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On the Distributions of Logarithmic Derivative
of Differentiate Measures on R

By

Hiroaki SHIMOMURA*

In [1], Hora discussed distributions of logarithmic derivative of differentiable
probability measures on R and obtained the following theorem with Yamasaki.

Theorem. Let P be an arbitrary probability distribution with mean 0 which
is not Dirac measure dQ at 0. Then there exists some differentiable probability
measure dp(x)=f(x)dx such that P ( E ) = ^ ( x \ f ' ( x } / f ( x } ^ E ) for all £e33(#),
where dx is the Lebesgue measure on R and S3(/2) is the usual Borel field on R.

In this note, we will give a simple proof of this theorem and add a few
comments. First we shall supplement some definitions and a few facts. (See,
[1] and [2]).

(a) A probability measure ft is said to be differentiable, if fi(E—t) is a
differentiable function of t for each £eS3(J?).

(b) For the differentiability of ^, it is necessary and sufficient that (1) p
is absolutely continuous with dx and (2) its density f ( x ) is differenti-
able almost everywhere on R and f'(x)^Ll

dx(R).
(c) If dQ would coincide with the distribution pf of logarithmic derivative

/'// of ^ (dp(x)=f(x)dx), then it follows that f'=Q almost every-
where and that /=0. Thus we must exclude the case P=d0 for this
problem.

(d) The distribution pf has mean 0. Therefore we must consider only
probability distributions P with mean 0.

Before beginning the proof of the Theorem, we wish to state some idea
which is somewhat formal. For a given P define a function a)(t) on (0, 1) such
that (o(t)=sup{x^R\P((—oo, x)}^t}. Then co is increasing and by the properties
of supremum,

(1) P((-oo, ft>(f)))^ for all fe:(0, 1), and
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(2)

Now let /( be the Lebesgue measure on [0, 1] and define a measure o)l on
such that a)l(E)=}l(t\(t)(t')^E) for all Ee=330R). It follows from (2) that
a)l((— co, jc))— p((_oo, jc)) for all x^R. So we have

(3) otf=P.

Consequently,

(4) (1|o)(OI^(0=r |x |dP(x)<oo, and
J O

(5)

Thus the problem is to find / which satisfies I XE(f'W/f(x))f(x)dx =

J i ~°°
1E((t)(ty)dt, where IE is the indicator function of any Borel set E,0

In order to find such /, we rewrite the right hand side using integration
by substitution with a suitable monotone differentiate function 7 on (0, 1).
After some calculations (which is omitted here) we reach to a contradiction in
the case that f is strictly increasing. On the other hand if J is strictly

decreasing, then putting \im7(t)=a, \imf(t)=B, we have \ IE(o)(f))dt=
M «-*0 Jo

- 1E(a)(rl(xy)(rl(*y)rdx. So if we take
Ja

(6) /'UY/U^oKr'U)), and

(7)

then the both sides in the above equality have the same form except the lower
limit and upper limit of integration. From (6) and (7) it follows that a)(T~l(xJ)
= -r'(r~1M)f'W and therefore ft)(0=— (/°rt'(0. Thus for a function defined

5 t
Q)(T)dT, we have f(Y(t))= — h(t)+ const and this constant must be 0,0

because f ( x ) must satisfy lim/(,r)=0. Further it follows from (7) jr(t}—h(t)~l

F A #->±°°

and r(0=l i / x +const. From now on we shall show that this procedure
J i /2 h(T)

actually gives the desired function /.

