0 sup [(A (x, f +

3?)_^(^+J;3f + 1?))<f>-i/- (x,f + 7)esupp? f |f |>4 |^|<q<O and

bl<^2}<£- Applying Lemma 2B 15 to #(*,£) *(e~A") (x,D), we have
?(*,D) R(e-A')(x,D)f<=El2

Kia..E for /e LI, a9 which proves that y(*,D)
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X (eA) (x, D) R(e~A'} (x, D)f<=L2
Kia_B for /£/£,. Similarly, we can prove

(eA) (x, D)q(x9 D) R(e~A'} (x, Z))/e=L2iM for /€=££.. Q. E. D

Let us construct parametrices of (MCP). Define Qj'6 by

ai-*/=*exp[-fl4:i (*, D} &•* expMD (x, D)f.

Then Q,t* maps continuously L2
fl,& to H^(l~lMl and //^r1"0' to //£6

and satisfies Q£ lpfl(x,D)=I on #a
m

& and ph(x, D}Q^b = 1 on //^1/K)*
if a, 6 and A satisfy (4. 16). In fact, by Lemma 2. 14 and Proposition
3. 4 we may assume that 1 + ql b (x, D} = exp [aA\~] (x, D) *exp [ - aA\~\

(x9D) has the inverse (I +qa
h'

b(x, D))"1 which maps Hs
KiB to Hs

KiB if
\s\< \m\ + (l-l/K)l, |e |<4fl, -1<6<1 and A>AA a . We may also

assume that ( l+^> 6(x, Z)))"1 maps continuously Z£e to -Lie if |e|<4fl,
— l<i<l and h>hpia. From Corollary of Lemma 2. 9 and Proposition
2. 12 it follows taht *exp[-fl4J] U, D)g(=L2

K ,_4 a for £<E//S, where
fl>0, -1<6<1 and /z>AA a . So, by (2.29) we have

(4.17) ^^expC-fl^t] (*,/))(! +«•*(*, Z)))-1 exp M3 (*,/))/

Z, fl>0, -1<6<1 and A>A A f l . This implies that

aA\-\ Q- *exp

and a, i and A satisfy (4.16). Similarly, we can prove

'*f=fi{fE^H^l/K}l and a, b and h satisfy (4.16). From
Lemma 4. 9 and (4. 17) it follows that //*>6C //*>._! for j

-1<6<! and A >*,,.. Therefore, we have dl''lf=Qjhl3f if
and fl, i and A satisfy (4. 16). Fix A sufficiently large and define
by

a^Qjf-'-Y'-Qjrw*, £>) -&• c*.
for f^H$~l{Kn, where af and A7 satisfy (4.16). Then, by the same
arguments as in the proof of Proposition 3. 8 Qh does not depend on

the choice of a, a' and Ax, and satisfies ph (x, D) Qhf= Qh Ph (#5 -D) / = /
..! and a' satisfies (4.16). Moreover we have

-\Ml and a' and A' satisfy (4.16). Here we have modified
d0 if necessary. So Qh maps continuously L2

a-tt to //jr8
a~1/j0' if a' and
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b satisfy (4.16). To obtain this result we used Ab
h instead of Aha

Let %(x, £)<=£™(T*Rn) satisfy x^^i for £°. Here we have used the
notation in the proof of Proposition 3.8. Choose </>(x)G@(K} so that
0(x)=l in a neighborhood of [x^Rn\ (x, £)^(&l for some

and define ft by ft/ = ftrf (*,/>)#(*)/. Let & (*, f) e <T (fi

satisfy Xi€=x f°r £°- Then we have

fc(*,/>)p(*,0)ft/-fc(*,/^^

if /e/fgyij01 and a' satisfies (4.16), where eJ=fU~1/<B and ^>0.
Define 4 (*,£), replacing ft(*,£) by ft(*, f) -2( |*-*° |2+ |f-f» |2)/3
in the construction of Ah (#, f ) in the proof of Lemma 4. 3. Then we
may assume that A'h (x, f ) satisfies

for (^, f ) ^^ and |?|>1. Let us prove that ft is a left microlocal
parametrix of p on H^A'k+bW]f. Let f<=H™(A>h+bw^, and let % ( ^ O ^

^ («) (T^/J") be a positively homogeneous function of degree 0 in f
for | f |>l such that 0<%(*, O<1, supp ^Hsupp (1 -*) n {If I =1}
C {(*, f)^^*^B"; %(^, f) =1} and supp £(*,£) is included in a small
conic neighborhood of supp xHsupp (1— x ) n { | f | = l}. Assume that
a and h satisfy (4.16). Then it follows from Proposition 2.8, Corol-
lary 3 of Lemma 2. 15 and its proof that

