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Pure Hodge Structure of the Harmonic
L2-Forms on Singular Algebraic Surfaces

By

Masayoshi NAGASE*

§ 1. Introduction

Let X be an algebraic surface (over C) embedded in the projective space
PN(C) and S be its singularity set. If S is empty, then the harmonic spaces
Ml(X) = {smooth /-form a on X\da = da=0} (or, equivalently, its de Rham
cohomology groups) have the pure Hodge structure;

(1.1) Ml(X) = 0 Mp
d

q(X) , Mp
d-

q(X) = Mq
d'

p(X) ,
p + g = i

where Mp
d
q(X) = {smooth (p9 0)-forms a on X \ da =da =0} . (Mp

d
q(X) is natu-

rally changed into the Dolbeault-type harmonic space MP^q(X) in this case, but
in the case we are going to discuss in this paper, that is, in the case where S is
not empty, such a change has a subtle problem (§ 3) and it seems to be one of the
key points not to try to do so.) Also there exists the hard Lefschetz structure
compatible with (1.1);

= 0 Lk£*-2k(X) , £l(X) = 0

where the operation L means the multiplication by the Kahler form, £P\X) is the
primitive harmonic space and 9?$>q(X)=3?p+*(X) H Mp

d'
q(X). Now the purpose

of this paper is to show the following; if S consists of isolated points, hence, if
2£=X— S is an incomplete Kahler manifold, then the harmonic L2-spaces on 3£
(or, partially, its L2-cohomology groups) have the similar pure Hodge and hard
Lefschetz structures.

Let us explain the above assertion more exactly. In the following S con-
sists of isolated singular points and 3£=X— S is endowed with the incomplete
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Kahler metric g induced from the Fubini-Study metric of PN(C). Let A*(?£)
and Aptq(3£) be the spaces consisting of smooth /-forms and smooth (p, #)-forms
on 3£ respectively. Also let L2A*(3C) and L2Ap'q(3£) be the spaces consisting
of square-integrable /-forms and square-integrable (p, #)-forms on (3£, g) re-
spectively. And let us denote, by dt and dh the exterior derivative and its formal
adjoint (with respect to the metric g) with the following domains;

domrf,- -

Moreover, letting Al
c(2£) be the space of compactly supported smooth /-forms

on 3£, we put deti=di\Ai(!£)9 ^Cii=di\A
i
c
+l(3£). Their closures (with respect

to the operator norms) are denoted by di9 di9 dCth dc>i. Finally we denote,, by d*Cti
A A

and dij.iit the restrictions of dc>i and 8c<i to the following domains;

dom d^ = Al(3£) n dom 4,.,- ,
dom 3^ = A'+\3£) H dom dtw, .

Now we define the various harmonic L2-spaces by

=Ker4.nKerS,_,,

= Ker d, n Ker 8^ ,
( ' }

and, moreover, define the L2-cohomology groups by

= Ker rf,

= A>-«(3£) n Ker dt+JA>-'(3C) n Range

Theorem 1 (L2-version of pure Hodge structure).

(2) Ifi = p+q=£29 then we have

, hence,

H'm(3£) « 0 ff
* + »=!

Remark. Refer to § 3 and § 5 for further investigations of the cases /=0, 1.
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Next, denoting the (1, l)-form associated to our metric g by o)g and setting
Lg(a)=a/\o)g for forms a, we define

= Ker (I

Then we have

Theorem 2 (L2-version of hard Lefschetz structure).
(a) 4: ^(

(c) S>{'2)(3?) = 0
£+?=»

Combining Theorem 1(2) and Theorem 2(a), we get

Corollary. Lk
g: Hfak (3£) ^ H2^k(3£) .

Remark. If i =1=2, then we have also the hard Lefschetz decompositions (b)
and (c) for the /-th L2-cohomology groups, which are however just Theorem 1(2).

The author believes that the case i=2 omitted in Theorem 1(2) and in the
above remark must hold.

Conjecture A. Theorem 1(2) and the hard Lefschetz decomposition of the
L2-cohomology groups hold also in the case i=p+q=2.

