Homotopy Associative Finite H-Spaces and the Mod 3 Reduced Power Operations

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Yutaka Hemmi*

§ 1. Introduction

In this paper, all spaces are assumed to be simply connected.
The actions of the Steenrod operations over the cohomology of an H-space have been studied from various view points. In particular, Thomas [8] determined the action of the squaring operations over the mod 2 cohomology of a finite H-space with primitively generated mod 2 cohomology. Lin [5] also proved the similar result by using a different method. The result of L in is stated as follows:
(1.1) (Lin [5;Th.1]) Let X be an H-space. Suppose that the mod 2 cohomology Hopf algebra $H^{*}(X ; \mathbb{Z} / 2)$ is finite and primitively generated. Then for any primitive class x of dimension $2^{a} n-1$ with $n \not \equiv 0$ $\bmod 2$ and $n>2$, we have that

$$
S q^{2^{a}} x=0 \text { and } x=S q^{2^{a}} y \text { for some } y \in H^{*}(X ; \mathbb{Z} / 2),
$$

where $S q^{i}$ is the i-th squaring operation.

On the other hand, we can not get the corresponding result to (1.1) for an odd prime p. In fact, any odd sphere $S_{(p)}^{2 n-1}$ localized at an odd prime p is an H-space (cf. [1]). However, if X is a homotopy associative H-space, then under some suitable conditions we can get the similar result to (1.1) about the action of the mod 3 reduced power operation \mathscr{P}^{t} over $H^{*}(X ; \mathbb{Z} / 3)$.

[^0]Let X be a homotopy associative H-space, and let $\iota: \Sigma X \rightarrow P_{3} X$ be the natural inclusion, where $P_{3} X$ is the projective 3-space of X (Stasheff [7;Def. 13]). Then the classes in the image of $\sigma_{\iota}^{*}: \tilde{H}^{*}\left(P_{3} X\right.$; $\boldsymbol{Z} / 3) \rightarrow \tilde{H}^{*}(\Sigma X ; \boldsymbol{Z} / 3) \cong \tilde{H}^{*-1}(X ; \boldsymbol{Z} / 3)$ are called A_{3}-primitive, where $\sigma: \tilde{H}^{*}(\Sigma X ; \boldsymbol{Z} / 3) \rightarrow \tilde{H}^{*-1}(X ; \boldsymbol{Z} / 3)$ is the suspension isomorphism. If $H^{*}(X ; \boldsymbol{Z} / 3)$ is generated by A_{3}-primitive classes as an algebra, we call $H^{*}(X ; \boldsymbol{Z} / 3) \quad A_{3}$-primitively generated. Let $P_{3} H^{*}(X ; \mathbb{Z} / 3)$ be the module of all A_{3}-primitive classes in $H^{*}(X ; \mathbb{Z} / 3)$, i. e., $P_{3} H^{*}(X ; \mathbb{Z} / 3)$ $=\operatorname{Im} \sigma_{\iota}{ }^{*}$. Then the main theorem of this paper is stated as follows:

Theorem 1.2. Let X be a homotopy associative H-space. Suppose that the mod 3 cohomology algebra $H^{*}(X ; \mathbb{Z} / 3)$ is finite and A_{3}-primitively generated. Then for any positive integer n with $n \not \equiv 0 \bmod 3$ and $n>3$, if

$$
\begin{equation*}
P_{3} H^{4 \cdot 3^{a} t-1}(X ; \boldsymbol{Z} / 3)=0 \text { for } t \geq n-1, \tag{1.3}
\end{equation*}
$$

then we have that

$$
P_{3} H^{2 \cdot 3^{a} n-1}(X ; \mathbb{Z} / 3)=\mathscr{P}{ }^{3^{a}} P_{3} H^{2 \cdot 3^{a}(n-2)-1}(X ; \mathbb{Z} / 3) .
$$

The assumption (1.3) in the above theorem cannot be dropped. In fact, we give an example in $\S 7$ to show that (1.3) is required.