(1 -*(*, D))expMn (*, D) \.p, ̂ ]/eL2

if b, 6'e[— 1, 1], modifying d0. On the other hand, Lemma 4.9 and
(4.17) yield

*(*, D)expMn (*, /)) [A
X

if *'-*<2*0=inffa.e)«illppf(|*-*»|'+ I f / I f I -f°|2)/4, where 1 +ft«-»
U,Z)) = exp[a(4+6^)](^JD)sexp[-a(^+6^)](x,Zl). We may
assume that b0<2. So we have [A X^]/e-^ln-»0 if — !<&<!— 60-

This gives <2.*[A^]/e//3"l«2-
IA)' if |^|<V2. Modifying Zi, we can

assume that

infL>0

Then, by Lemma 4.9 and (4.17) we have
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vflfeLl^wif \b\<bQ/2.

This implies that

if \b\<b0/2, where c0>0. Now assume that /<ES*' and WF*(f) R
^c{^(^,O>0}. For a fixed b with -60/2<&<0 there is af>Q such
that

(4.18) x(

if fl><3/ when *=(*:) and if 0<^a<af when *={/e}. In fact, let
Xz(x9 f) e ^ ( f f ) (T*/Jn) be a positively homogeneous function of degree
0 in £ for |£ |>1 such that 0<fc(*, £)<!, &(*,£)=! if £ |>1 and

lim sup^+00(^(*,«)+A^U,^)/4) (^ir1/K<0, and fc(*,£)=0 if
] f | > l and lim inf^+00(^(^^)+*^(^^)/2)(^|f |)-1A>0. Since

lim inf^_4(*,^)(;Mfir1/K

for (x, c) esupp Z 2 n^ with | f |> l , applying Lemma 4.9 and the
Paley- Wiener theorem for g*r (see, e.g., [18]), there is <2/>0 such
that x2(^D^(x,D^(X)f^H^lMlnH^h+bWh, if a>af when * = («)

and if <2>0 when *={>c}. On the other hand, we have (1 —
to(x,D»X(x,D)</>(x)fef*, since te(x,f)^land |f = l } n ^ C { ^
(x, f)<0}. This proves (4.18), taking <2/(>0) small enough when
*={K}. Noting that A can tend to zero when *=(/c) and, therefore,
a can tend to oo? we have X i p Q f — X i f ^ t f * and XiQpf—%if^£*.
In particular, if /<E^*' and WF*(f)n& = 0, then there is fl/>0
such that %(#, D)0 (#)/£!£ i for any <2>0 when *=(/c) and for
0<fl<a/ when *={/c}. This implies that Q/e<f* if /e^*' and
W^F* (/) (1^ = 0. Therefore, we have just proved the following
microlocal version of Holmgren's uniqueness theorem, which is neces-
sary to prove that there is a conic neighborhood ^3 of £° such that

f o r G E ^ * ' with

Proposition 4. 10. Assume that p(x, f) satisfies the condition (A — 1)
(A-2) zw'fA /TX replaced by tc (>1). L^ ^°er*JfJ"\0, fl72rf fljjwwz^

that y(z) eC2(T*/?"\0) w real-valued positively homogeneous of degree 0
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in £ and <p(z°)=Q and that pm(z) is micro hyperbolic with respect to

-H9(^ at <;°0 Then zf<£WF*(u) if uE^@*', z°$WF*(pu) and

WF*(u) PI V n fc>(*)<0} = 0 for a conic neighborhood % of £°. Here *
denotes (K) or [K] .

Let /e 3*' satisfy PFF* (/) n V c {?>(*) > 0} . Then
for a fixed i with — 60/2<6<^0, and a>af when *=(*:) and
when *={*:}, if 0 satisfies (4.16). Therefore, we have M^F
{fc(*,O<3*} = 0, since infL>0 sup MJ (x, f ) | f | -1/ff ; ft (*, f )<36 and
|f |>L}>-^ where ft(x, 6) =ftU, f / | f | ) and ft(*) is defined by
(4.10). We may assume that —H9(z) and —H$(z) belong to

for ^ey 4 = {(*,?); ^-^°|2+ | f / | f |-f°|2<re and WF*
) H ̂ 4= 0 , where r0>0B Let C(*, f ) eC2(T*l?M\0) be a real-

valued positively homogeneous function in f such that 0 < C(*5 f) <1,
andC(* , f ) = l if l*-*° I2+ If/ If I -f° \2<r\ and C(^5 f) =0 if \x-x°\2