Obviously this conjecture is equivalent to a part of it, i.e., M
Moreover it suffices to prove a little bit stronger assertion; Ker ^=

which is equivalent to Ker rf2=Ker rf^2. Thus Conjecture A can be deduced
from the conjecture "d^i=di for i=l9 2" announced in [10].

Acknowledgement. The author would like to thank Professors J. Noguchi,
M. Oka and Y. Miyaoka for offering him valuable suggestions during the prepa-
ration of this paper. Also he would like to thank the referee for valuable
comments.

§2. Preliminaries

Here we explain some notations and collect the (well-)known facts.

(a) Notations

The Kahler form cog is defined to be locally expressed by o>g=2~1^/ —1 2
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y provided g= S 9j®9j- For (;?, #)-forms a=
<^)3 /=(7i<— <J«), we define

(2.1) *, a = 2*+*-2 S *7j a,7

where 1° = {1, 2} -/, J° = {1, 2} -/ and

sij=(— l)(2~^sgnf , jQJ sgnf j jQJ. Using this complex star operator

the global inner product is defined by

and |Mk=(a, a)^ is called the (L2-)norm of a. The space L2A*(3£) is now
definitely defined to be the space of the /-forms whose L2-norms are finite.
Besides5 the volume element with respect to g is defined by

and, for a form a, its pointwise (L2-)norm | a \ g is defined by

(2.4)

Next, for the continuous functions f19 f2 on some space F3 if there exists a
constant J£>0 such ihsLtfl(y)<sKf2(y) for all jeF, then we use the expres-
sion /i</2. Moreover we denote by fL~~f2 the situation that both fL<f2 and
f^>f2 hold. These expressions are naturally generalized also to the relation
between the differential forms.

(b) i2-cohomology H[^T)

The duality of the L2-cohomology H[2}(^) and the intersection homology
IHf(X) with the middle perversity in has been already verified in [7] (which
has a certain gap) and [10]. That is, there exists the generalized de Rham
isomorphism

(2.5) H}2{!£) * (IHf(X))* .

Letting U be a neighborhood of S in X, there exists the following natural iso-
morphism:

(2.6) t*(H*DR(X-V,aU)); i = 2 ,
( Hi,s(X-U, dU) ;
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where the map t means the inclusion map (X—U, <f>) -> (X—U9 dU). This fact
implies that dimc H

i
(2^X.)<OG and moreover Range rf^ is closed in yl'(-3f)n

L2A*(3£). Hence, remembering the Hodge decomposition of L2A*(3£), we have

(2.7)

(c) The operators rf,- and d$ti for our 3£.

If /=(= 1, 2, then we have

(2.8) rf«V=4, a*.i=*,.

They have been verified in [9, Assertion A] and [10, Proposition 1.1].

Lemma 2.1.
(1) If i*2, ffe?/i Ker </- = Ker dt.
(2) #"/=*=!, rte« Ker d* § , = Ker $,.

Proo/. (2.8) implies (1), (2) provided /4=1,2. Moreover, (1) with /=!
and (2) with i=2 are equivalent. Hence we will prove (1) with i=l. (2.8)
with z=0 implies that Range dc\0 is equal to Range d0 and is closed in A\3E) fl
L2Al(3£). Therefore we have the decomposition:

(2.9) Ker <fe§1 = Range d^Q 0 (Ker 4,i/Ran§e *.o)

= Range dQ © (Ker d^Range de\0) •

Now take a closed neighborhood JF of 5 and set W* = W— S. And, for
(3?, PF*), we consider two kinds of long exact sequences, that is, with respect
to the {di} -type L2-cohomology Hfa and the {</£.,-} -type L2-cohomology Hfa.
Note that the intrinsic operator dCti on PF* is acting on the smooth f-forms
which are identically zero near the singularity S (and may not be zero on dW).

, W*) -> H\2££) - H^(W*) -> Hfa(3C, W*}
(2.10) R || f R

w*)
Here the isomorphism jff^XFr*)^^^^*) is given by the results [10, Proposi-
tion 3.1 for f=l and Assertion C(2)]. Thus the so-called five lemma implies
Afa(%)e*Hi2}(?£). Hence, combined with (2.9), we get

Ker d$tl= Range d0 0 (Ker ^/Range d0)

= Ker £/j . Q.E.D.

