
Publ. RIMS Kyoto Univ.
24 (1988), 283-293

Notes on Some for

By

Fuad KITTANEH*

Abstract

Several inequalities for Hilbert space operators are extended. These include results of
Furuta, Halmos, and Kato on the mixed Schwarz inequality, the generalized Reid inequality
as proved by Halmos and a classical inequality in the theory of compact non-self-adjoint
operators which is essentially due to Weyl. Some related inequalities are also discussed.
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§ 1. Introduction

Let AT be a complex Hilbert space with norm || • || and inner product (. , .).
Let B(H) denote the algebra of all bounded linear operators on H\ || * || will also
denote the norm in B(H). The Schwarz inequality for positive operators asserts
that if T is a positive operator in B(H), then

\(Tx, y)\*<(Tx, x)(Ty, y) for all x, y in H. ( 1 )

For an arbitrary operator T in B(H), a "mixed Schwarz" inequality has been
established in [8] (see also [4] and [6, p. 265].) This inequality asserts that

I (Tx, y) 1 2< ( | T | "x, x)( 1 r* | w-*>y, y) ( 2 )

for all*, j i n / / a n d f o r O < a < l . Here | T\ =(T*T)l/2 and
An important consequence of (2) is the famous Heinz inequality [3, 7, 8]

which says that if T, A, and B are operators in B(H) such that A and B are positive
and |(7;c||<p;t|| and ||r:!>||<||5j|| for all x, y in H9 then
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\(Tx,y)\^\\A*x\\\\Bl-«y\\ for 0<«<1. (3)

The main ingredients in the proofs of (2) given in [43 6, 8] are the polar de-
composition and elementary aspects of the spectral theorem.

In this paper we present two different proofs of a generalized version of
(2). Our proofs rely on the positivity and the self-adjointness of certain operator
matrices defined onH(&H. Thus, these proofs may be considered as new proofs
of the Heinz inequality. As applications of (2) we will give a different proof
of a classical inequality, which is essentially due to Weyl [12] and an extension
of the generalized Reid inequality as proved by Halmos [5, p. 51]. Finally, we
use the extension of the generalized Reid inequality to provide an extension
of Weyl inequality.

§2. On the Mixed Scfawarz Inequality

In this section we provide two new proofs of a generalized version of (2).
Our first proof will be based on three lemmas. We start with a folklore result
(see [1, Theorem I.I]) whose proof is included for completeness.

Lemma 1- Let A, B, and C be operators in B(H), where A and B are positive.
VA c*~lThen \ is a positive operator in B(H@H) if and only if \(Cx, j)|2<
\-C B -1

(Ax, x) (By, y)for all x, y in H. ( 4 )

[ A C*~] is a positive operator in B(H@H).
Tfcen by (1), we have

for all x, y in H. A direct simplification of these inner products now yields (4).
Conversely, assume that (4) holds, then for every x, y in H,

= (Ax, x)+(By, y)+2 Re(Cx, y)

, xf\By, y)1/2+2 Re(Cx, y)

>2\(Cx,y)\-2\(Cx,y}\

=0
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TA c*1Hence is positive and the proof is complete.
LC B J

Lemma 2, Let A, B, and C be operators in B(H) such that A and B are

positive and BC=CA. If\A C"*l is positive in B(H@H\ then \fW C*~j

is also positive, where f and g are non-negative functions on [0, oo) which are con-

tinuous and satisfying the relation f(t)g(t)=t for all t e[0, oo).

Proof. Assume first that both A and B are invertible. Since BC=CA9

it follows that h(B)C=Ch(A) for any function that is continuous on [0, oo).

Since f(t)g(t)=t for r<E[0, oo), it follows that f(D)g(D)=DfoT any positive

operator D in B(H). These two facts now imply that g(B)B~1/2Cf(A)A~1/2

= C. Consequently,

C*21 = \f(A)A*-* 0 ~TA C*Jf(A)A-W 0 1
C g(B)J L 0 g(B)B-^JLC B JL 0 g(B}B-V2\ '

[ A C*~l
completes the proof in

C B J

this case. For the general case, apply the argument above to the invertible

operators Ae=A+e and Be=B+e for e>0 and then let e-»0.

Remark. It should be noticed that in Lemma 2, the assumption BC=CA
i"4 21

is essential. To see this consider the operator S=\ acting on a two-

[420} 2~l
is

not positive for Q<a<^. Here/(/)=^ and g(t)=tl~*.

The following lemma, which has been implicity used in [9] is very useful

in our first proof of a generalized version of (2).

r I T I T* ~]Lemma 3* If T is an operator in B(H), then ' ' \is a positive
L T | r* | J

operator in B(H@H).