+ |f/|f I - f° | 2>4rf , where 0^ (<r0/2). Then we may assume
that |/fc(*,f) l-O^f1) for | f |= l . Since |^(jc, f) -ft(x, f) | - 0( |*
- ^ O l 2 + l f / | f | - f ° i 2 ) , w e have -//^fe) er^^) for ̂ e*4 and 0GE

[0, 1], if |4| and rx are sufficiently small, where ^e (^) — 5 {C (z) <p (z)
+ (l-Cfe))(f tfe)-36)}+(l-^)(^2fe)-3i) . Now assume that there
is 0EE[0, 1) such that M^F*((i/) H fee«'4 ; ^fe) =0} ^ 0 . We set
00=inf {^e [0, 1) ; WF*(QJ) n U e V 4 ; pflfe) -0} ^0}. Then, PfF*
(^G/) n fee *4 ; ̂ Ofe) ^0} - 0 and WF* (Q,/) n Ue *4 ; ̂ Qfe) <0}

= 0. Therefore, Proposition 40 10 implies that WF* (Q/) n k e # 4 ;
^ fe)=0} = 0, which contradicts the definition of ^0. This proves

that WF*(QJ)nV3C{<p(z)>0}9 where V3=[(x,&; \x-x° |2+ |f/ |f |
Thus we have the following

Theorem 4.11. Let the hypothesis of Proposition 4.10 be satisfied,

and let ^ be a conic neighborhood of £°. Then there are a continuous

operator Q: <£*'-*&*' and a conic neighborhood <g ̂  of £ such that

2? $ WF* (pQ.f-f) U WF* (dpf -/) ,

if /e S *' and WP* (/) R V C {?> fe) > 0} . Moreover, £° $ WF* (Q,/) t
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Remark, (i) The theorem implies that (MGP) is microlocally well-
posed in ^*' at £° modulo <f*. (ii) By Theorems 1.5 and 4.11,
(MCP) can be solved globally modulo $ * under reasonable assump-
tions.

§5. Proof of Theorem 1.4 and Some Remarks

Let us begin with some remarks on existence of time functions.

Proposition 5.1. Let ^ = (*°, f °) e T*Rn\Q and 3<=TzQ(T*Rn), and

assume that pm(x, f) is microhyperbolic with respect to $ at £°. Then the
following conditions are equivalent : (i) There are a conic neighborhood &
of £° and a time function for pm in <g . (ii) There is $eTzo (T*Rn)
such that pm is microhyperbolic with respect to $ at z° and 0 ( r Q , f y = 0,

where r0 = Z"=i f?(3/3f,)- (iii) There is $<^TzQ(T*Rn) such that pm is
microhyperbolic with respect to S at £° and ± r0 6{E F (pmzo , $) *.

Proof. Let J (#, <f) be a time function for /?m in ^ . Then pm is

microhyperbolic with respect to —Ht(z?} at £° and S?=i(d£/df/) (x, f)
f, = 0, i.e., a(r0, —Ht(z°))=Q. This proves that the condition (i)
implies the condition (ii). It is obvious that the condition (ii)
implies the condition (iii). Assume that the condition (iii) holds.
Then there are -9j^r(pmzo, 5) O'=l,2) such that ( - 1 ) jo (Sy, r°) >0.
Therefore, there is $Q^r(pmzv,9) such that <7(9°, r°) =0. Then f (* , f )
= o-(i90, (^ — A:°, |f° |/ |f | — f°)) is a time function for J&M in a conic
neighborhood of ^°. Q. E. D.

We assume that the hypotheses of Theorem 1. 4 be satisfied. We
shall prove Theorem 1. 4 by the same arguments as in [30], using

Proposition 4. 10 (and Theorem 4. 11). If /^fe0) =£0, Proposition 3. 8

implies that z?$.WF*(u) when u<=®*1' and £° $ WF* (pu) . So, in
Theorem 1.4 pm(z) must vanish at £°. If r(pmzo, i9(^0))<T contains

or — r0, then Theorem 1.4 is trivial.