(d) Complete KaMer manifolds.

Let our 3£=X— S be endowed with a complete Kahler metric h. Then, in
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a sense, 3£(h)=(3£, K) has the quite similar properties as the compact Kahler

case, some of which we will enumerate here.

Lemma 2o28

(1) On ?£(h)9 d^ = di and d*si = 0,.

/9\ (iti (cy(}j\\ = (T\ tf/^'^ cycti}} (T) d
P+g=i p+q=i

P+g=i p + g = i

Here 3?f^(3?(/z)) and Hp
(£p£(h)) are of Dolbeault-types: see §3. Refer to

[1], [14] for further details of the properties of the complete Kahler case. As

for (1), we can assert more strongly that9 for ^edom dt fl dom £ z-_1 ? we can find

a sequence ^6=^(3?) satisfying ]imi/rj=T/r9 Hmd^j=d^r and Iim5^y=^ in

the L2-sense. This is a quite nice property. As for 3£(g), though it has

the property (1) provided / =1=1, 2, we do not know if there exists such a good
sequence (i.e., a sequence which converges with respect to the operator norm

• ||) for the element of dom d{ fl dom di_l (i4=l, 2).

3. PO and

Let us decompose the exterior derivative into d=d-r-d and its formal ad-

joint into d=d'-\-df/. (The formal adjoint of 8 is denoted by df.) In the same

way as (1.3), we specify their domains and denote them by d(ptq), d(p,q), %,«)»

%«)5 f°r examples,

dom
( " }

Similarly we set ^,(^?)
=5(^9) I ^?'?(3?)3 etc. and 9*^=8^.,) I ̂ '9(3?) 0 dom

dc,(p,qr)> etc. Moreover we define c#^(3f), jfiT^(3f), etc. in the same way as

(1.5) and (1.6). Then the relations between <%($(?£) and Mp
(^(^) and among

others should be investigated. However little is known about them. Only the

cases i=Q, 4 can be studied now.

Proposition 3oL

(1) Ker dAf(0§0) = Ker d*tM = Ker rf;i0 - Ker d0

= {constant functions on ^}.

(2) Ker ̂ ,(l,2) = Ker ̂ ')(2>1) = Ker ̂ >3 = Ker d3
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Proof. Due to the duality, we have only to prove (1). And, because of
(2.6) for i=Q and Lemma 2.1(1) for f=0, it suffices to prove the first two equal-
ities at (1). Moreover, because Ker d£,(0,o) and Ker 9^ t(0>0) are conjugate to
each other, it suffices to prove a part of it, i.e., Ker d£ f(0f0)=Ker d$tQ. Let us
prove the non-trivial implication Ker ^>(0>0)cKer <^j0. Take /eKer 9^> ( 0 0 ) .
Then there exists a sequence fj^A°c(2£)=dom dc (M) satisfying limfj=f and

/->00

limd/-:=0 in the L2-sense. Since we have the Hodge identity Ad=2A^ on

lim (dfj, dfj) = lim (ddfjjj = 2 lim (3> G>/,,/;.)
' ' - ' '

Thus / belongs to Ker d*t0. Q.E.D.

On the other hand, T. Ohsawa ([12, Theorem 1]) got the following result: for
any ^-dimensional compact Kahler space Y with isolated singular points, its
smooth part 7* has the Hodge structure H*DR(Y*)ez © H%\Y*) provided

P + 9 = i

i<n—l. Here H1
DR and H^'q mean the de Rham and Dolbeault cohomology

groups (with no L2-condition). Applying it to our 3E, we get

/Q O\ U® ({"%3\ TJ '^ f c¥*\
\~ *•"/ -*•* D R\~K* ) — •"• jJ \̂ ~A!' J •

Since H°DR(3C) = {constant functions on !£}, Proposition 3.1(1) implies Ker

dc,(o,Q)=H°DR(3£)' remark that the domain of d£,(0,o) has been specified as in
(3.1). Thus Ker d*c (0>0)Z)Ker ^(0,0)- The converse implication is trivial and we
get Ker d£ j(M)=Ker d(0,o)- By the conjugation and the duality, finally we have
the following.