Theorem 1.2 is deduced from a purely algebraic result.
Let B^{*} be an augmented graded algebra over $\boldsymbol{Z} / 3$. Then we denote the augmentation ideal of B^{*} by \tilde{B}^{*}, and we define $D^{i} B^{*}$ for $i \geq 1$ inductively by

$$
D^{1} B^{*}=\tilde{B}^{*} \text { and } D^{i} B^{*}=\tilde{B}^{*} \cdot D^{i-1} B^{*} \quad(i \geq 2)
$$

Let \mathscr{A} be the $\bmod 3$ Steenrod algebra and let \mathscr{P}^{n} be the n-th $\bmod 3$ reduced power operation. Then B^{*} is called an unstable left \mathscr{A}-algebra if B^{*} is an augmented graded algebra over $\mathbb{Z} / 3$ with left action of \mathscr{A}, such that the Cartan formula and the following unstable conditions hold:

$$
\mathscr{P}^{n} x=0 \text { if } \operatorname{dim} x<2 n, \text { and } \mathscr{P}^{n} x=x^{3} \text { if } \operatorname{dim} x=2 n .
$$

Then we have the following

Theorem 1.4. Let

$$
H^{*}=A^{*} / D^{4} A^{*}, A^{*}=\mathbb{Z} / 3\left[x_{1}, \cdots, x_{k}\right], \operatorname{dim} x_{i}: \text { even. }
$$

Suppose that H^{*} is an unstable left \mathscr{A}-algebra. Then for any positive integer n with $n \not \equiv 0 \bmod 3$ and $n>3$, if

$$
\begin{equation*}
Q H^{4 \cdot 3^{a_{t}}}=0 \text { for } t \geq n-1 \tag{1.5}
\end{equation*}
$$

then we have that

$$
Q H^{2 \cdot 3^{a} n}=\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}(n-2)}
$$

where $Q H^{*}=H^{*} / D H^{*}\left(D H^{*}=D^{2} H^{*}\right)$ is the indecomposable module of H^{*}.
H^{*} in the above theorem is called a truncated polynomial algebra over $\left\{x_{1}, \cdots, x_{k}\right\}$ of height 4 , and it is denoted by $T^{4}\left[x_{1}, \cdots, x_{k}\right]$.

Theorem 1.2 is proved from Theorem 1.4 by using the following

Proposition 1.6. Let X be the one in Theorem 1.2. Then for the natural inclusion $\subset: \Sigma X \subset P_{3} X$ to the projective 3-space $P_{3} X$ of X, there are even dimensional classes $\left\{y_{i} \mid 1 \leq i \leq k\right\}$ and an ideal S in $H^{*}\left(P_{3} X ; \mathbb{Z} / 3\right)$ so that

$$
\begin{aligned}
& \mathscr{A}(S) \subset S, \iota^{*}(S)=0, H^{*}\left(P_{3} X ; \mathbb{Z} / 3\right) / S \cong T^{4}\left[y_{1}, \cdots, y_{k}\right], \text { and } \\
& H^{*}(X ; \mathbb{Z} / 3) \cong \bigwedge\left(x_{1}, \cdots, x_{k}\right) \text { with } x_{i}=\sigma \iota^{*} y_{i} .
\end{aligned}
$$

Thus, in particular, $H^{*}=T^{4}\left[y_{1}, \cdots, y_{k}\right]$ is an unstable left \mathscr{A}-algebra, and $\sigma_{\ell}{ }^{*}: Q H^{2 n} \rightarrow P_{3} H^{2 n-1}(X ; \mathbb{Z} / 3)$ is an isomorphism for any $n \geq 1$.

We apply Theorem 1.4 for $H^{*}=T^{4}\left[y_{1}, \cdots, y_{k}\right]$ in Proposition 1. 6 . Then, by Proposition 1.6, (1.3) implies (1.5), and hence Theorem 1.2 is proved from Theorem 1.4.

In the rest of this paper, $\S \S 2-6$ are devoted to prove Theorem 1.4 and Proposition 1.6, and we give some examples in $\S 7$ to show that the condition (1.3) in Theorem 1.2 is required. To prove Theorem 1.4, we give four propositions. Two of them are proved in §3. The others are proved in $\S 5$ by using particular generators for H^{*} which are given in $\S 4$. Finally, in $\S 6$, we prove Proposition 1. 6.

§ 2. Reduction of Theorem $\mathbb{1}$. \mathbb{I}

In the rest of this paper we assume that H^{*} is the augmented graded unstable left \mathscr{A}-algebra in Theorem l. 4, where \mathscr{A} is the mod 3 Steenrod algebra. Hereafter we use the following notation for any
$a \geq 0$:

$$
\begin{equation*}
d(a)=\max \left\{0, t \mid Q H^{4 \cdot 3^{a} t} \neq 0, t \in \mathbb{Z}\right\} . \tag{2.1}
\end{equation*}
$$

Then we have the following

Lemma 2.2. $d(a) \geq 3 d(a+1)$ for all $a \geq 0$.

