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Symbol Theory of Microlocal Operators

By

Keisuke UCHIKOSHI*

Abstract

Let u(x, x'}dx' be an arbitrary microlocal operator. We define the symbol function
&(x, O of u(x, x')dx', and give a characterization of such symbol functions. Symbol
formulae for adjoint operators and for composite operators are given.

§ 0. Introduction

Let MdRn be an open set containing the origin, and let X be
its complex neighborhood. We identify M with the diagonal set in
MxM. The sheaf J*? = J5?M of microlocal operators is defined on

" by

(See M. Kashiwara and T. Kawai [3] or M. Sato, T. Kawai and M.
Kashiwara [11]). Here ^MXM denotes the sheaf of microfunctions
on MX My and i^M denotes the sheaf of densities on M with real
analytic coefficients. A section of J5? is called a microlocal operator
on M, and it acts on microfunctions. This action has the microlocal
property, i.e., under this action, the support of each microfunction
does not increase.

Roughly speaking, the notion of microlocal operators is the most
general one in hyperfunction theory, possessing this microlocal -prop-
erty.

There exist some subclasses of microlocal operators, which are
very familiar to us. We denote by ^°°=^S(resp. £R=&M) the
sheaf of microdifferential operators (resp. of holomorphic microlocal
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operators) on M, defined by [11] (resp. by [4]). Here we do not
give their definitions. But later we give an explanation of them
from symbol theoretical point of view, and then their meaning will
be easily understood. We note that <f °°C g Rd^. The symbol theory
is already known only for these special subclasses, and our aim is to

extend it for general microlocal operators. Only after that, we obtain
enough knowledge of them.

To state the main theorem, we give some preliminaries.

Definition 0. 1. Let r>0 be small. A continuous function
defined on 0<O<r is called a scaling function if

(0.1) lim
f-»+0

(0.2) t

Remark, (i) Let l ( t ) be a scaling function. It is easy to see
that lim J(0=0, and t<t'^>l(t)<X(t'). If l ( t ) is a scaling function,

f-»+0

we define ^0(0 by 4, (0 =*(*)/*. If * = 05 we define ^(0=^(0=0.
It is easy to see that both A(t) and ^0(0 are positive definite, and
that they always have the inverse functions, %~l(t) and ^"HOj
respectively.

(ii) Taking r>0 to be small enough, we may assume that
is very small.

Example, (i) J(0 =mts, m>0, j>\.

(ii) J(0=wi(-log tyt9m>OJ>0.

In this paper, we denote by x the variables in M or X=M€, and
by ? the dual variables of x.

Now we give the following

Definition 0.2. Let S*= (0; 0, . . . ,0, V^)ef=TS*M, and let
, MO be two scaling functions. We denote by ^ lA=(^ l / f) r the

space of all holomorphic functions a(x,£} defined on some conical
complex neighborhood V of x* such that for any s>0 there exists
some Ce>0 satisfying

(0.3) | f l (*,f) |^C.exp{(J( | Im * | )+ / f ( |Re f | /Im f
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on V. We define &) = £el* by ff>=\}ff>^. We denote by JT = JT«*
* *.? '

the space of all a(#, f)e^ such that there exist some e>0 and
C>0 satisfying

(0.4) | f l (* , f ) |^C exp(-e Im |n)

on some conical complex neighborhood of x .

Example, (i) exp(V^T £//£„)

(ii)

(In §5 we shall give other examples. )

Let #, x' be two points of M. Let ufax^dx'G&o*. In §2 we

define the Fourier transform ti(x, f) of M(#, #') by

We do not give the precise definition of this integral until §2, but
one may understand that it is naturally defined in the sense of
microfunction. Then we have the following

Theorem 0. 3. If u(x, x')dx'e&*., we have &(x, £) e^o,/^To*, and

this Fourier transformation gives an isomorphism

Definition 0.4. If A=u(x, x")dx'e&y9 we call

the symbol function of A.

Remark. We denote by fff
l= (^)o, the space of all a(x9 f

such that fl(x, f) satisfy the condition required for <^o* with

//(O =0 (i.e., the space of infraexponential functions), and by ^2 —

(^2)°* the space of all a(x9 f) e («^i)°* which have asymptotic expan-

sions 0(#, f)~£] 0y (#»?)> where each #/(#, f) is homogeneous in f of
jeZ

degree j (See [11] for the precise definition). In [3] and [11] it is

proved that 8 £ = (^2)o*/^*, and in [1] that f J f ^ (&i

Thus we have
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The next results are the symbol formulae for adjoint operators and

composite operators of microlocal operators,, For that purpose, we

need to estimate the derivatives dx
ad/a(x,g), a,@^Z+

n, for <2(*,f)e

^o*. Concerning these estimates, it turns out that our symbol space

y has a very similar property as the general symbol space S™8(R
n")j

m^Z, 0</?, <5<19 introduced in distribution theory by L. Hormander

[2], There exists similarity also to the more general space S^pi8(R
n^

m^Z, 0<>, <S<1, and y(O is a "basic weight function", defined by

[7], In §5 we shall note more precisely that our theory is a gene-

ralization of the theory of analytic .S^-class defined by G0 Metivier

[9] (See also [10]). The details will be explained in §3 and §55

and here we only note the following fact: Let 0 (# 9 f ) be a symbol

function (in distribution theory) belonging to S™B(R")0 Let A be

the corresponding pseudodifferential operator (also in distribution

theory), and let ^4* be its adjoint operator,, If ^><5, then the symbol

of ^4* is given by the asymptotic expansion

(0. 5) a (A* ) (*, - £ ) ~ Z (-VM d'Sfa (x, £ ) .
a (X I

However, we cannot expect to obtain such a result if p<iS. In fact,
if one calculates the above asymptotic expansion formally, each term
in (0.5) becomes larger and larger as |a|-> + oo.

Remark. Let A=u(x9x')dx'G&**. In hyperfunction theory, ^4* is

defined by A* = u(x\ x)dx'e In distribution theory, the same letter
A* stands for the complex conjugate of u(x',x)dx'e In this paper,
we always follow the convention in hyperfunction theory.

Analogous situation occurs in our theory. Let A e =£Po*9 and thus

the adjoint operator A* belong to 3?^*^ where x'* = (0; 0 9 . 8 0 ? 09— V^T)

eV^T'FAf is the antipodal point of x* . Assume that a(A)^^XifJl

with some scaling functions l(t) and /^(0» If one wants to obtain a
result as (0.5), one needs to assume the following condition on
l(f) and /*(09 where C0>0 and C\>0 are regarded as some given
constants :

Condition C09 C10 If 0<O<1/C09 then we have ^
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Example. Let ^(t)=mit{
9 fjt(f) =m2t

j\ with ml5 77Z2>0, and i, j>l.

Then Condition C0, GI means

and this is satisfied if, and only if, either l/i + l/J<l or l/i + l/j =

1, m1~
l/im2~

l/i>Clo Note that Condition C0, Ci should be considered as

a condition depending on C0 and ClB

If C0, Ci are large enough, and if ^(0, j"(0 satisfy Condition
C0, GI, then we have the desired result in the following sense : Let

A = u(x, x'^dx'^&o* satisfy a(A) = u(x, f)S^,^ for these scaling

functions. Let A*=v(x, x')dx', and thus v(x, x')=u(x', #), by defi-

nition. We define t&,.(*, f)5 jeZ+={0, 1, 2,...}, by

and define W j ( x , x ' ) 9 j^Z+9 by

Here each integral is integrated on the domain

for the corresponding number j&Z+0 Then we have the following

Theorem 0. 5. Let A<E:&o* satisfy a(x, f) =a(A) e^tA /or

^ awrf /*, awe/ /^^ ^ flwrf n satisfy Condition C0, G! for large C0 flwrf GI.
00

Let Wj(x, x'), j^Z+, be as above. Then XI z#y(#, x')dx' converges and
j=0

00

is aw element of 3?°,*, and we have A*= XI ^(#5 x')dx' '. In other words,
* y=o

r£;^ have the asymptotic formula (0.5).