Proposition 3.2.

Ker dA
c ,(o,o) = Ker d (o>0) , Ker SA

C >(0 > 0) = Ker S (0 t0),

Ker 8*(i_9\ = Ker ^n.?}, Ker d* r9 ,N =

§4. The Relation between Two Kinds of Kahler Metrics on 3E

In this section, we first investigate the quasi-isometric classes of

(a) the incomplete Kahler metric g on 3£,
(b) the incomplete Kahler metric ds2 on 3S: the restriction of a Kahler

metric of a smooth compactification 3£ of 3£.
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In order to do so near S9 we will make a very good resolution

(4.1) n:X^X.

That Is, we make a resolution with the following properties (I), (II):

(I) n~~\S) has normal crossings with smooth Irreducible components

{Dj}f=i and Dt D Dj is empty or a single point for i =)=./.

(II) Take any point p^S. For simplicity, we regard /?=[!, 0, "-o,0]e

PN(C) and take the local coordinates [w0, wl9 •••, wN]*-*(z19 °°° , zN)=(w^j^9 • •• ,

WN/WQ) around the point. Then, for any point x^n~\p)9 there exists a local

coordinate neighborhood (17, (u9 v)) around x and a permutation cr such that

the n can be expressed on £7 as follows;

» i*ft(K, v) , det

(4.2) zrfu =//(zirc1))+ii11/ A ft(w, v) , det

where /y(z) = S ^y»^8n with eM> 1, gj(09 0)4=0 and moreover

<^< — <

Such a very good resolution can be made by first making a resolution

and then performing blowing-ups as many times as we need ([7, III], [9, §2],

[10, §2]). In the following, through the map n9 we identify

(4.4) T - X-n-\S} .

On the neighborhood (17, (u9 v)) around the point x&.n~\p)9 we set

IP -1.1. r,-i,i.
{ 0 = arg u , l i/r = arg v ,

and study the Kahler metrics (a) and (b) on U—n~\p). Referring to [9, (2.4,)

(2.11), (2.13)], we set

Case (— ): 17 n n~\p) = "^-axis" (hence, /ij = 0 ,

«2 = 1 and
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Case (+): Uf}n"\p) = "wv = 0" and det
\w2 m2

(hence

(46)

First we can describe explicitly the quasi-isometric class of the incomplete
Kahler metric g (or its underlying Riemannian metric) on 3£: see (a).

Proposition 4.1 ([9, Corollary 2.2]).

(1) In Case (-) , on U-n~\p) ,
g ~ T2m2(dp2+

(2) InCase(+), on U-n'\p) ,
g ~~ {pn^m^~l(

Remark. We have the similar representation also in the other cases, i.e.,

'1(p)=tuv=099 and det
n2 m2/

Second, let ds2 be the restriction (to 3f) of a Kahler metric ds2 on T=X.

Proposition 4.2. On U—7u~\p),

ds2 - d

Next, let us investigate the relationship between the square-integrabilities
on 3C(g)=(3£, g) and 3E(ds*)=(3e, ds2). We set, on U-n-\p\

(4.7) dV-

Then the volume elements with respect to g and ds2 can be written quasi-
isometrically as follows: on U—7t~\p),

i 2(m1+»2)-i dv . Case(-),
(4.8) dVg ~ +n +m -!

( p ^ i 2 ' r^i 2 ' dv\ Case (-j-),

(4.9) dVs~pi:dV.

Moreover let us denote the pointwise norms of a form a (with respect to the

above metrics) by \a\g and \a\3: see (2.4). Then we have

Lemma 4.3. On U—n~\p)9

(1) dVg<dVs,
(2) \dfl\2

e dVg<\dfl\
2
sdVs,-, \d^\2

gdVg< \d1?\\drt.

Proof. All is verified by straightforward computations. First, in Case
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dVJdV, ~ r2^^-1) 9

Next, in Case (+)9

dVg\dVs ~

\dT\2
g dVgl\dr\2dVs

Q.E.D.