Proof. This is clear if $d(a+1)=0$. While if $d(a+1)>0$, then $Q H^{4 \cdot 3^{a} \cdot 3 d(a+1)}=Q H^{4 \cdot 3^{a+1} d_{d a+1)}} \neq 0$, and so $d(a) \geq 3 d(a+1)$ by (2.1). q. e. d.

Now consider the following statements $S_{i}(a, m)(1 \leq i \leq 4)$ for $a \geq 0$ and $m \geq 0$:
$S_{1}(a, m):$ For any positive integer n with $n \not \equiv 0 \bmod 3$ and $n>3$, if $n \geq m$, then

$$
Q H^{2 \cdot 3^{a} n}=\mathscr{P}{ }^{3^{a}} Q H^{2 \cdot 3^{a}{ }^{(n-2)}} .
$$

$S_{2}(a, m):$ For any positive integer n with $n \not \equiv 0 \bmod 3$ and $n \neq 2$, if $n \geq m$, then

$$
\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a_{n}}} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-2)} .
$$

$S_{3}(a, m):$ For any positive integer n with $n \equiv 1 \bmod 3$, if $n \geq m$, then

$$
\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a} n}=0 .
$$

$S_{4}(a, m):$ For any positive integer n with $n \equiv 1 \bmod 3$ and $n>9$, if $n \geq m$, then

$$
\mathscr{P}^{3^{a}} H^{2 \cdot 3^{a} n} \subset \sum_{i \leq a} \mathscr{P}^{3^{i}} D H^{2 \cdot 3^{i}\left(3^{a-i}(n+2)-2\right)} .
$$

Then we have the following

Lemma 2.3. If $m \leq 4, S_{i}(a, m)$ is equivalent to $S_{i}(a, 4)$ for $1 \leq i \leq 3$. If $m \leq 10, S_{4}(a, m)$ is equivalent to $S_{4}(a, 10)$.

Proof. It is clear that $S_{1}(a, m)$ is equivalent to $S_{1}(a, 4)$ for any $m \leq 4$, and $S_{4}(a, m)$ is equivalent to $S_{4}(a, 10)$ for any $m \leq 10$. Furthermore, by the unstable condition, we have that $\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}}=0$. Thus
$S_{i}(a, m)$ with $m \leq 4$ is also equivalent to $S_{i}(a, 4)$ for $i=2,3$. q. e. d.

Now Theorem 1.4 is a consequence of the following propositions:
Proposition 2.4. Let $a \geq 0$. Suppose that if $a \geq 1$ then there are m_{i} and n_{i} for any $0 \leq i \leq a-1$ so that $S_{3}\left(i, m_{i}\right)$ and $S_{4}\left(i, n_{i}\right)$ are true. Then $S_{1}(a, m)$ is true for any m with $m \geq \max \left\{\left[d(0) / 3^{a}\right]+2,\left(m_{i}+2\right) / 3^{a-i}\right.$, $\left.\left(n_{i}+2\right) / 2 \cdot 3^{a-i}\right\}$.

Proposition 2.5. Let $a \geq 0$. Suppose that $S_{1}(a, t)$ is true for some t. Furthermore suppose that if $a \geq 1$ then there are m_{i} and n_{i} for any $0 \leq i$ $\leq a-1$ so that $S_{3}\left(i, m_{i}\right)$ and $S_{4}\left(i, n_{i}\right)$ are true. Then $S_{2}(a, m)$ is true for any m with $m \geq \max \left\{(t+2) / 3,\left(m_{i}+2\right) / 3^{a-i},\left(n_{i}+2\right) / 2 \cdot 3^{a-i}\right\}$ 。