As for the asymptotic formula for composite operators of micro-

local operators, the argument proceeds in a similar way, and we

state the following theorem without explaining its precise meaning

(See §4 for the details).

Theorem 0. 6, Let Ai = Ui(x, x')dx'^&**, i = l, 2, and assume that
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i} =tii(x, £) &£fi.ift for some scaling function ^-(0 and /^(£)5 i

1, 2. If f£i(t) and 22(t) satisfy Condition C0, Cx z0i/A C0 and Cx

enough, we have

ftl<*'°
for the composite operator AiA2.

Remark. We need to note the relation between our theory and

the theory of Fourier integral operators with complex phase func-

tions, due to A. Melin and J. Sjostrand [8]. Assume that a symbol

function a (x, f) is of the form

Here the amplitude ai(x, f) is assumed to be an element of y1? in

our notation, and we assume that the phase function <p(x^ f) satis-

fies | Re <p(x, ?) I ̂  (%( |Im;c|) +//( |Ref | /Im?B))Im?n with some scaling

functions %(t) and //(£)• Then we have a(x, f) e^. On the
other hand, #(#, ?) may be regarded as the symbol of a Fourier

integral operator (precisely speaking, a pseudodifferential operator)

with a complex phase function. Our theory may be regarded as the

generalization of such a theory, since we need not assume that

a(x, |) is written in the form (0.7). We only need to assume that

it satisfies an estimate of the form (003).

§ 1. Preliminaries

Let u(x, x'}dx' be a section of J^ defined in a small neighbor-

hood of x . Since we have an identification

, x'} is a section of ^ MxM defined in a small neighborhood of

* '*(S*, *) eV — ISjfcCM XM), whose support is contained in V —

We remind the reader of our notation x* = (0 ; 0, ..., 0, V — 1)

and x = (0 ; 0, ..., 0, — V — 1). In this section, we always assume

that

(lo 1) for any #eAf, supp uH (V — IS^M X M))* w contained in a
0 0 O _

neighborhood of (?, — £)> z0/i*r0 f=(0, , o e , 0 , V — 1).
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Let v(x, x'} be a defining function of u(x, x'}. The purpose of this
section is to describe under the assumption (1.1) the domain of
definition of v(x, x'} in a standard manner, which will be helpful
for us later.

Let a>0 be a large constant. We introduce a new coordinate
system y=y (x) in M by

= n.
a k=i

The inverse transformation of x\—>y(x) is x = x ( y } where

(1.3) *,00 =
1 = n.

nk=i'~' J

Denoting the dual variables of x (resp. of y) by f (resp. by 37),
we have

and

(1.5)
I n

j=n.

Note that we have x * ? = xlSi + x2$2+ ... Jrxn^n=y(x}« r] (f). If

V-l/Z" satisfies Im^(O>0, l ^ j ^ ^ ? it follows from (1.4) that

, l ^ j ^ w — 1. Since a>0 is very large, the first

octant F={^^ — \Rn; Im^(O>0, l^j^^} is a small conic neigh-

borhood of f=(0, . . . , (U77!) in J^IR1. Let GcV^T/J* be another
o

convex cone containing £, such that G^F but G is very close to
o

F. Then G is again a small neighborhood of f. Our assumption

(1.1) may be rewritten in the form
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(1. 1)' supp u(x, *') C {(x, £ ; x, — £ ) ^ V -

or, equixalently,

(1. 1)" supp M V - - v7) C {(A:, f ; x', f7) e=V —

Let r>0 be small enough "nd let ^(0 be some scaling function.
We define U^cCxC by

| Re

IR

and C/i'JcOxC* by

If (x, £;*', f) e supp a(*, *'), then from (1.1)* we have

and feG. We define G°= {^eV^T /J"; Im *«Im f( =
-Im ?(£)) ^0 for any ?eG}, and F° similarly. Then F°= {^e

jgn}, and G° is a little larger than F°. It
follows that there exist some r > 0 and some scaling function A (t)
such that v(x, x')<= @(U(£r). Here 6 (Uff.) denotes the space of
holomorphic functions on £/£>. We describe the situation for the
case n = \ in figure 1. Note that if n = l, we have y= x. The verti-
cal arrow indicates the direction of supp u(x, x').

Im ^

Figure 1
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Assumption (1. 1)" means furthermore, supp u(x, x') is concen-

trated on the diagonal set (y(x) — y ( x ' ~ ) } . Thus v(x, x') can be con-

tinued analytically across the real axis unless Rejv(«) = Rej(x').

Let r>0, and let (t(t) be a scaling function. We define V

by

| Re z\<r,

|Re(«-«')l

and F^cC^C" by

F«r={(Ar, *'

(See Figure 2).

~ Im

Re (*-*')

Figure 2
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It is easy to see that if we have chosen r>0 small enough, there
exist some scaling function (i(f) such that v(x, x^^O(U^l') can be
continued analytically to V^r.

The advantage of introducing the new coordinate system y—y(x)
is that the domain of definition of v(x, #') can be described in such
a direct product form : U$ U V™r = © (U^r U V ̂  . This will be

n

helpful for us in later arguments. However, this domain U(£r U V(£r

is not very convenient for us, and we need to define the third do-
main Wjfiflfirf as follows.

Let r'>0, and let I' (0 and // (0 be two scaling functions. We
define M^.^cCxC by

| Re *|<r',

and W^i^/cOxC?1 by

The following proposition was suggested by Te Oaku :

Proposition 1.1. Let t'(t)=22(t), (jf (t) =l(p(t)), and let r = r'
be small enough. Then we have

WW , ,ct/Sn) U F(n)
*v X',{i',r' ^— V l,r U * pL,r»

Proof. We remind the reader that we may assume

(1.6) J(0, MO^*

(See Remark (ii) after Definition 0.1). Let (^ z')^Wvtft,tr,. We
first assume that |Im s| i^( |Refe — *') I )• Then we have

and from (1.6) it follows that we have Imfe — ̂ ')>^( |Im <; | ) 3 thus
. We next assume that

(1.7)

We need to prove that we have either Im(z — z')>H(\lm z\ ) or
From (1.6) and (1.7), we have
^ ) l ) , and thus we only need to

prove Im(*-O>-MIReCe;-OI). Let fe ^)e^,^,^ then we
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have

and from (1.6) it follows that Im(z-z')>-i*( | Re (*-*;') 1 ).
Q..E.D.

Let tc(t) and K' (t) be two scaling functions. We say that ic(t)
and K,' (0 have the same order if there exist some constants ml and
m2 such that tc(t) =ml K! (m2t}. In Proposition 1.1, /i(0 and X (t)
have the same order, but fi(t) and /*' (t) do not. This may be re-
garded as defect. In fact, the orders of the scaling functions need
not be changed :

Proposition 1.2. Let / (0=2,2(80, /(O =4-j"(4o, and 0<r'
£i D

<^r. Then any holomorphic function defined on U(fr U V(£r can be con-

tinued analytically to W(fiifJL,tr,.