The lemma implies

Proposition 4.4. Assume /<!. 77ze/2 the identity map on Af(3£) induces

the bounded inclusion map

Now., as for the L2-cohomology groups, we can prove

Corollary 4.5. Assume /<!. The identity map on A*(3£) induces the

isomorphism

Proof. Take a closed neighborhood W of S in X and set W* = W—S.

Then we consider the Inversions of long exact sequences for (3£(ds2), W*(ds2))

and (^(g), W*(g)). If the inclusion map given at Proposition 4.4 induces the

isomorphisms Hf2)(W*(ds2))^Hw(W*(g)) for /< 1, then the five lemma implies

the corollary. And the above isomorphisms for / < 1 are certainly induced by

the assertion that the restriction from W* to 9W*(=dW) gives the isomor-
phisms

for i<\. The second isomorphism has been already shown in [10, Proposition

3.1]. The first isomorphism is essentially due to [2, (3.36)]: let us explain it a

little bit more. Let ds2
c be the standard metric on C and let us set C*=C— {0} .

Then our (X, ds2) is quasi-isometric to (C*, cfe^)x(C*, ds2?) near the intersec-
tions of the divisors and quasi-isometric to (C, dsc)x(C*, dsfy near the other
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points on the divisors. Hence, near any point of ^(S), the local L2-
cohomology (with respect to our metric ds2) can be easily computed using
[2, (3.36)] (in the metric cone case). Now the argument using the Inversion
of Mayer- Vietoris exact sequence (or the derived category argument ([10, Prop-
osition 3.1])) implies the first isomorphism. Q.E.D.

§5. Proof of Theorem 1 for i<l and Some Remarks

In this section, we will prove Theorem 1 for / < 1 and then discuss a little
bit the so-called (L2-, usual, logarithmic) irregularities.

Since the case i=Q is trivial (see §3), we will treat the case i=l in the fol-
lowing.

Lemma 5.1. On our 3£(g) = (3C, g) ,

dom d(0f0) n Ker §(M) = Ker d*>(0)0) ,

Ker d(0>0) fldom d(0>0) = Ker 5^(0.o) •

Proof. Let us prove the first equality. Since Ker d^co.o) =Ker dQ (by Prop-
osition 3.1(1)), the right hand side is contained in the left hand side. Conversely,
because the element /of the left hand side belongs to dom dQ=dom d*j0, there
exists a sequence /,-edom dc 0 such that lim/-=/and lim df—df. Since df=df,

/-><*» /-><»
it also satisfies lim d/}=0. That is, /belongs to the right hand side. Q.E.D.

y->~

Corollary 5.2. Assume p+q=l, then we have

Proof. We prove only the case (p, ^)=(1,0). Since

Al-\3£) n Range 4 = {df \ /edom 8(0§(0 n Ker d(0,0)} ,

Lemma 5.1 implies Al>\X) n Range 4,={0}. Hence H\
Ker dv Moreover its element <p satisfies *g<p = \/ — i ^/\o)g, d<p=—*gd*g<p=
- x/^I V(PA®^)=0; That is, Hl$d(%(g))=Ml£d(T(g)}. The remained
equality M\i^X(g)}=Mli^(^(g)) is implied by Lemma 2.1(2). Q.E.D.

Lemma 5.3. The restriction of the forms on X to 3£ induces the isomorphism

H1
DR(X) a H

Proof. More strongly we can assert that the Stokes' theorem in the L2-

sense holds for 3C(g), that is, we have d^Cti=di for all i; refer to [2, Theorem 2.2
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for metric cones]. Hence the restriction induces the isomorphism

(5. 1) HU$(ds2)} « HU%(ds*)) .

This and the obvious one Hi
DR(X)^H[2}(X(ds2}) imply the lemma. Q.E.D.

Hence, combined with Corollary 4.5, it implies

Corollary 5.4. Assume i<l. Then the restriction induces the isomorphism

H1
DR(X) « H[2,(T(g)} .

Since HDR(X) has the pure Hodge structure, we can prove Theorem 1 for /=!.