(Proof of Theorem)

It is clear that h(t)=\ o)(r)dr is absolutely continuous, and that /i(0)=/i(l)
Jo

=0. h(f) is negative on (0, 1). In fact suppose that h(t) would be 0 for some

f0e(0, 1). Then 0=A(l)-Atf0)=f1 <tf(r)dr^a>(f0)(l-f0), which shows a>(t^Q.
J *o

Similarly Q=h(tQ)—h(Q) shows a>(^)^0, hence o)(f0)=0. Again from 0=/i(l)—
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h(tQ) = h(tQ)—h(ty, we have o>(r)=0 on (0, 1), which contradicts to P^dQ. As
Q)(T) is negative for sufficiently small r, h(f) is negative on (0, 1). Now we can

define a function 7 on (0, 1) such that T(t)=\ ., N . Then 7 is strictly de-
J i / 2 h(T)

creasing continuously differentiable function on (0, 1). Put \imT(t)=a (^ — oo)

and Iim7(0=j8 (^°o). Lastly we define a function /(#) on R such that /(*)

= — h(l"~l(x}), if ^e(a, j8) and f(x)=Q, otherwise. Since / is absolutely con-
tinuous on any closed interval of (a, j9) and lim/(;c)=lim/00=0, so it is

continuous, differentiable almost everywhere and

(8) f'(x)=— w(r"1(^))/i(r"1(^))—ft>(r~1(^))/(^) on (a, jS).

Then

(10)

Consequently f(x) is an absolutely continuous function on R and a measure
defined by dfi(x')=f(x}dx is differentiable. Now we have p ( x \ f ' ( x ) / f ( x ) ^ E ) =

for all Borel sets E.

Q. E. D.

Remark 1. fk(x) = f(x + k) (k : an arbitrary constant] also satisfies fjtfk=P,
because the translation of f does not change the distribution of logarithmic de-
rivative.

Remark 2. // P is a symmetric distribution i.e., P(E)=P(—E) for all
, then f is an even function and /(0)>0.

Proof. Take any fe(0, 1/2). Then P((-oo, a)(;+i/2)+e))>f+l/2 and
P((-e-o)(l/2-0, oo))=p((-oo, a>(l/2-f)+e))>l/2-f. It follows that (wtf+1/2)
+e>-e-a)(l/2-t) for all e>0 and hence o>(f+l/2)+o>(l/2-0^0. Since

Si r i /2
o>(0d^(0=\ {o)U+l/2)+o>(l/2-0}d^), so o>(f+l/2)+o)(l/2-0=0 for al-o Jo

most all fe(0, 1/2). Consequently it follows from (5) A(f+l/2)=/i(l/2— 0 and
from this 7(t+l/2}=-?(l/2-t} for all fe(0, 1/2). Thus we have f(Q)=-h(rl(Q))
= -A(l/2)>0, and /(r«+l/2))=-/ia+l/2)=-/i(l/2-0=/(r(l/2-0)=/(-rtf+
1/2)). Q.E.D.

Conversely, it is evident that if / is an even function then fjtf is symmetric.

Example 1. P=U-a,a (c>0): Uniform distribution on [—a, a],



78 HIROAKI SHIMOMURA

By simple computations, we have a>(t)=a(2t—l), h(t}=at(t—l) and T(t)=
fl^logtr^l—£)). Therefore f^UO^U+exp^)}'1 and f(x)=aexp(ax)
{l+exp(a,r)}-2.

Example 2. P=N'(Q, 1): Normal distribution with mean 0 and variance 1.

Put G(x)=(2ff)~1 / 2P exp(-x2/2)rfz. Then it is easy to see that tw(0=G-1(0,

/i(0=~(2^)-1/2exp(-G-1(02/2) and r(t)=-G~l(f). Thus we have r1(^)=G(-^)
and /(%)=(2^)-

Remark 3. ^4s i6>e /zaz;£ seen in Remark 1, a function f which satisfies fAf=P
for a given P is not unique. By the way we can take f as an even function, if
P is symmetric. However such an even function is not uniquely determined as it
will be seen in the following example.

Example 3. Put g(x)=l/2\ jqexp(— \ x \ ) . Then d^.(x}—g(x}dx is a differ-
entiable measure and after some calculations we have,

Thus for the measure P defined by the right hand side in the above equality,
g and / obtained in the proof of Theorem are even solutions of ftf=P. How-
ever they does not coincide with each other, because g(0)=0 and /(0)>0.
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