Proposition 1.2 has advantage to Proposition 1.1 form the above
point of view. But whether one uses Proposition 1. 1 or Proposition
1.2, the conclusion is the same, in the whole context of this section:
There exist some r>0, and some scaling functions /KO, /*(0, such
that v(x9 #') e 0 (Wjf^r). Thus from logical point of view, Proposi-
tion 1.2 may be regarded as unnecessary, although it has its own
interest. We do not give the proof of Proposition 1.2 by this reason,
and only note that it follows from a local version of Bochner's
tube theorem, due to M. Kashiwara and H. Komatsu [6],

§2. Fourier Transformation of Microlocal Operators

In this section we define the Fourier transform u(x, ?) of u(x9

x'^dx'&L&a*. In this section, again we assume that u(x, x') satis-

fies the assumption (1.1), for the moment. The general case will
be treated at the end of this section. Let v(x, #') be a defining
function of u(x, #'). We fix some 0>0, and define y=y(x} by
(1.2), as before, and thus we have v(x9 x') ^ 0(Wfyir\ for some
J(0, MO, and r. We define W^dCxC by

(2.1) Wr=((z, OeCxC; |Re Z\<r, |Im z\<r,
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We have M^^.r= {fe, O eH^r; Im fe-O>^ (|Im ^| ) «AI
*')!)}, and Wft^QW^r. We define 34Wft.r.v l^k^n, e0>09 by

We define 0 (dkWt\ r) = ^ 0 (9*Wi"i r e ) . Note that if r; (*, *')' ' °EO>O

©0 (dkWtnl,r'), ^en (S*, 5 *) € supp u(x, x'), and thus the corre-

sponding microlocal operator is zero at x
Inspired by [1] and [5], we define &(x, £) as follows : Let sl9 s2

be such that

r<Re
(2 2)

0<Re J2<r? -r<Ims2<0,

Let r'>0 be small enough (r'^Cr). We assume that ^ and J2 satisfy

(2.3) Im^>2(r')-^(|Re j,.|), i = l, 2a

It is easy to see that if ^eC7 satisfies |Re z\ <r7, |Im ^| <r7, then
we have (*, ^ — j,-) ePFA^ir? i=l, 2. Let C>0 be large enough.
Then we have

(2.4) Im

Now we can define #(#, f) :

Definition 2e 1. We define the Fourier transform $(•*, £) of
M(X, *') by

(2. 5) t»(x, O =^(^? O =^-(-'/)«oU, *7)d(*-^).
r

Here r= {A: — ̂ 'eC"; j, (^) — yj(x
/) er, l ^ j^w},and 7* is a continuous

curve from Si to j2.

Remark, (i) From now on, we write as yj=yj(x')^ y/=yj(x')9

and i]j = i]j(£). If confusion is not likely, we write as v(x, x') =
v(y<> y'}> W abuse of words. Since we have d(x — x ' ) / d ( y — y ' ) =
(~n/a)n~l, (2.5) may be rewritten as

(2.5)' *(*, £)=*(*, f)
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a

(ii) Definition 2. 1 has some ambiguity. This definition depends
on the choice of the defining function v(x, #'), on the choice of the
new coordinate system y=yW, and on the choice of Si, s2. It turns
out that this does not matter, but we do not discuss about it for
the moment.

Let *eCB satisfy

(2.6) |Rej>,|<r', |Im y,\<rf, l^j^n.

For any e>0, we can choose 7- = j"B as follows : If xeO satisfies (2.6)

and yt-y/Gr** l^J^n> then we have (*> OeWjft,, and

(2. 7)

This is clear from figure 3, where A denotes the curve lm(yj—yj
/}

= J l ( | Im ^l)-^(IRe(^-j;/) |) , and B denotes lm(yj-y/) =

^ ( l lm^ l ) - - ̂ rjM(|Rc(^-^/)|)+«. Let us fix x<=C» which satisfies
C

(2. 6). If each yj—y/ belongs to the shaded domain, we have (x, *') e

Figure 3
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W^.r, and it Is easy to see that (2. 7) holds.
Now we define TrdCnxC\ r>05 by

Tr=((x, OeOxC*; |Rc^|<r, |Imj>,|<r,
r Im^>|Re ^-|, rim ^>1, l^j^n}.

Now we give two definitions0

Definition 2 e20 Let r>09 and let ^(0, MO be two scaling
functions. We define 0 ^(TV) by

0 A t f t ( T r ) = [a(x, £) e 0 (rr) ; for any e>0, there exists some

Ce>0 such that |a(*, £) I ̂ C6exp{Z (*( I tm j>,-|)

+ M I R e 7 , | / I m f t ) +e)Xlm 7 y } on' Vj .

We define 3*0^(7;), IgA^w, by

dk® i.^TS) = [a(x, f) e 0 (TV) ; there exists some £0>0 and for
any e>0 there exists some Ce>0 such that|

a(x, f ) | ^Ceexp {t (^ ( |Im^| ) +/i( |Re ̂  l/Im )?,)
j=i
} on Tr} .

Definition 2*3. Let ^(0=^o(0 be a scaling function. We define
its dual scaling function 1(0 by l(t) =t%Q~l(t)e

Example. If X(t) =mti
9 m>05 t>l, then we have 1(0 =^~1/(!'~1}

Lemma 2e4. (i) 1(0 is also a scaling function,

(ii) The dual function ^(0 of 1(0 coincides with

The proof of Lemma 20 4 is easy0 Now we have the following

Proposition 20 50 Let 0<>'<r9 C>1, and let fif (0 =/2(CO-

(0 //»(*, ^)e0(^.r)
(ii) // »(*, ^)e0(9,^,r)3 then v(x,

Proof. Let K*5 ^0 e (P (M^lB^ir). For any s>0 small, we define
Y£ as above. Let (#, f) eTV/, and let j;y— X-e/'e, I^J'^TZ. Taking r7

small, we may assume that Im ^->-C|Re ^|, l^j^nB From (2.7) we
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have

(2.8) \e-»-*»v(y,y')\

{t Im(7,-j/)Im Vi+± |Re(^-j»/) | • |Re 7y|}
J=l J=l

£(;!( Urn 7,|) +s)Im i),
J=l

+ t(-iMIRe(^->/)|)Im7y-H Re (*-;>/) NRe
J = l U

We can prove

(2.9) /=-- «(|ReO>,.-7/)l)Im ,,+ |Re(j»,-^/) | • |Re ?,|

as follows: If \Re(j>j-j>j") I^^HCIRe 13, |/Im j?y), then

/=-l|Re(^-j/)|A(|Re(7,-7/)

c(^-j»/)|.|Re 7y|

| Re ij,\ /Im 7,)

Gontrarily, if |Re(jc,- j;/) | ^//0-J(C |Re 17,. |/Im ^), then

/^ |Re(^->/) | • | Re y, \ =^l(C IRe )?, |/Im 7j) |Re r,,\

From (2.8) and (2.9), we have

which proves (i). To prove (ii), let v(x, x') <E 0 (dkW^r)a We
can take the path .T in (2.5) as follows: If x — x'^F, then Im (yk

-^X^IIm^D-^dReU-^OD-So^nd for j^k, (y^y,') is
o

as above. Then the proof is the same as above. Q. E. D.