Proof of Theorem 1 for f=L First there exist the natural isomorphisms
Mlw(3£(g))^ M^(3£(g))^Hl2)(3C(g)) because of Lemma 2.1(2) and (2.7).
Also we have Corollary 5.2. Hence what is remained is to verify the pure
Hodge decomposition of Mw(!£(g)} (or H^(3£(g)y)- To do so, consider the
following commutative diagram:

e+s=i

II r t.
(5.2)

P + q=\ £

t« ^ t | ) / ?

0 Hp
d-\X) -=> H1

DR(X)
P+q=l I

Here the isomorphisms TI, ft, 7 and the equality rp,q have been already given.
Then, since the map CM is injective, the map c is also injective. Moreover the
lower part of the diagram implies the surjectivity of c. Thus the map t is
isomorphic and hence the maps tM, a are also isomorphic. Q.E.D.

Now, because the maps at (5.2) are all isomorphic, the ZMrregularity
0(2)(3?fe))==climc H\$d(!£(g)) is equal to the (usual) irregularity q(X)=dimc

Hl
d'*(X). Moreover, since Corollary 5.4 (i.e., the isomorphism ft at (5.2)) and

(2.6) for i=l give the natural isomorphism

(5.3) H1
DR(X) » H1

DR(%) ,

the pure Hodge decomposition of H1
DR(X) is naturally equivalent to the alge-

braic de Rham decomposition ([4])

(5.4) H1
DR(3£) <* H\X, 4(log n-\S))} @ H\X, Ox) ,
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where ^(log n~\S)) is the sheaf of germs of logarithmic 1-forms (possibly)
with logarithmic poles along x~\S). That is, q(X) is equal to the logarithmic
irregularity q(3£)=dimc H\X, £^(log n~\S))). Thus we got

(5.5)

The equality q(X)=q(3£) is well-known in itself: note that (4.1) is the point
modification at S. Here we emphasize that thus it can be also verified only
by using the L2-cohomology theory.

§6. Proof of Theorem 1 for i>3

Since the case i=4 is trivial (see §3), we will treat the case i=3 in the fol-
lowing.

Letting the complex star operator *g operate on the decomposition of
Theorem 1(1) for i=l, we get Theorem 1(1) for i=3. Lemma 2.1(2) implies

&*}(?£(gy)=&w(3£(gy) and Jl^(3£(g))=Jl^(3£(gy) for p+q=3. More-
over, remembering (2.7), we have the following commutative diagram:

0

(6.1) J rttt II
0 tffifrtff fe)) - - Hf2)(3£(g-))

p + q = 3 £

Hence, in order to finish the proof of Theorem 1 for /=3, it sujffices to prove
that the map rp,q, which is certainly injective, is surjective.

In the following, let us prove the surjectivity of ri,2- (The proof for r2,i is
similar.) Consider the (Hodge) decomposition

Ker d3 = Range d2 0 c^(
3
2)(^(g))

= Range d2 0 M\$&(gb 0

and decompose <p^Alt2(3£) fl Ker d3 accordingly;

(6.2) 9

Moreover, decompose ^ into i^0'2+'̂ 1'1+i^2'0, where ^p'q is the (p, ^)-part of
^. Then (6.2) can be rewritten as follows;

1 ' ) = o .

Lemma 6.1. 9^1-1+S^!° = 0 .
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Proof. It suffices to prove vfa1 =0. Since p^eKer d2=Kei d*t2 (refer
to Lemma 2.1(2)), there exists a sequence <t>^Al(^) satisfying Um0y=^ i l

and lim d$j=Q. Decompose 0, into 0}'2+02>1 with 0f? the 0?, #)-part of 0/5
y-J-oo

then we have

lim d'<t>}'2 = lim (d"<t>}-2+d'42j-1) = lim a"*?-1 - 0 .
/•>•«> /->«» /-><*»

Therefore we have

= -lim {(d'ft\
y->°°

= -lim (5V5-1, -^
y^oa y^oo

= lim (0J-2, S^1-1) = -lim (0J-2, 9^°-2)
y-^°° j-*°°

= -lim (a'0J.-2
5 ^°'2) = 0 . Q.E.D.