Proof. On H®H, let S=[° r*~I. Then S is self-adjoint and S2-

]. By the uniqueness of the square root of a positive operator, it

follows that I S I - M 7 ' ° 1. Since S is self-adjoint, it follows, by the

r I T [ T* ~i
spectral theorem, that S+ \ S \ is positive. Therefore is positive

rr*r
LO IT
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in B(H®H).
Now we are in a position to present our first proof of a generalized version

of (2).

Theorem 1. Let T be an operator in B(H) and let f and g be as in Lemma 2.
Then \(Tx,y)\<\\f(\T\)x\\\\g(\T*\Mforanx,ywfr (5)

Proof. Since T \ T \ 2= \ T* \ 2 T, it follows that T\T\ = \T*\T. Hence,
1 f( \ T H2 T* 1

by Lemmas 2 and 3, we have KVI u is positive in B(H@H).y J T v '
The required inequality now follows from Lemma 1.

Next we give an alternative proof of Theorem 1, which also uses the polar
decomposition. First we begin with a general result.

Theorem 2. Let ¥ be a contraction and P a positive operator in B(H) such
that VP=PV. Then for fond g as in Lemma 2, we have

| (VPx, y) | < ||/(P)*|| \\g(P)y\\ for all x, y in H .

Proof. We have

)*, g(P)V*y) I (because P =/(/>)*(/>))
= \(f(P)x, V*g(P)y} | (because F*g(P) = g(P)K*

(because Fis a contraction).

Corollary 1. IfT is a self-adjoint operator in B(H),fand g are as in Lemma
2,then \(Tx,y)\<\\f(\T\)x\\\\g(\T\Mforallx,ymH.

Proof. Let T=U\T\ be the polar decomposition of T. Then \T\U=
U\T\ and U is unitary. Now the result follows from Theorem 2.

After we have proved Theorem 1 for self-adjoint operators, we can extend
it to arbitrary operators as follows : Let T, /, g, x, and y be as in Theorem 1 .

Then 5-f° T"~] defined in B(H®H) is self-adjoint and | S \ =[ ' T ' ° 1.
Lr o J L o |r*|J

Moreover, /( 1 5 | ) =[« ^ I ̂  ( ̂  ( J and g( 1 5 1 )=[«Cj ̂ j ( ̂  ( J. Applying

Corollary 1 to the operator S, we see that \(Su, v)| ^H/dS |)w||||g(|5|)v|| for

all w, v in H@H. Let w=|" ^1 and v=[~ ° 1. Then (5w, v)=(rx, 3;) and
LO J L j J

ll/(|S|>'IHi/(m)*i|and ||g(|5|)v|| = ||g(|r*|)^||. Hence \(Tx, y}\<\\f(\T\)x\\
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| \g( | T* | )y 1 1 for all x, y in H and this completes the second proof of Theorem 1 .

Remark. The mixed Schwarz inequality (2) becomes a special case of

inequality (5) upon letting /(f)^* and ^(0=^~*. where f e[0, oo) and

Our proofs of Theorem 1 lead to new simplified proofs of the following
generalized Heinz inequality, which has been proved for unbounded operators
by Kato [8]. First recall that a real valued continuous function /on [0, oo) is
said to be operator monotone if/(/4)</(jB) whenever

Corollary 2. Let T, A, and B be operators in B(H) such that A and B are

positive and \\Tx\\<\ \Ax\ \ and \ \ T*y\ \ < \\By\ \ for all x9 y in H. Let f and g be
non-negative operator monotone functions on [0, oo) such that f(t)g(t)=t for all

?e[0, oo). Then

\ (Tx, y) | < ||/G4)*|I ||gC%ll for all x9 y in H . ( 6 )

For a self-adjoint operator T in B(H), it follows by the spectral theorem

that - | T | < IX I T | or, equivalently,

1(1*, x)|<(ir|;c5;c) for all A: in H. (7)

This inequality can be extended to hyponormal operators as follows.

Theorem 3, Let T be a hyponormal operator in B(H)\ that is, TT*<T*T.
If f and g are as in Corollary 2, then

\(Tx,y)\^\\f(\T\)x\\\\g(\T\)y\\ for all x, y in H . (8)

In particular (f(t)=g(t)=tl/2\ \ (Tx, x) \ <( | T \ x, x) for all x in H.

Proof. It is known (see e.g. [2, Corollary 4.3]) that if h is a non-negative
operator monotone function on [0, oo), then 7?(>1/z)2 is also operator monotone.
This together with the hyponormality of T implies that ||A(|r*|)*||<
| \h( | T | )x\ | for all x in H. The desired conclusion now follows from Theorem 1 .