Proposition 2.6. Let $a \geq 0$. Suppose that $S_{2}(a, t)$ is true for some t. Furthermore suppose that if $a \geq 1$ then there are m_{i} for any $0 \leq i \leq a-1$ so that $S_{3}\left(i, m_{i}\right)$ are true. Then $S_{3}(a, m)$ is true for any m with

$$
m \geq \max \left\{t+2,\left(\mathrm{~m}_{i}+2\right) / 3^{a-i}-2\right\}
$$

Proposition 2.7. Let $a \geq 0$. Suppose that $S_{1}(a, t)$ and $S_{2}(a, s)$ are true. Furthermore suppose that if $a \geq 1$ then there are m_{i} for any $0 \leq i \leq a-1$ so that $S_{4}\left(i, m_{i}\right)$ are true. Then $S_{4}(a, m)$ is true for any m with

$$
m \geq \max \left\{t, s+2,\left(m_{i}+2\right) / 3^{a-i}-2\right\}
$$

Then Theorem 1.4 is proved as follows.
Proof of Theorem 1.4 from Propositions 2.4-7. First we prove that

$$
\begin{equation*}
S_{1}\left(a,\left[d(0) / 3^{a}\right]+2\right) \text { is true for all } a \geq 0 \tag{2.8}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
d(a) \geq\left[d(0) / 3^{a}\right] \text { for any } a \geq 0 \tag{2.9}
\end{equation*}
$$

Then, by Lemma 2.2, we have $d(\mathrm{a})=\left[d(0) / 3^{a}\right]$, and Theorem 1.4 follows since it is equivalent to $S_{1}(a, d(a)+2)$ for all $a \geq 0$.

To prove (2.8) we put for $a \geq 0$ that

$$
m(a)=\left[d(0) / 3^{a}\right]+2, \text { and }
$$

$$
n(a)=\left[\left(d(0)+3^{a+2}\right) / 2 \cdot 3^{a}\right] .
$$

Then, by simple calculations, we have the following inequalities:

$$
\begin{aligned}
& n(a) \geq(m(a)+2) / 3 \text { for } a \geq 0, \\
& m(a) \geq \max \left\{(m(i)+2) / 2 \cdot 3^{a-i},(m(i)+2) / 3^{a-i}-2\right\} \text { for } a>i \geq 0, \\
& n(a) \geq \max \left\{(n(i)+4) / 3^{a-i},(m(i)+2) / 2 \cdot 3^{a-i}\right\} \text { for } a>i \geq 0, \\
& m(a) \geq(n(i)+4) / 3^{a-i} \text { for } a>i \geq 0 \text { if } m(a) \geq 5, \\
& 4 \geq(n(i)+4) / 3^{a-i} \text { for } a>i \geq 0 \text { if } m(a) \leq 4, \\
& m(a) \geq n(a)+2 \text { for } a \geq 0 \text { if } m(a) \geq 11 \text {, and } \\
& 10 \geq n(a)+2 \text { for } a \geq 0 \text { if } m(a) \leq 10 .
\end{aligned}
$$

Thus Propositions 2.4-7 give the following implications:

$$
\begin{aligned}
& S_{1}(0, m(0)) \Longrightarrow \cdots \\
& \Longrightarrow S_{2}(a, n(a)) \Longrightarrow S_{4}(a-1, m(a-1)) \Longrightarrow S_{3}(a, n(a)+2) \Longrightarrow S_{1}(a, m(a)) \\
& \Longrightarrow S_{4}(a, m(a)) \Longrightarrow \cdots .
\end{aligned}
$$

Here we notice that if $m(a) \geq 5$ (or $\geq 11)$ then we get $S_{1}(a, m(a))$ by Proposition 2.4 (or $S_{4}(a, m(a))$ by Proposition 2.7, resp). While if $m(a) \leq 4$ (or $\leq 10)$ then we get $S_{1}(a, 4)$ by Proposition 2.4 (or $S_{4}(a, 10)$ by Proposition 2.7, resp.), and hence we get $S_{1}(a, m(a))$ (or $S_{4}(a, m(a))$, resp.) by Lemma 2.3.

Now (2.9) for $a=0$ is clear. So we assume (2.9) for all $a \leq b-1$ ($b \geq 1$), and we prove it for $a=b$.

If $d(b-1) \leq 2$, then $d(b) \geq 0=[d(b-1) / 3] \geq\left[d(0) / 3^{b}\right]$ by (2.9) for $a=b-1$ 。

Next, if $d(b-1)>2$ and $d(b-1) \equiv 0 \bmod 3$, then by definition we have $0 \neq Q H^{43^{b-1} d_{d(b-1)}}=Q H^{4 \cdot 3^{b}(d(b-1) / 3)}$. Thus we have $d(b) \geq d(b-1) / 3 \geq$ $\left[d(0) / 3^{b}\right]$ by (2.1).