We next show the converse result. Let a(x, f) e (D LfJL(Tr}^ and
define a (A:, ^') by

(2. 10)

where J={feC";>7 = 7?(f)eV^T/?+
B Im}7>lA, l^j^n}. The do-

main of integration (2. 10) is thus a small conical neighborhood of

(0, ..., 0, V~0 in V~~l^"> in tne original coordinate system. Then
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we have the following

Proposition 2.6. Let // (0=/K*/2), and let 0<r'O. Then we
have

(ii) /

Proof. Let a(*, f) e0 ,.„(?;), and let (*, *') e W^.Xi.e., (j^-, .?/)
,.,,, l^'^ii). Let /i, J2 c {1, 2, ..., rcjbe such that -/1Ui/a =

{1, 2, ..., raj is a disjoint union. We define J=(Ji9 J^). Let / be
such a pair, and we assume that (x, x') satisfies Re(^-— y/) ^0 (resp.
<0) if j'e/j (resp. /2). It is easy to see that

(2.10)' d(x, *') =

where

Re j,j=-fkr
l( |Rc(j»,- JP/) | /2) (Im 7>-

Re 7, -^o-1 (Re 0>, -.}</) 1/2) (Im 7,-l/r), je/J

Then for any s>0 there exists some CE>0 such that

(2.11) |«<*

I Re 7/| /Im 7j=i

if fej/. Note that

(2. 12) Re(j,-j/)Re 7,= -2/l( |Re(^,-j/) | /2) (Im ^-

and

(2. 1 3) /i ( | Re r,, \ /Im ,?,) = ̂  ( | Re 7y | /Im ^,) | Re ?, | /Im )j,

From (2. 11) -(2. 13) it follows that

I^-'^C*, f)|

-e)Im 37,-}.

Since / and e are arbitrary, the integral (2. 10)7 defines an element
of 0 (W^/.r/). This proves (i), and the proof of (ii) is similar.
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a E. D.
We next consider the relation of the above two propositions.

Definition 2.7. Let ^(0 be a scaling function. We denote by
\_X] the set of all scaling functions which have the same order as ^,
i.e., M={^(0=M(^20 \ml9 m2>0}. We define

w
] r>0

and tftoWfcifcj), 3*0WlW, 1^*^«, similarly.

Let ziK*, x')^G(W^w)/@G(9hW^w). We have «;(*, *') =

v(x9 x') modulo ©0 (3,W/$ [/u]) with some z; (*, *') e 0 (W^i/"Vr),
fe=i

reM, Ai'eC/i], and r>0. Note that 0(*, f) e (P WiW]/©3*tP WiW]

is defined independently of the choice of sl and s2. In fact, assume
that we have replaced s1 and s2 by another pair jj and s'2, and let
^'(^, ?) be the corresponding Fourier transform of v(x,x'). It is
easy to see that ti(x, £)—tf(x9 f) G09A(P Wi[/z]. Thus we may define

W]i[/z] by W;(A:, f)=0(x, f). Conversely let

6 (*, f ) e (P caw] /0 3* ^ u],c/z] and let 6 (#, f ) = a (x, f ) modulo 03fe

(PWiW] with some fl(x, £)e 0^(7;,), A'e W, /^[//], and r'>0. It

is easy to see that we can define b(x9 x') e (P ,
V

by b(x9 x') =d(x9 x'). Since jS (0=^(0, we have defined the follow-
ing two maps :

© ̂  (S^Si. w) "^T" ©3* 0 mw '

We have the following

Proposition 2.8. (2.14) is an isomorphism.

Proof. We need to prove the following :
(i) Let v(x, *') e 0 (W^,,,,) with J'eM, /I'eM, r>0,

and a(x9 f )=^U, f). Then we have d£(*, *7) -»(*, *7) e©0 (3^

(ii) Let fl(*, f)e0^,(r r) with reW, ^e[/z], r>0,
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and v(x, x')=d(x, *')• Then we have $(*s £ ) — a ( x , f) ^®dk® [ja[/n.

Both statements are proved in a standard manner, and we only
give a sketch of the proof of (i). Let 0<r'<r? and assume that
|Imj>y |<r'/2, Im(j>,.-j>/)>r'/2, l^j<,n. With the above notation
we have

_ 1 fs2 r s2fiHi~ rv^i~
~ (2ffV:rI)B 3*! ' ' ' J., JV^i/r ' ' 'Jv^l/r

X «?<>'->"" v(y,y")dijd(y-y")

. . . T2 n (y;-y/rl^o>'->s>*

= o(^, jO =o(x, x') modulo 0(P (S^ffl.M). Q, E0 D.

Now we show that Definition 20 1 has no ambiguity,, We first
remind the reader that we have already noted that this definition
does not depend on the choice of sl and s2,

From Definition 0. 2, Definition 2. 2, and Definition 2. 75 it is easy

to see that we have ff WL [/u] C <^°.3 and © 340 WLU^-^y* anc^ t'1118

we may consider $(#9 f) as an element of Zfy/Jf™* Now we show
that $(#, f) e^oa/.^'o* is defined with no ambiguity. ti(x, f) is
independent of the choice of the new coordinate system y = y(x)
defined by (2.2). To prove this, we first note that we have found
that without loss of generality we may choose si9 sz as s1= — r/2 —

V^r', j2 = r/2-V- rf' r /» 0<r /<r8 In the integral (2.5)', each path
from jj to s2 may be replaced by

>/)| <r/2,

where

?>(o =
In the original coordinate system (#, f)3 this means that in the
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integral (2. 5) the domain of integration F may be replaced by

Neglecting an element of Jf^ this domain can be replaced by

(2.15) {*-*'eC*; | Re (*,-*/) I O/2, l^j^fl,

Im (*.-*/) =

which does not depend ony=y(x}.

Assume that u(x, *') e^^(MxM)(<*fMxM) satisfies (1.1). Then

the definition of u(x, f) does not depend on the choice of a defining
function of u(x, x'}. In fact v(x, x") e (!) (H^,r) which defines
u(x, x') is uniquely determined by the injectivity of the boundary
operator.

We finally consider the case without the assumption (1. 1). Let

u(x, A; /)e^0
Z T s ( M x M )(^MxM) e Let wd^S2"-1 be a small neighbor-

hood of (?5 — O, and u(x, x') be defined for (f, £ ') eo>. Let o/
o o

<y be another neighborhood of (f, — ?). We choose Ui(x9 x'}
^ J ( M x A f ) ( ^ M x M ) such that Ml(x, ̂ 0=0 if (f, r)^o; and

=tt(*, *0 if (f, r)eo>'. We define fi(x, f)e^o./^-. by fl(*, f) =

^(x, f). To prove that this is well-defined, we need to show that
if MiOc, x') satisfies (1. 1) and (£*, £'*) € supp Mb then ^(j, f)^^..

We can easily prove this fact, using the microanalyticity of ^(A:, ^')-
In fact, in (2. 5) we can choose the path of integration F in such
a way that ^(x, £) becomes exponentially decreasing at ^*, and

thus &i(x, f)eJ^o». Thus we have obtained the following map:

(2.16) j2%.

To prove that this is an isomorphism, we first prepare the fol-
lowing

Proposition 2. 9. Let r>0 6<? small enough. There exist some C>0
and a holomorphic function e(j]) defined on {q^Cn ; r Im ^> | Re 57,1,

satisfy the following :
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(i) We have

m , I' exp{CZ|Re

on the above domain of definition.