Remark. Inequality (7) is not true for arbitrary operators. For example,

let T=\l ol' x=[ i ]' Then ' (Tx' x} ' =2 but ( ' T ' x' x}=L

§ 3. On the Weyl Inequality

As an application of a special case (a= J) of (2), we give a new proof of a
basic inequality due to Weyl, which is frequently used in the theory of compact
non-self-adjoint operators (see [12, Theorem 2.3] and the references given there).
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Recall that a compact operator T in B(H) is said to be in the Schatten p-class

Cp(H) (1 < p< oo), if trace | T \ p< oo . The Schatten p-norm of T is denned by

HTII^trace \T\P)^P. It is well known that for Tin CP(H), ||r||^=||r*||^=

|| | T | \\p. It is evident by Lemma 1 that if A, B, and C are operators in B(H),

f A C*1where A and B are positive such that is a positive operator in

B(H®H\ then C B

\\C\\*<\\A\\\\B\\. (9)

An analogous result which is valid for the Schatten p-norm can be proved.

First we need to recall (see [13, p. 20]) that if A is a positive operator in B(H}

and x is any unit vector in H, then

(Ax, x)p < (A*x, x) forl^p<oo. (10)

This inequality is essential for us to accomplish our goal. Here is a proof

S
CO

tdE(t) be the spectral representation of A. Then (Ax, x)p=
o

({~td(E(t)x9x)y<[°tpd(E(t)x9x) = (Apx,x). Here we have used Jensen's
Jo Jo

inequality applied to the convex function f(t)=tp defined on [0, oo).

Theorem 4. Let A and B be positive operators in Cp(H) and in Cq(H),

respectively, where l^p, #<°o. Let C be an operator in B(H) such that

f A C*"l is a positive operator in B(H@H). Then for any orthonormal sets
C B J

nave

where -=+ . (11)
r p q

VA c*lProof. Since is a positive operator in B(H®H), it follows by
LC -8 J

Lemma 1, that |(Cxn, jj|
2r<(^4xw, x^f(Byn, yn)

r for all n. Summing over n

and using Holder's inequality, we obtain that

S I (C^5 7 J 1 2' < S (X^,

< (S W^., ^)^(S (̂ ., 7j)r/f by (10)
« K

< (trace 4*)r/>(trace 5«)r/ff

= ||^||5I|B||; as required.

Letting />=g, in Theorem 4, enables us to give the following alternative
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proof of Theorem 2.3 in [12], which is the desired application of (2).

Corollary 3 (WeyVs inequality). Let T be an operator in CP(H), where
1 < p< oo. Then for any orthonormal sets {xn} , {y} n in H, we have

SKr^jOl^imiJ (12)
F I T 1 ! T* ~\Proof. Since M l is a positive operator in B(H@H) or, equi-

valently by (2) («=•£), it follows from Theorem 4 that S|(1X, j«

Regarding Corollary 3, it is, in fact, well known (see [11] or [13])3 that if T
is an operator in CP(H), where 1 <p< oo, then

\\T\\* = sup \(Txn,yn)\*, (13)

where the supremum is taken over all orthonormal sets {xn} , {yn} in H.

Using (13) and Theorem 4, we have the following inequality which is
analogous to (9).

Corollary 4. Let A and B be positive operators in Cp(H) and in Cq(H),
respectively, where l^p, q<oo. Let C be an operator in B(H) such that

A C*~l is a positive operator in B(H@H). Then C belongs to C2r, where
C B J

p q

Remark. If, in Corollary 4, we assume that p=q, that is, both A and B
are in CP(H), then C is also in CP(H)9 and in this case

IIC||$<IMIUI*II,- (is)

However, if we merely assume that either A or B is in Cp(H), then C belongs to
C2P(H). In fact, it follows easily from (13) and the proof of Theorem 4 that if
A is in CP(H)9 then

\\C\\tP<\\A\\p\\B\\ . (16)

On the other hand, if B is in CP(H), then

I|C||!,<P||||*||,. (17)

In the spirit of this remark, we conclude this section with the following
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result concerning the compactness of C.

Corollary 5. Let A and B be positive operators in B(H), where either A or

[ A C*l is a positive
C B J

operator in B(H®H). Then C is compact.

Proof. This is a consequence of Lemma 1 and the fact [11, p. 58], that
an operator T in B(H) is compact if and only if (Txn, xn)-*Q as «-»oo for
every orthonormal set {xn} in H.

§4. On the Generalized Reid Inequality

The generalized Reid inequality as proved by Halmos [5] asserts that if A
and B are operators in B(H) such that A is positive and AB is self-adjoint, then

| (ABx, x) | < r(B)(Ax9 x) for all xinH. (18)

Here r(B) denotes the spectral radius of B. A weaker version of this inequality
was proved by Reid [10] in which r(B) is replaced by ||jB||.