Finally suppose that $d(b-1)>2$ and $d(b-1) \not \equiv 0 \bmod 3$. Since $2 d(b-1) \not \equiv 0 \bmod 3,2 d(b-1)>3$, and $2 d(b-1) \geq\left[d(0) / 3^{b-1}\right]+2$ by (2.9) for $a=b-1, S_{1}\left(b-1,\left[d(0) / 3^{b-1}\right]+2\right)$ implies that $0 \neq Q H^{4 \cdot 3^{b-1} d(b-1)}=$ $\mathscr{P}^{3^{b-1}} Q H^{4 \cdot 3^{b-1}(d(b-1)-1)}$. In particular, $Q H^{4 \cdot 3^{b-1}(d(b-1)-1)} \neq 0$. Thus, if $d(b-1)$ $\equiv 1 \bmod 3$, then by (2.1), we have $d(b) \geq(d(b-1)-1) / 3=[d(b-1)$ $/ 3] \geq\left[d(0) / 3^{b}\right]$. While if $d(b-1) \equiv 2 \bmod 3$, then $2(d(b-1)-1) \not \equiv 0$ $\bmod 3,2(d(b-1)-1)>3$, and $2(d(b-1)-1) \geq\left[d(0) / 3^{b-1}\right]+2$ by (2.9) for $a=b-1$. (We note that $d(b-1) \equiv 2 \bmod 3$ implies that $d(b-1) \geq$ 5.) Thus, also $S_{1}\left(b-1,\left[d(0) / 3^{b-1}\right]+2\right)$ implies that $0 \neq Q H^{43^{b-1}(d(b-1)-1)} \subset$ $\mathscr{P}^{3^{b-1}} Q^{4 \cdot 3^{b-1}(d(b-1)-2)}$. So $d(b) \geq(d(b-1)-2) / 3=[d(b-1) / 3] \geq\left[d(0) / 3^{b}\right]$.

Thus we have (2.9) for all $a \geq 0$, and Theorem 1.4 is proved.
q. e. d.

§3. Proofs of Propositions 2.6 and 2.7

In this section we prove Propositions 2.6 and 2.7.

Proof of Proposition 2.6. Let $n \equiv 1 \bmod 3$ with $n \geq m$. Then, $S_{2}(a, t)$ implies that

$$
\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a} n} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-2)} .
$$

Here, for $n=1$ and 4, the unstable condition implies that $\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}}=0$ and $\mathscr{P}^{3^{a}} Q H^{8 \cdot 3^{a}} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{4 \cdot 3^{a}}=0$. So we assume that $n \geq 7$. Thus also $S_{2}(a, t)$ implies that

$$
\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}(n-2)} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-4)} .
$$

Now we use the following relations given from the Adem relation:

$$
\begin{gather*}
\mathscr{P}^{3^{k} s} \mathscr{P}^{3^{k} t}=(-1)^{s}\binom{2 t-1}{s} \mathscr{P}^{3^{k}(s+t)}+\sum_{i \leq k-1} \mathscr{P}^{3^{i}} \alpha_{i}\left(\alpha_{i} \in \mathscr{A}\right), \\
\text { for } s=1,2, \text { and } \tag{3.1}\\
\mathscr{P}^{m}=\sum_{i \leq k} \mathscr{P}^{3^{i}} \beta_{i}\left(\beta_{i} \in \mathscr{A}\right) \text { if } m \not \equiv 0 \bmod 3^{k+1} .
\end{gather*}
$$

Then we have that

$$
\begin{aligned}
\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a} n} & \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-2)} \\
& \subset\left(\mathscr{P}^{3^{a}}\right)^{2} Q H^{2 \cdot 3^{a}(n-2)}+\sum_{i \leq a-1} \mathscr{P}^{3^{i}} Q H^{2 \cdot 3^{i} n_{i}} \\
& \subset \mathscr{P}^{3^{a}} \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a^{(}(n-4)}}+\sum_{i \leq a-1} \mathscr{P}^{3^{i}} Q H^{2 \cdot 3^{3^{n}} n_{i}} \\
& \subset \sum_{i \leq a-1} \mathscr{P}^{3^{i}} Q H^{2 \cdot 3^{3} n_{i}},
\end{aligned}
$$

where $n_{i}=3^{a-i}(n+2)-2$. Then since $S_{3}\left(i, m_{i}\right)$ implies $\mathscr{P}^{3^{i}} Q H^{2 \cdot 3^{i} n_{i}}=0$ for $i \leq a-1$, we have $\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a} n}=0$, and $S_{3}(a, m)$ is true. q. e. d.