(ii) If 2 Im ^7C>Im f]k for any j and k furthermore, we have

K?)-l |£Cexp{ — L Z Im ?,}.
u y=i

(m) //" Im i?j>C Im % /or some j and k furthermore, we have

1*07) | ̂

Before the proof, we explain the meaning of this proposition.
The above statement (i) says that e(^)=e(^ defines a microlocal

operator e (D) at x (This follows from Proposition 2. 8) . From (ii)
it follows that e(D} is equivalent to the identity operator near 37! =

r)2= • •• —t)m i«e- near x in (x, f) variables, and from (iii) it fol-
lows that e(D) is equivalent to the zero operators near the boun-
dary of the first octant. Thus e(D} may be regarded as an analytic
partition of unity.

Now we give the sketch of the proof of Proposition 2. 9. We
first assume that n=2. We define ®(y) =®(y\, JV2) by

We take the boundary value of $(jy) from{Im j>,>0, j = l, 2}, and ob-
tain the corresponding microfunction [0(j>)]. It is easy to see that

supp[$00]c (0>, 57) ^^^IT*R2; j=0, Im 57,<3 Im ^, lg^

"" .7 = 1,2}.

We can define e(ir})=$(iq) by

*(?)=

just in the same way as (2.5), and calculating this integral in the
same way as there, we obtain (i). Since [<P(jO] is equivalent to the

delta function near x , we obtain (ii). Lastly, since supp[0(jO] is
completely contained in the first octant, we obtain (iii). And we
can prove Proposition 2.9 in this way if n = 2.

We next consider the case for general n. Let us denote the above
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*07i, %) bY *o(>7i, %), and let us define e(rjl9 . . . , yn) by

*07i, • .., 37«) = n *0(ft, 374).
l^J<fe^n

This function satisfies the above requirements.

Now let us prove that (2. 16) is an isomorphism, using Proposi-

tion 2.9. Let b(x, f)e^ r. Let 0>0 be large enough, and define

y=y(x), 37 = 27(0 by (1.2), (1.4). Then there exists some scaling

functions ^(05 M05 and for any £>0 there exists some Ce>0 such

that

(2.17) |K*, O ^ C B e x p { ; ( J ( | I m j > | ) + / i ( | R e ft|/Im ft)

Xlm ft}.

(2.17) is not sufficient for b(x, <f) e ^ Ai/u(7"r) for any r>0. Let us

define b' (x, O by 6'(*, O=*(O*(*, O with the above *(O. From
(i) of Proposition 2.9 and (2.17) it follows that

(2.17)' \b'(x, O l ^ C i c x p t Z W d l m j ^ D + ^ C I R e ^-|/Im
j=i
Xlm ^},

where [*' (t} = n(t) +Ct2. We can prove a stronger result:

(2.17)" !*'(*, O I ^ C i c x p l S W C C ' l I m ^ D + ^ d R c
j=i
Xlm ft}

with some C7>0. In fact, if Im ft>C Im ^ for some j and &,

(2. 17)" is trivial because b' (x, f) is exponentially decreasing in such

a region. On the other hand, if Im ft^C Im yk for any j and k,

we have Z ^( | Im y\} Im ft^ Z ^ C C ' l I m ^ l ) Im ft, thus (2. 17)"
j=i j=i

holds. Thus we have b'(x, <f) e ^ w.c^a, and we can define £'(#, x')

by (2.14). We define b(x, x')dx'e&o. by 6(x, *7) =67(*, *'). From

(ii) of Proposition 2. 9, it follows that this is well-defined. Using
Proposition 2. 8, we can prove that the mapping

is the inverse of (2. 16), and thus (2. 16) is an isomorphism. This
proves Theorem 0. 3.

§ 3. Symbol Formula for Adjoint Operators

In this section, we prove the symbol formula for the adjoint
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operator A*^<$?°,« of AeJ^V Let A = u(x, x'}dx'. Let us assume
for the moment that u(x9 #') satisfies the condition (1. I)8 Let a^>0
be large enough, and define y —y(x)9 y = y](£) by (1.2), (1.4). It
follows that there exist some scaling functions ^(0, M0> and some
r>0
such that the defining function v(x, *') of u(x9 x') belongs to 0 (W^.r).
By definition we have A* =u(x'9 x)dx'9 thus the defining function of
M (*',*) is w(x,x')=v(x',x). Let J'(0=2J(20 and /i'(0 =/i(0/2.
We have the following

Lemma 3.1. // (*, x') eW^,r/2 and 0^*0^1, then we have (x +

Before |he proof, we consider the meaning of Lemma 30 1. Let 0
= 1 in Lemma 3.1, then we have

It follows that w(x, 2x — x') =v(2x — x', x) as a function of ( x , x ' ) 9

belongs to 0 (W^i^/>r/2). This is important since we can calculate
the Fourier transform of w(x, x') from w(x^ 2x — x') (considered at

the point x ) as follows: The Fourier transform w(x, f) is defined by

9 f) =

The precise definition of this integral is given just in the same way
as in § 2, but this time we are considering at the antipodal point

x'* of x . Thus every domain must be modified in an antipodal
manner. If we write x" = 2x~ x'9 we have

This time we regard w(x9 2x — x") as an element of 0 (W^/,r/2), and
we may regard vb(x9 — £) as the Fourier transform of w(x, 2x—x")a

Replacing x" by x', we have

(3.1) tfrOc, - f )=? ^^"^^(^ 2^-OrfC*-^).Jr
Here the domain F is the same as in (2 8 5) 0

To prove Lemma 30 1, we need the following

Lemma 39 20 If K (t) is a scaling function, we have
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Proof. K^ + tz)^ K(2 maxC*!, *2)) ^(2*0 +*(2*2). Q. E. D.

Proof of Lemma 3. 1. Let (*, *') e W^,ir/2. Let y}=y,(x}, J>/=J>;
O'), as before, and let x(0) = * + 0(*-x'), *' (0) =*+ (0-1) (x-x'),

y.(6) =j,(*(0)), and j>/(0) = j>,(;c'(0)).
We need to prove (y} (0), y}' (6)) eW^,0 i^j^^z. Since x(0}-x'(0}

= x-x'9 we have yj(0)-y/(0) =yj-y]', and we have (^(*),J^/W)
eW^r? lgj^w(See(2. 1)). Thus we only need to prove Ij = lm(yj(0)

- J /W)-^( | Im^WI)+Ai( |Re(^W-J ' /W)l )>0 , l^j^n. From
Lemma 3B 29 we obtain

Taking r>0 small enough, we may assume that ^(0 ^t/4 (See Remark
(ii) after Definition Oe 1). Thus we have

Since (^, x7) e^^/.^Ci.e., each (j;y, j/) e^/>AI/>r/2), we have

min(3

and thus Ij>0, l^j^n. Q. E. D.