In this section we establish an inequality which extends both the generalized
Reid inequality (18) and the generalized mixed Schwarz inequality (Theorem 1)
and then we will use a special case of this inequality to extend Weyl's inequality.

Theorem 5. Let A and B be operators in B(H) such that \A\B=B*\A\.
Iffandg are as in Lemma 2, then

\(ABx,y)\^r(B)\\f(\A\)x\\\\g(\A*\)y\\ for all x, y in H . (19)

Proof. The main idea in the proof is to establish the following inequality:

\(ABx,y)\f<(f(\A\YBfx, x)(f(\A\Yx, xf^^gdA^y, yf~\ (20)

This can be proved by induction. First we prove it for n=l. Now

\(ABx,y)\*^\\f(\A\)Bx\\*\\g(\A*\)y\\2 (by Theorem 1)
= (A\A\)Bx,f(.\A\)Bx)(g(\A*\)y,g(\A*\)y)

= ( f ( \ A \ YB>x, x)(g(\A*\ Yy, jO(because B*f( \A \ )2 =

and so (20) is true for n= 1 . Assume that (20) is true for some integer n > 1 . Then

\(ABx, y)]^1 = (\(ASx,
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, B2"x)(f(\A\Yx, x)(f(\A\)2x,

, x) (/(M| ?x, xf~\g( \A*\ )*y, y

= (/( \A | )2£2"+1x, *)(/( | A | )2x, x)2"-'(g( | A*

which proves (20).
Notice that we have used (1) in the second inequality and the fact B*2"f( \ A \ )2=
f(\A\ )2-B2" in the last equation above. Now, as in the proof of the generalized
Reid inequality [5], we have from (20) that

and so

| (ABx9 y)\<\\f(\A\

Letting /i-> oo, we obtain \(ABx9 y)\ ^r(B)\\ft\A\ )x\\\\g(\A*\)y\\-

Remarks (1). If we let #=1 (the identity operator) in Theorem 55 then
we retain Theorem 1.

(2) If in Theorem 5, A is assumed to be positive, then the condition
AB=B*A is equivalent to saying that AB is self-adjoint. In this case, letting
f(t}=g(t)=tl/2 and x=y, we obtain the generalized Reid inequality (18) as a
special case.

Using Theorem 5 (the case f(t)=g(t)=t1/2) and following the proof of
Corollary 3, enable us to obtain the following inequality which we may call a
generalized Weyl inequality.

Corollary 6. Let A be an operator in Cp(H) and let B be an operator in

B(H) such that \A\B=B*\A\. Then for any orthonormal sets {xn}9 {yn} in
H we have

(21)

Moreover,

\\AB\\p^r(B)\\A\\p. (22)

Proof. Notice that we have \(ABxn9yn)\*^r(BY(\A\xn9xu)(\A*\yn,yn)
and then proceed as in the proofs of Theorem 4 and Corollary 3. The last
assertion follows from (13).

Another extension of the mixed Schwarz inequality (2), which is related to
the generalized Reid inequality (18), is the following.
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Theorem 6. Let Av Az, ••• , and An be operators in B(H), -where n^2. Then

\((A,A2 ... AJx, j)|2<«(1-a)ai - fl*_i(M.r*, *)(Mf I'P-V, y) (23)

for all x, y in HandO^a^.1, where af— \\Af\\.

Proof. If n=2, then | (A^Ajc, y) 1 2< ( I A,A, \ **x, x)( \ AfAf \ *^y, y) by
(2). But {A.A^^AfAfA^^allA^. Hence \A^ \ 2" <af - \AZ \ *". Simi-
larly 1 AfAf | "t1-") <a|>1-a) | Af 1 2(1-B). Here we have used the fact that the func-
tion/(r)=i* is operator monotone on [0, oo), where 0<a< 1. Thus (23) is true
for n=1. If n>2, then by the previous case,

t •» AJx, y)\2=

But M*_1...v4r^?|2<a!fl|-aLiMfl2. Hence

' Mf I ̂ "^ and so

'^>'), which
completes the proof.

Corollary 7o Let A be an operator in B(H). Then for any integer

| (A*x, y)\2<\ \A\r~\ | A 1 2*x, x)( \ A* \ W->y, y) for all x, y (24)

in

We would like to conclude with the following inequality which is related to
(24). The proof, which can be completed by induction and (1)? is omitted.

Theorem 7* If A is an operator in B(H), then

\\Ax\f ~1+2<( | A | x, x)2n~\ | A 1 2"~2+2x, x) for all x in Handn = 2, 3, —

Using (10) we have the following corollary.

Corollary 8. If A is an operator in B(H), then

\\Ax\fn+2^( | A 1 2"+2^, x) for any unit vector x in H and any integer n^ 0 .
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