Proof of Proposition 2.7. We use the similar method as above.
Let $n \equiv 1 \bmod 3$ with $n \geq m$ and $n>9$. Then $S_{1}(a, t)$ implies that

$$
Q H^{2 \cdot 3^{a} n}=\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}(n-2)} .
$$

Next we use $S_{2}(a, s)$ to get that $Q H^{2 \cdot 3^{a} n}=\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a}(n-2)} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-4)}$, and hence

$$
H^{2 \cdot 3^{a} n} \subset \mathscr{P}^{2 \cdot 3^{a}} H^{2 \cdot 3^{a}(n-4)}+D H^{2 \cdot 3^{a^{n}}} .
$$

Thus, we have that

$$
\begin{aligned}
\mathscr{P}^{3^{a}} H^{2 \cdot 3^{a} n} & \subset \mathscr{P}^{3^{a}} \mathscr{P}^{2 \cdot 3^{a}} H^{2 \cdot 3^{a}(n-4)}+\mathscr{P}^{3^{a}} D H^{2 \cdot 3^{a_{n}}} \\
& \subset \sum_{i \leq a-1} \mathscr{P}^{3^{i}} H^{2 \cdot 3^{3} n_{i}}+\mathscr{P} \mathscr{3}^{3^{a}} D H^{2 \cdot 3^{a}{ }_{n}}
\end{aligned}
$$

by (3.1), where $n_{i}=3^{a-i}(n+2)-2$. Then since $S_{4}\left(i, m_{i}\right)$ implies that $\mathscr{P}^{3^{i}} H^{2 \cdot 3^{i} n_{i}} \subset \sum_{j \leq i} \mathscr{P}^{3^{j}} D H^{*}$ for $i \leq a-1$, we have $\mathscr{P}^{3^{a}} H^{2 \cdot 3^{a} n} \subset \sum_{i \leq a} \mathscr{P}^{3^{i}} D H^{*}$, and $S_{4}(a, m)$ is true. q. e. d.

§4. Particular Generators for \mathbb{H}^{*}

In this section we give particular generators for H^{*}. First we prove the following

Lemma 4.1. Let M^{*} be a finite dimensional graded vector space over \mathbb{Z} / p, where p is a prime. Let $f: M^{*} \rightarrow M^{*}$ be an endomorphism of degree d with $f^{q}=0$ for some $q>0$, where $f^{q}=f \cdots f\left(q\right.$ fold) and $f^{0}=\mathrm{id}$. Then there is a homogeneous basis $\mathscr{Y}=\{y(t, u ; i) \mid t \geq 0, u \geq 0, t+u \leq q-1,1 \leq i$ $\leq r(t+u)\}$ for M^{*} so that

$$
f(y(t, u ; i))=y(t+1, u-1 ; i) \text { for } u \geq 1, \text { and } f(y(t, 0 ; i))=0,
$$

where r is a certain integer valued function of non-negative integers.

Proof. Put $\bar{M}^{*}=M^{*} /$ Ker f. Then f induces an endomorphism $\bar{f}: \bar{M}^{*} \rightarrow \bar{M}^{*}$ of degree d with $\bar{f}^{q-1}=0$. So we can prove the lemma by induction on q. The details are left to the reader.
q. e.d.

By using the above lemma, we give particular generators for H^{*}.

Lemma 4.2. Let H^{*} be the algebra in Theorem 1.4. Then for any $r \geq 0$, there is a system of algebra generators $\mathscr{X}=\left\{x_{1}, \cdots, x_{k}\right\}$ for H^{*} (i.e., $H^{*}=T^{4}\left[x_{1}, \cdots, x_{k}\right]$), such that the following conditions hold:

$$
\begin{aligned}
& \text { If } \mathscr{P}^{3^{r}} x_{i} \notin D H^{*}, \text { then } \mathscr{P}^{3^{r}} x_{i}=x_{j} \text { for some } x_{j} \in \mathscr{X} . \\
& \mathscr{P}^{3^{r}} x_{i}=\mathscr{P}^{3^{r}} x_{j} \in \mathscr{X} \text { implies } x_{i}=x_{j} \in \mathscr{X} .
\end{aligned}
$$