Now we derive the asymptotic formula from (3. 1). We write
x = x-x'9 and d(x9 x') =a(x, x-x'}. If N<=Z+, from (3. 1) we obtain

adx
av(x, x}dx

\a\sN-i a! Jr

\a\=N a! jr

and thus
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N-I
(*\ ON nit(v £^ — X ' i f f f i (M £N _l_ f?-r(y — P^
\3» &) l*J v-^5 > / — s . (JUj \Aj S / i^ **'N \**5 *» / •

>=0

Here

and

(* A.\ P ^y — P ^ — y1 N ( —\j. "T) j\x\x^ qj — z_t . \
\a\=NfX\

where

(3.5) ve(x, ̂ =\pe

Considering 0(* + 0*, *) = 0(* + 0(*-*'), A:+ (5-1) (x — x')) as a func-
tion of (*, x7), we have t> (* + **, x) e (P (M^i^/.r/2), by virtue of Lemma
3.1. If tf(f)=pf(Ct) and 0^'Cr, we have 0,(*, f) e (P ^/.^(rr/).
From the proof of Proposition 2. 5, we obtain a uniform estimate for

4*(x9 f), 0^0 5^1 : For any s>0, there exists some Ce>0 such that

(3.6) )*,(*, f) |^C.exp{i;W /( | Im^|)+/( Re ^,|/Im 7

Xlm 57,}

on jTr,9 O^^^l. We can estimate the derivatives of $0(x9 I) as
follows:

Proposition 3. 3. Let OO"<r', awrf fef 0<rl9 rz<r". For awj; e>0
exists some Ce>0

(3.7) d « d f v 6 ( x , f) ^C£a!^3!rrlal(r2 • min Im

X cxp { 2(2^(2 | Im j;,i

/or a, j8eZ+", O^^^l, ow 7>.

Proo/. Fix an arbitrary point (x, f)^rr,,, and let (i,
be another point satisfying

(3.8) £,]^r1? | fy |^r2 • min Im 57,, l^j^n.

Note that ^ does not denote the complex conjugate of x. We write
as ^=^>(*)> ^ = ̂ (1), 1^J^«. From (1.2) and (1.4) it is easy
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to see that if r"O', then(* + £, £ + £)e7V/. From (3.6) it follows
that for any e>0 there exists some Ce>0 such that

^C.expt tW'C Imj> , | + Im y,|)
j=i

Re fl,|)/(Im 9, + Im ^)

Using Lemma 3.2 and (3.8), we obtain

(4] Re i),\/lm iji) + Iff (4ar2) + 2s) Im ij,}.

Using Cauchy integration theorem, we obtain Proposition 3. 3.
Q,. E. D.

Proposition 3.4. Let C0>0. We define T(k) cOxO, k<=Z+,

T(k) = {(x, f)eC»xC"; C0 *,!<!,
Im fn>C0|Im f,|, l^j^n-1,
Im fH>C0iRe f,|, I^J^B, Im

Assume that C0 and Ci are large enough, and that k~^ \a , \fi\. Then

for any e>0 there exists some Ce>0 such that

(3.9) 1 3/3/0, (*, O!^C£a!^!
lm *|)+/KC, Re f j / I m f.)+«)Im fj

on

Proo/. Let (*, Oe^W, ^^ |« , |j8|. If C0 is large enough, then

we can take r1-^-1(( a |+ l ) / Im f.)/4, '^/-'((^ +l)/Im f.)/
4a in Proposition 3.3 In fact, we have r l - £ X ~ 1 ( ( a |+ l ) / Im fj<
X~l(\/C0)<ir", if C0 is large enough. Similarly, we have r2<y. From
(3. 7) it follows that for any e>0 there exists some Ce>0 such that

(3.10) 3/3/*,(*, f)|^C ia! j8!
fjmin Im ^)

Xexp { 2 2( \a \ + j j 8 | +2)Im ^/Im ?„}.

If C0 is large enough, from (1.4) and (1.5) we have

(3. 11) 2n -min Im j^^Im fn^> max Im ^

on T(k}. Substituting (3.11) into (3.10), we have
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(3.12) \d«d/ve(x,

X (SneW/^a j

Xexp{(2«^'(2 max Im y{ |) +2«^(8w max Re ^l /Im ?B)

From (0.2), (1.2), and (1.4), we have

(3.13) max |Im y{ ^2 |Im #|, max Re ^ ^a Re £|.
l^»^» l£i£n

Substituting (3.13) into (3.12), we have

(3.14) \Bx
a3f4e(x, f)|^4"C.a!j8!(4^/^/~1(( * +D/Im

|Re f | / Im f

From (0. 2), we have /(O =2^(20 ^^(40, and thus

We have /(O =/Z'«?0 =/z(2CO/2^/2(2CO, and thus /^(O ^/2-1(0
/2Ca Furthermore3 we have 2«^(0^^(2«0 and 2rc / (0 ̂  // (2«0 .

Noting these facts, (3.9) follows directly from (3.14). Q,. E. D.

Remark, (i) If 0 = 0, we have 00(x, f )=^U, f ) (See (3.5)). Thus

(3.9) gives an estimate also for ti(x9 f).
(ii) The estimate (3.9) will look more familiar if we let ^(0 =

mrf*, n(t)=m2t
3, ml9 m2>0? i, j>L Then we have ^(t) = (t/ml)

1/i,

t*~l (0 = (*/JH2)
 1/y- Assume that CE = C does not depend on s>03 and

let e-^ + 0, 0-0, in (3.9). If (*, f) eT(A) H ̂ PlTM, k^ a\, |/3|,
then we have

for a, fi^Z+
n. In this case we have 0(#, f) e5°i5 with ^=( j —

5 = l/z. In this sense, our theory may be regarded as an analogue
of S%tS theory, in the category of hyperfunctions. As was mentioned
in § 0, it seems inevitable to assume some condition, if one wants to
obtain an asymptotic formula for adjoint operators (See §5).

Now we can give the asymptotic formula. Let C0? CV be large
enough and assume that ^(0 and ft(t) satisfy Condition C0? C/. We
start from (3.2). If (*, £)er(j), from (3,3) and (3.9) it follows

that for any s>0 there exists some Ce>0 such that

(3.15)
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i Re f |/Im £„)+«) Im £ „} .

If C1>2C1
2, we have

(3.16)

The same estimate holds also for .£,(*> — ?), on T(j). A defining
function of a (A;, x'} (with ^*=«(x', *)<£*') is given by (2.10) where
a(x, f) is replaced by ilb(x, — £), modulo microanalytic elements:
i.e., as the defining function of u(x', x), we may take

(3.17) w'(x, */) =

The domain of this integral may be replaced by an arbitrary small

conic neighborhood of (0, . . . , 0, ^ — 1) in ^J — lRn. We define JO'),
, by

m £4|, l^A^n-1, Im

We replace J by j(0) in (3.17). Then we have

(3.18) w'(x,X') = „ * v\ «-*-">«tJ;(*, -f)rff
U^V — l; Jj(o)

modulo microanalytic elements. From (3.2) and (3.16) we have

w'(x> X ^ - = [ N
"

f ,-^-')l^(

JJUV)

by induction on N. By (3.16) for w}(x, — f) and R}(x, — f), we
can let JV-> + oo, and thus we have

1^^^T^rnv t f ; \ ^-^^(^ -k^^V — U ^=0 Jj(y+i)

The second term gives an microanalytic element, and we have
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It is easy to see that the right-hand side is convergent, and it is the
defining function of u(x', x),

Proof of Theorem 0. 5. We use the notation of Theorem 0. 5. Let
A=u(x, x'}dx'^&**, and let a(A)^&*itfi. Thus there exists some C

>0, and for any e>0 there exists some C6>0 such that

(3. 19) |*G4) (*, f) | ̂ Ce exp
7=1

X Im ft)

on TV, with some r>0 (We have chosen some y and 17). For the
sake of simplicity, we assume a stronger estimate

(3.19)' < r W ) ( * , f ) gCeexp{Z(^(C|Imj;, |)+MC Re fc|/Im ?j=i
Xlm 37,}

on TV, with the same letter 1 and ju, and that ^, /* satisfy Condition
C0, Ci. Then the above argument applies for a (A*) (#, — £)> and
we obtain Theorem 0. 5. In the general case (under the weaker as-
sumption (3. 19)), we can also follow the above argument, although
several points require more careful consideration. We do not give
the proof for the general case, because it is essentially the same
thing. Q,. E. D.