/•*>«»

Hence, S^+S^e^^n Range 4 at (6.3). That is, M=fo>i2] as the
elements of Hwd(3E(g))9 which means that the map ri,2 is surjective.

§7, Proofs of Theorem 1 for i=2 and Theorem 2

Because of the duality of Ji$)(3E(g)) with respect to the complex star
operator *g and of the facts

*,1 = — I%l),
(7.1) ' 2 '

certainly Theorem 2(a) holds. Moreover (5) and (c) of Theorem 2 for z'4=2
are just Theorem 1 for /=t=2. Hence we have only to prove Theorems 13 2 for
i=2. In the following we will prove them.

Since

(7.2) *,«, = <»,,

we have rfo,=^=0, i.e., ̂ ^^^(^(g)). Moreover ^(
4
2)(^(g)) («C7) is

generated by cog/\o)g. Therefore we have the decomposition

(7.3) ^(3£(g)) = Lg ̂ (°2)(3?(g)) 0 Ker Lg ,

where Ker Lg is the kernel of the map
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(7.4) Lg : M2
(v(!£(g)) - ^C

4
2)(3?(g)) .

Now, in order to finish the proofs of Theorems 1, 2, it suffices to prove the
following.

Proposition 7.1.

(7.5) Ker Lg = M°(&@£(g)) 0 (M\£d(X(g)) n Ker L,) 0

Proof. If ^eKer Lg, then peKer Lg. Hence it suffices to show that
<p =fp e Ker Lg can be decomposed accordingly to the right hand side of (7.5).
Let us now decompose <p=<pQ'2+<pl'l+<p2'Q, where <pp'q is the (p, #)-part of (p.

The conditions say

(7.6) 9M=^i, p

Since d<p—dy>=Q, we also have

(7.7) v2+0plfl = o , av^+sy*1 = o .
Here *^ <p®>2=<pQ>2 and (because of the second condition at (7.6)) *^ 91*1=— p1*1.

Hence the second condition at (7.7) implies

(7.8) d<?Q>2-d<p1'1 = 0 .

This and the first condition at (7.7) imply d(pQ-2=d<p1'1=Q. That is, we get

= —*g~dqF2=Q, d^l=^gd^=0, d<p2>°=d<pQ>2=Q. Hence the decomposition
9=9?°.2+9?

1'1+92'0 is the one according to the right hand side of (7.5). Q.E.D.

§8. Appendix

We have finished the verification of the pure Hodge and hard Lefschetz
structures for the incomplete Kahler metric g. Here we study such structures
for other Kahler metrics and investigate their relationships.

(a) On the Z,2-cohomology Hfa(3£(dtf)).

Let us consider the metric ds2 explained at §4(£). The following is not

trivial in itself. However, now we can easily verify

Proposition 8.1. The L2-cohomology Hl
(2^£(ds2)) has the pure Hodge and

hard Lefschetz structures in the sense of Theorems 1, 2. Moreover Conjecture

A for H[2i%(ds2)) holds.
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Proof. Obviously Corollary 5.2 holds also for 3£(ds2). Moreover we
have Lemma 5.3. Hence the same arguments as in §5-§7 imply the first part.
Moreover the second part is valid because the Stokes9 theorem in the L2-sense
holds for 3£(ds2): refer to the proof of Lemma 5.3. Q.E.B.

(b) The relation between the metric g a certain complete metric,,

L. Saper ([13, §2]) (and T. Ohsawa ([11, §4]) previously to him) introduced
a certain complete Kahler metric h on 3£9 which possesses a noteworthy prop-
erty. That is, it implies the generalized de Rham isomorphism ([13, Theorem

(8.1) #

By Lemma 2.2 and this identification, the middle intersection homology of X

turns out to have the pure Hodge structure. This way of approach to such
a structure (i.e., to find appropriate complete Kahler metrics) seems to have
been widely adopted and have produced fruitful results (by S. Zucker, L. Saper,
T. Ohsawa, M. Kashiwara and others). Here we first explain the metric h

according to [13],

Let us use the notations in §4. For the intersection matrix (cii^=(D^D^9

which is negative definite, we can take two kinds of sequences consisting of
positive integers, (al9 ~°9am) and (a[9 — ,*&), satisfying S,- a^ah-<Q and 2f-
a'i %<0 for any j and af a'j^aj a\ for any i^pj ([13, Lemma 2.1]). Then, let
us consider the line bundles on X,

(8.2) L = 2**[A], £'=Sfl{[Al.