Proof. Put $M^{*}=Q H^{*}$ and $f=\mathscr{P}^{3^{r}}$. Then M^{*} together with f
satisfies the conditions in Lemma 4.1 since $Q H^{*}$ is finite. Let \mathscr{Y} be the basis for M^{*} given in Lemma 4.1. We choose any representatives $x(0, t ; i) \in H^{*}$ for $y(0, t ; i) \in M$. Put $x(t, u ; i)=\left(\mathscr{P}^{3^{r}}\right)^{t} x(0, t+u ; i)$ for $i \geq 1$. Then $x(t, u ; i)$ is a representative for $y(t, u ; i)$, and $\mathscr{X}=\{x(t, u ; i)\}$ is a system of algebra generators for H^{*}. Clearly, \mathscr{X} satisfies the desired properties. q. e.d.

§5. Proof of Propositions 2.4 and 2.5

In this section we prove Propositions 2. 4 and 2.5. To prove them we fix a system of algebra generators \mathscr{X} for H^{*} given in Lemma 4. 2 for $r=a$, and express all element in H^{*} as a polynomial of \mathscr{X}. Then, for any $u \in H^{*}$ and for any monomial v of \mathscr{X}, v is said to be contained in u provided that the coefficient of v in u is not zero. In this case we denote that $v \in u$.

First we prove Proposition 2. 4.

Proof of Proposition 2.4. First we note that if n is great enough then $Q H^{2 \cdot 3^{a_{n}}}=0$. Thus $S_{1}(a, m)$ is true for great m. So we prove that $S_{1}(a, m)$ is true for $m \geq \max \left\{\left[d(0) / 3^{a}\right]+2,\left(m_{i}+2\right) / 3^{a-i},\left(n_{i}+2\right) /\right.$ $\left.2 \circ 3^{a-i}\right\}$ under the inductive assumption that $S_{1}(a, m+1)$ is true. Furthermore if $m+1 \leq 4$ then $\mathrm{S}_{1}(a, m)$ is equivalent to $S_{1}(a, m+1)$ by Lemma 2.3. So we assume that $m>3$.

Let n be an integer with $n \not \equiv 0 \bmod 3$ and $n \geq m$, and let $x \in \mathscr{X}$ be a generator with $\operatorname{dim} x=2 \cdot 3^{a} n$. ($n \geq m$ implies $n>3$.) Then by the unstable condition and (3.1), we have that $x^{3}=\mathscr{P}^{3^{a} n} x=\sum_{i \leq a} \mathscr{P}^{3^{i}} \alpha_{i} x$ for some $\alpha_{i} \in \mathscr{A}$, and so

$$
\begin{equation*}
x^{3} \in \mathscr{P}^{3^{i}} y_{i} \text { for some } y_{i} \in H^{2 \cdot 3^{i}\left(3^{a-i+1} 1_{n-2)}\right.} \text { with } i \leq a \text {. } \tag{5,1}
\end{equation*}
$$

First suppose that

$$
x^{3} \in \mathscr{P}^{3^{a}} y_{a} \text { for some } y_{a} \in H^{2 \cdot 3^{a}(3 n-2)}
$$

Then $S_{1}(a, m+1)$ implies that $y_{a}=\mathscr{P}^{3^{a}} y_{a}^{\prime}+d_{a}^{\prime}$ for some $y_{a}^{\prime} \in H^{2 \cdot 3^{a}(3 n-4)}$ and $d_{a}^{\prime} \in D H^{*}$. Also $S_{1}(a, m+1)$ implies that $y_{a}^{\prime}=\mathscr{P}^{3^{a}} y_{a}^{\prime \prime}+d_{a}^{\prime \prime}$ for some $y_{a}^{\prime \prime} \in H^{2 \cdot 3^{a+1}(n-2)}$ and $d_{a}^{\prime \prime} \in D H^{*}$. Thus, by using (3.1), we have that

$$
x^{3} \in\left(\mathscr{P}^{3^{a}}\right)^{3} y_{a}^{\prime \prime}+\mathscr{P}^{3^{a}} d_{a}=\sum_{i \leq a-1} \mathscr{P}^{3^{i}} \beta_{i} y_{a}^{\prime \prime}+\mathscr{P}^{3^{a}} d_{a}\left(\beta_{2} \in \mathscr{A}, d_{a}=d_{a}^{\prime}+\mathscr{P}^{3^{a}} d_{a}^{\prime \prime} \in D H^{*}\right) .
$$