Proposition 5.2. Let z?=(x\%Q)^Q and | f ° |=l , and let M be a

compact subset of r(pmzo, -5(^°))6 Assume that pm(t?) =0 and ±r0<$
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r(pmj>, #U°))° and that 5°e .T(£mzo, $ (^)) and a(9>,r0)=0. Then
there is <0!>0 such that

f°), #°) =<} ^ 0
/or

We may assume that we^*1 ' and that $°eM, i.e.,
for feeAfff\{0}. Let Afx be a compact subset of P(pnao9

such that M^Mlf Then there are a neighborhood ^ of £° and
£0>0 such that WF* (pu) fl ̂  = 0 , pm is microhyperbolic with respect
to $° at £<E^, Mlar(pm^-S) for £<E^, K^,f) is a time function
for pm in a conic neighborhood of ^ and {^e^°— Af f f ; — £0<U(X?)

? where t (x, f ) = a (S°, (^-x°, f / | f | - f ° ) ) . Now assume taht
n fce*°-Afa; fU, f )=-^i} = 0 for some ^ with 0<^</f0.

We can assume without loss of generality that £°= (0, • • % 0, 1). We
denote by S*Rn(~RnxSn~l) the cosphere bundle over /?" and we use
inhomogeneous local coordinates (#,<?). Let r : T*Rn\Q -> 5*jR" be the
canonical map defined as (#, f) »-> (%? —?!/?„, • • • , — fn_i/fn) for (^, f)

with f^O. The map r induces a map drz: T,(T*R*\Q)
, where 3?y= -f-H^ + ̂ fJ (1 <j

( l<j<ra- l) . Since ±r0$Mff and
M*7 is a closed proper convex cone, modifying ^ if necessary,
there is a closed convex cone K with its vertex at the origin in

R2n-i (~TT(2)(S*Rn)) such that

o

Then there are e>0 and z^K such that

where X7 = r(^°) H-^-X. Let <f>(x, f) e (T (KI) (T*/Jra) be a positively
homogeneous functions of degree 0 in £ for | f |>l /2 such that

0(*,f)=l if (*,f)e», | f |> l /2 and K^f)>-^i+£, and 0(x, f)
= 0 if (x,£)^V, If I > 1/2 and t(x,£)<-tl9 where ^ is a conic
neighborhood of ^. We set v = <p(x,D')u and g=p(x,D)v ( = <

[fc«&]iO. Then,
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n J?'= 0, WF^CZO n *
We may assume that the boundary d(K'nT) of K'nT in S*/Zranris
smooth, where T= [r(z) ; £00 = — *i}« Let 5 be a C2 hypersurface
in 61*/?" such that Sn r=3CK'nT) and one of the normals (dx,dq)
at each point on 5Tlr(<Zr) belongs to K*, where X*= {(<5#, dq) \
dx • <5* + <5? • dq>Q for any (<5*, <5£) e#}- The family of hypersurfaces

o

S with the above properties sweeps out the region Kf fl {^00 » *00>
-fj} (see [12]). Assume that p(EC2(T*Rn\Q) is real-valued, positively
homogeneous of degree 0 in f, r~l(S) n * = ke* ; pfe) =0}, dr9(H9

fe))e^* on r-^^n* and M^F*! (») n U e « ; 9 fe)<0} = 0 . We
need the following

Lemma 5. 3. (Lemma 3. 1 in [30]). For ?= (x\ f1) er'1^) fl *,

From Lemma 5.3 and Theorem 4. 11 it follows that
o

— v) for ^er^OSrijK'Oj where Q is as defined in Theorem 4.11,
replacing £° and K by ^ and icl9 respectively. From the proof of
Theorem 4.11 it follows that Q, : @*' -> &*' and Q satisfies the
assertions in Theorem 4. 1 1 with £° replaced by ^. Therefore, we

have z^WF^Qg) and WF*(v) n^1 (5n^°0 = 0. The method of
sweeping out in [12] shows that £° $ WF* (v) . This proves Proposition
5. 2. Q. E. D.

From the same arguments as in the proof of Theorem 3. 3 in
[31], it follows that for every z?<=Q there are neighborhood # U°)
(Cfi) of ^° and *(*°)>0 such that for any ^e*(^°) there is a
Lipschitz continuous function £(£) defined on (— K^°)5 0] with values
in Q satisfying * (0 e JKF* (11) for /e(-f(^°), 0], (d/df)z(t)^r(pmn^

^1=1} for a.*. *e(-f(*o), 0] and ^ (0 )=^ if
M) and WF*(pu) ftQ= 0 . Therefore, by the same

arguments as in the proof of extension theorem in theory of ordinary
differential equations, we can prove Theorem 1.4.
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