Since L-D?-<0 and L'°D?-<0 for any z, there exist the hermitian metrics ds2
L9

dslf on L, I/ whose curvature forms are negative definite near n~\S) ([13,
Proposition 2.2]). We now take the holomorphic sections s and s' of L and
L' with L=[(s)] and L'=[(s')] respectively. Then, for a neighborhood W of

\ the following (1, l)-form on W—ic~\S) is positive definite ([13, (2.1)]);

(8.3) & = - v^Il {dd log (log I s 1 2)2+Od log (log I s' | 2)2} ,

where \s\9 \s'\ mean the pointwise norms defined by ds2
L, ds2

L,. Set P(x)=— log
(log | s \2)2— log (log l^'l2)2 , called the potential function of 6>. And, take a
smooth function 9? on X satisfying 9= 1 near n~\S) and ^ = 0 on the complement
of W9 and, moreover, take a sufficiently large constant K>Q. Then the follow-
ing (1, l)-form on 3£ is positive definite ([13, Proposition 2.9]);
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(8.4) o>h = a>g+ v^ZI d@ (K

where a>g is the (1, l)-form associated to our metric g. Now the associated
Kahler metric h is complete and of finite volume. Since a)h^&> near 7c~\S)9 the
metric h has the following quasi-isometric representation near n~\S).

Proposition 8.2 ([13, Proposition 2.4]).
(1) In Case (-), on U-n~l(p) ,

h ~ | log r2 1 -\df?+(?d<f)+T-2 1 log r2 1 -2(rfr2

(2) In Case (+), 0/1 {(«, v) e U-n~\p) \ P < ̂  ,

+( | log p2 1 -l+T-* | log p2

Remark. For the other cases, there are also similar representations.
Besides, obviously the above results say that the quasi-isometric class of the
metric h does not depend on the positive integers {a,-}, {aj-}, nor on the metrics
\s\, \s'\. However it certainly depends on the choice of the resolution (4.1).

Hence the volume element with respect to h can be written on U—n~\p)
as follows.

(8.5) ^-
p-1r|log/>Ir4(|logp2 |+r-2)</r; Case (+) with P<T .

Similarly to Lemma 4.3, let us denote the pointwise norm of a form a with
respect to A by \a\h. Then we have

Lemma 8.3. On U—n~\p),

(1) dVg<dVh,
(2) \dp\l dVg<\dp\ldV,,,-, \dir\l dVg<\dir\ldVh.

Proof. In Case (— ),

*) | log r2 1 3 ,

Next, in Case (+) with

dVgldVh ~ p2<»i+»2> r2"-!-1--*-1' | log p2 1 4( | log p2

p2"* r2^-1) I log p2 1 2( I log p2 1 +T-2)-1 ,
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Q.E.D.

The lemma implies

Proposition 8.4, Assume /"<!. Then the identity map on A\^£) induces

the bounded inclusion map

Therefore, similarly to Corollary 4.5, we have

Corollary 8850 Assume i<l. Then the identity map on Al(3£) induces the

isomorphism

Proof. Take W* as in the proof of Corollary 4.5. Then we have only

to show

(8.6) H[2iW*(h)) ex H'DR(dW*) ,

for /<!. It is due to [13, the assertion following (1.3)]. Q.E.D.

(c) On the relation between the pure Hodge structures for the various

metrkso

Now, similarly to the proof of Theorem 1 for /=! (§5) and using the dual

argument, we can easily verify

Theorem 8.6* Assume i ̂ p 2. Then the pure Hodge and hard Lefschetz struc-

tures for 3£(g), 3?(A), ?£(ds*) and X(=X(ds2)) can be all identified through the

restriction maps, the inclusion maps and the dual maps (of the inclusion maps).
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