§4. Symbol Formula for Composite Operators

Let Ai=Ui(x9 x')dx' G&o.9 i = l, 2. In this section we give an

asymptotic representation of the symbol of

A,A2 = ( \u, (x, *") u2 (*", *' ) dx") dxf

We assume that M,-(X, x')9 i = l, 2, satisfy the condition (1.1), for the
moment. Let 0>0 be large enough, and define y =y (x) by (1.2). It
follows that the corresponding defining functions »,-(*, x'), i = l, 2, are
holomorphic on WPtft.tr, with some r>0, and some scaling functions

ft(0j respectively.

We first investigate the domain of definition of the function

v2) (x, x') =\ »i(x, x*)v2(x"9 x')dx". We define new scaling functions

and jM(0 by
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(4.1) J (0=^(20 +01, (20,

(4. 2) MO =-^-min(ft(»0 +ft(d -0)0),C o^ergi

where C>0 is a large constant. Then we have the following

Lemma. 4.1. ^(0 and fi(t) are scaling functions.

Proof. We only need to prove (0.2) for //(0> other properties
being trivial. We denote as fJ^(t) = (i(t) /t9 #0(0 = ft(0 A? i = 1? 2.
If t<Jt'9 then we have

= -1- min (tyuCfc) + (1 -«)^((1 -0) 0)
C

a E. D.

We next show that (v^v2) (x9 x') e (P (M^i^,r/) with 0<r' <r.
Precisely speaking Vi*v2 is defined by

(4.3)
Jr

Here T is the same as in (2.5): F= [x — x" ̂ Cn ^y^x) — y^x") <=?,
Irgj'^/z}, and 7- is a curve from sl to s2. We had better define s1

and J2 explicitly. Without loss of generality we may choose sl =

-ft-1(2r /)-VIIT»r/ and j2 = ft-1(2r/) -f-ir'. Note that if |Im y,\
r')9 I^j^n9 then we have Im si^>Xl( Im y,(x) |)— &( Re j t-|),

2
i = l,2, l^j^n. If C>0 is large, we have Im si<^ — -^r/JLl(\E.G s { \ ) 9

i = l, 2. As in §2, for any e>0 we can choose a curve Y = ?e from

Si to s2 such that if |Im y^x) KV1^'), J>/(*) — J>X*") ^fa l^J^w,
then we have (x9 #'') ̂  W7!"!̂  a^d

(4. 4) Im( j>X*) -^(OX^iC |Im ys |)

From now on, we write as y- = y,-,(x")9 as before. We define
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by

(4. 5) Wft.r.r,= {(*, *') eOxC*; jRe y, \<r/2, Im y, <3rl(r'),
/TV),
,-7/) I),

We have H^ft i r,= {(*,*') e Wft.r.r, ; Re ^|<r', |Im ^|
I Re (*-.?/) |<r', IIm(^-j/) <r', l^j^n}, and thus ^«.r.r, and
Wft,r» are essentially of the same property. We have the following

Lemma 4. 2. (w) (x, *') e <9 (^ft.r.r,) (c <

Proof. Let (*, x') eH/lB)
A.rir,. There exists some s>0 such that

Im (yi-yi'}>X(\lmyi\}-fji(\^(yi-yj'}\)+2S, l^j^n. We need
to prove that if y, —y" e 7-,, l^j^n, then (x, AT') e W7^^,,, and (x", x')

only need to prove

(4.6) /y =

Igj^w, other properties being trivially satisfied. Let us prove (4.6).
Using Lemma 3. 2, we obtain

- X2 (2 j Im ( j,, - ^') | ) + ft ( | Re ( y/' -y,') \ ) .

We may assume that /l2(0^/4, and thus we have

lmy,\)

= Im(j;,-7/)-maX(3 Im ( j, - y,
-^(2 lmyi\) +ft( |Re(jr/-j-/) I).

From (4. 4) and (4. 5) we have

Ij> {>? ( | Im ys \ ) - ft ( \ Re ( j, -j>/) | )

Using (4. 1) and (4.2) we have /,>0.
Q,. E. D.
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From Lemma 4.2 it follows that we can calculate (0i*fl2)A (#, f)
according to § 2, the domain of integration being appropriately

chosen. Let s^, s2 be as in § 2. We define them explicitly by

(4.7) .$•/— — fjt~~l(6r') — ^ — lr', s2=[Tl($rf) — V —1^'.

Let 7-' be a path from j/ to j2'. We have

(4.8)

Here F is as before, and P' = [x- x ^ Cn ; y}-y-<E. /, l^j^n}

We note that if

(4. 9) |Im y, <l^(r'/<l), Re y> <r/2,

then we have Im j/>^( |Im j;, |) — //( |Re 5/)? i = l, 2, I fgj^ra .
2Let C' be large enough. Then we have Im j/< — — 7-/^( ]Re s/|),

G
z = l, 20 As before, for any O>0 we can choose ^/ = ^e

/ such that if
#eCn satisfies (4.9) and y3— y3'^^\ l^=j^n, then we have (x, x')

eW&.r.r, and

(4. 10)

Note that (4.8) is well-defined if x^Cn satisfies (4.9).
To give an asymptotic representation from (4.8), we need to

replace the domain of integration P' in (4. 8) by another one. We
fix an arbitrary point (x, x"} eCnxC" such that (4.9) is satisfied and
x-x'&F. Let f be a path from sl'+(y,-y?) to s2+(y]-y"J\
and let Ff = P"(x, x") = {x-x'tEC"; yj-y/^f, l^j^n}. We define
h(x, f) by

(4.11) h(x,^

Then we have the following

Lemma 4B 3. If x^Cn satisfies (4.9), then h(x, f) is well-defined,

and we have fi(x9 f) — (fli*z>2)
 A (^? f)
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Proof, The difference of (4.8) and (4.11) is the following: In
(4.8) each ys — y/ moves on 7', but in (4.11) moves on f. The
difference of these two paths is / i /U/2 / , where liJ9 i = l9 2, \<Z,j<^n9

is the line segment between j/ and J/4- (y}— y"} (See figure 4).
Let /b /2C {1,2, . . . , n} be such that J1(JJ2= {1, 2 , . . . , n} is a
disjoint union, and let /= (Jl9 /2) be a pair of such Jl and /2. We

define jT"7 by /""/= {#—tf 'eC"; j>y—^/ep', j^Ji, J> /— JV/ e ^i /U/ 2 , - ,
JEEiJz}. Then ^(^, f) — (^i*y2)A(x, f) is a finite sum of several
integrals of the following form, with J2=£<f>-

(4. 12)

Let IJ9 Irgjfgra, be as in (4.6). We shall show that if x — x't

then /y>0, l^j^n, and

(4.13) Im 0>y-j>/)<-r'/4, js=J2.

Note that /,>0, 1 ^j^n, means (/', x') belongs to the domain of
definition of v2(x"9 x ' ) 9 and thus (4. 12) and h(x9 f) is well-defined.
Furthermore, (4. 13) means

and it follows easily that if J2±$9 then (4. 12) belongs to ®dk® W]I[

A

v+(jv,-j>;)

Figure 4
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C./FO., and the above two facts give the lemma.

Now we prove /,>(), l^j^n. If j&Ji, the proof is the same as

Lemma 4.2, and let j^J2. We denote y,—y,'^li, by y, — y,'=Si +

0-0)(7,-J>O, 0^0^1. From Lemma 3.2, we have

/, = Im s{'-0

We may assume that ^2(/)^</4, and thus

^Im 5/+min(-3

We may have chosen the path ?"e(for the variable y j — y " ) in such a
way that we have Im(j>j—j>j")^:Im j,-(= — r'= Im s/) on ^ (See
figure 3). Thus we have

7,^2 Im j/ + min(-

From (4.1), (4.2), and (4.4), it follows that

7,^2 Im V+{-5^
-^(2 Im ^|

^2 Im ̂ ' -^(i
-5e/2.

We have |Re (yt-y') + \ Re (j/ -y,'} \ = \ Re (j», -j/
| Re j/-(?Re(jv,--7/) |^ Re s/ \, and thus

7,^2 Im Si'-i( Im j,!)+^( Re J/!) -5e/2>3r'-5e/2.

We can take £<>' and thus 7j>0, l^J^w.
We next prove (4.13). From (4.4) and (4.9) we have

Im(^,-^/) -Im s.'+(l -e)lm(yi-y")

<Im j/+ (1 -«) (^( Im ̂  |) +8)<-r'/2+e.

We can take e<jr'/4, and thus Im(7y— _y/)< — r'/4.
Q, E. D.

Let f' be some path from s^ to 52' again, and let r'={x" —
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eC?w;j;//-j;/er
/
9 l^j^n}. Since x-x' ^F&x* -x'^F', we have

(4.11)' h(x^)

Now we can proceed as In § 30 We write as xf = x"~x'9 x"=x — x\
and

From (4. 1 1 ) ' we have

/1'

_^Lf f
a\ }r}r>

0

xdx'dsf.

It follows that

(4.14) A^O-Z 1 «,(*,« +^(*,«-
J=0

Here

(4. 1 5) ^ (*, 0 = 2 * 3^ (x, f ) 3/«2 (*, f ) ,
l a i = y a!

and

(4.16) ^(*,f)=
\

where

(4. 17) 4,a(^9 f) =

We can estimate these derivatives as in § 3, and obtain the follow-
ing : Let C09 Ci be large enough, and let r">0 be small enough. Let
T(j) cC?nxCR

? j^Z+, be the domains defined in Proposition 30 40 Then
for any e>0 there exists some Ce>0 such that

(4.18) | £,(*,£)
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(0>l)/Im Qlm £,)'}

on r(j). The same estimate holds also for each $ j ( x , f) on T(j)a

Now we assume that ftL(t) and ^2(0 satisfy Condition C0, CV
where C/^2Ci. Since^ we have (yi*#2)A(*5 ?)=/*(*> f) modulo ./To*,

we have

(4. 19) (W) (x, *'), .—
(ZTTV — 1) JJ(O)

neglecting microanalytic elements Here we define ^(j), jeZ+, by

-1, Im fn>C0j}, as in
§30 As was shown in §3, from (4. 14) — (4. 19) we obtain

(*,*')=

modulo microanalytic elements. The right-hand side is convergent,

and it becomes the defining function of the kernel function \Ui(x, x")

u2(x", x') dx" of A1A2,

We obtain Theorem 0. 6 from the above argument, by the same
reasoning as Proof of Theorem 0. 5 in § 3.

§ 58 Two Examples

In this section we give two important examples, and also explain
about the notion of analytic S^-class, defined by [9],

We first consider the Lewy-Mizohata type operators P±(x,D) =

A ±V-l*iA at * '= (0 ;0 , V-1)^V-15*/P. Let us calculate the
symbol function E(x, f) of the right inverse E(x, D) ^^°* of P_(x, D).

E(x9 f) should satisfy

We define ^^COeC by S1==VpT(V2-l)f1/f2 , and ^(^, f, f) by

¥>(*i, ^ f) =J^*i2f2-^ifi-J^^2 + ̂ i. ^ * lies on the line seg-

ment between xl and #b then we have
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Imx 2+( Re f |/Im ?2)2)Im £2

with some C>0. We define E(x, f) by

Then it follows that E(x9 f)<E^o* and that E(x9 £) satisfies (5.1).

The corresponding operator E(x9 D) thus satisfies

P-(x9D)E(x9D)=Id.

Now let us calculate the symbol function of E(x9 D)P_(#, D). It is
given by

(f 1 — I/ — 1 #1?2) ^ (#b f) ~~ V ~~ 1 f 2^^? (^, f)

•b ^l? » / ]

where

^(^, f) =

Denoting the corresponding operator by K(x, £)), we obtain

E(x, D}P_(x, D) =Id-K(x9 Z>).

As for P+(x,D), we define F ( x 9 £ ) by

where ^V^T (V2 -1) ^62 and ^(xl5 f, r) =

Tf
r. Then we have FU, ?)^^°* and

(^9 D) =Id-K(x, Z>), F(^? D)P+(x, D) =/rf,

for the corresponding operator F(#, D)0

The next example is the parametrix of the Grusin type operator

where A (x, D) is a microdifferential operator of order 1 defined at

r:=(0;0? V-1)^V-15*/J2 as before. Now we give the definition of
analytic ££3 —class. This class was first defined by G0 Metivier [9],
but here we give a slightly modified definition :
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Definition 5. 1. Let r, meU, and let 0<><a, 0^5<1. We say

that a C°° function a(#, O defined on

(5.2) {(*,f)eB»XfrlR''; |*|<r, |Im f, <r Im

belongs to the analytic .S^-class if

(5.3)

with some C>0 on (5.2), for any a, /3(EZ+
n.

Let 0</o, 3<1, let ^(0=C/, jM(0 =C//C1"P), and let

satisfy

(5.4)

on a conical complex neighbohood of # = (0 ; 0 , . . . , 0, ^ — 1)

Rn. Let C be large and let r be small. From Proposition 3. 4 it is

easy to see that if (x9 ?) belongs to the domain (5. 2) and satisfies

(5.5) r l m f n > l a | + l , 101+1,

then a(x, £) satisfies (5.3). Even if (x, f) does not satisfy (5.5),

we can also prove similarly that a(x, f) satisfies (5.3) on (5.2).

Thus (5.4) means that a(x, f) belongs to the analytic 5^

Conversely assume that a(x, f) belongs to the analytic 5^

Considering the Taylor expansion around real points, it follows that

a(xy c) satisfies (5.4) on a conical complex neighborhood of x .

The analytic Sj^-classes are the most typical examples of our symbol

theory. Our theory is more general in two points : It contains ope-

rators of infinite orders, and it involves more complicated scaling

functions.

For the Grusin type operators, Metivier proved (essentially) the

following : Let C be large and let r be small. Assume that the prin-

cipal symbol A±(x, ?) of A(x, D) satisfies

Then we can obtain some G,(x, £), j^Z+, of analytic

respectively, which satisfies

c'"2
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00

on (5.2), such that £]G, (#, ?) gives the parametrix of P(x9 D). More
.7=0

precisely, let C0 be large enough, and consider the following power
series :

L (x, *') = £ ,9 / n, \ *(*-"){G, (*, f ) #.
y=0 (2K^ — iy Jj/o-)

Here we have defined

We can prove that L(x, x') is well-defined and that G(x, D)

= L ( x , x f ) dx' is a microlocal operator defined at x*, which satisfies

PO, Z))G(x, D) =G(x, D)PO, D) =/rf.

Each symbol Gj(x, £) is obtained successively by solving a transport
equation. See [9] and [10] for details.
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