Thus for any case in (5.1), we have that

$$
x^{3} \in \mathscr{P}^{3^{i}} y_{i}+\mathscr{P}^{3^{a}} d_{a}
$$

for some $y_{i} \in H^{2 \cdot 3^{i}\left(3^{a-i+1} n-2\right)}$ with $i \leq a-1$ and for some $d_{a} \in D H^{*}$.
Next we use $S_{4}\left(i, n_{i}\right)$ to get $\mathscr{P}^{3^{i}} y_{i} \in \sum_{j \leq i} \mathscr{P}^{3^{j}} D H^{*}$. Thus we have $x^{3} \in \mathscr{P}^{3} d_{i}$ for some $d_{i} \in D H^{*}$ with $i \leq a$. This means that

$$
\begin{align*}
& x^{2} \in \mathscr{P}^{3^{i}} w_{i} \text { for some } w_{i} \in H^{2 \cdot 3^{i}\left(2 \cdot 3^{a-i} i_{n-2}\right)} \quad(i \leq a), \text { or } \tag{5.2}\\
& x \in \mathscr{P}^{3^{i}} z_{i} \text { for some } z_{i} \in H^{2 \cdot 3^{i}\left(3^{a-i_{n-2}}\right.} \quad(i \leq a) . \tag{5.3}
\end{align*}
$$

First consider the case of (5.2). If $i \leq a-1$ then $\mathscr{P}^{3^{i}} w_{i} \in \sum_{j \leq i}$ $\mathscr{P}^{3^{j}} D H^{*}$ by $S_{4}\left(i, n_{i}\right)$. While if $i=a$ then $w_{a} \in H^{4 \cdot 3^{a}(n-1)}=D H^{4 \cdot 3^{a}(n-1)}$ by (2.1) since $3^{a}(n-1) \geq 3^{a}(m-1) \geq 3^{a}\left(\left[d(0) / 3^{a}\right]+1\right) \geq d(0)+1$. Thus (5.2) implies $x^{2} \in \sum_{i \leq a} \mathscr{P}^{3^{i}} D H^{*}$, and so (5.3) holds in any case.

Now $S_{3}\left(i, m_{i}\right)$ implies that $\mathscr{P}^{3} z_{i} \in D H^{*}$ for $i \leq a-1$. So we have $x \in \mathscr{P}^{3^{a}} z_{a}$ for some $z_{a} \in H^{2 \cdot 3^{a}}$, and hence $x=\mathscr{P}^{3^{a}} x^{\prime}$ for some $x^{\prime} \in \mathscr{X}$ by the definition of \mathscr{X}. This proves that $S_{1}(a, m)$ is true since \mathscr{X} gives a basis for $Q H^{*}$. q. e.d.

To prove Proposition 2. 5, we prepare the following

Lemma 5.4. Let a and n be non-negative integers with $n \not \equiv 0 \bmod 3$. Let $x \in \mathscr{X}$ be a generator with $\operatorname{dim} x=2 \cdot 3^{a} n$ and $\mathscr{P}^{3^{a}} x=y \in \mathscr{X}$. Then under the assumption of Proposition 2.5, if $n \geq m$ then x^{2} is not contained in $\mathscr{P}^{3^{a}} u$ for any $u \in H^{4 \cdot 3^{a}(n-1)}$.

Proof. Suppose contrarily that

$$
x^{2} \in \mathscr{P}^{3^{a}} u \text { for some } u \in H^{4 \cdot 3^{a}(n-1)}
$$

Then, by using (3.1), we have that

$$
\begin{aligned}
\mathscr{P}^{2 \cdot 3^{a}} x^{2}=y^{2}+ & 2 \sum_{i<3^{a}}\left(\mathscr{P}^{i} x\right)\left(\mathscr{P}^{2 \cdot 3^{a}-i} x\right) \\
& \in \mathscr{P}^{2 \cdot 3^{a}} \mathscr{P}^{3^{a}} u=\sum_{i \leq a-1} \mathscr{P}^{3^{i}} \alpha_{i} u \quad\left(\alpha_{i} \in \mathscr{A}\right) .
\end{aligned}
$$

Now $y^{2} \notin 2 \sum_{i<3^{a}}\left(\mathscr{P}^{i} x\right)\left(\mathscr{P}^{2 \cdot 3^{a}-i} x\right)$ by dimensional reason. So we have that

$$
y^{2} \in \mathscr{P}^{3^{i}} u_{i} \text { for some } u_{\imath} \in H^{2 \cdot 3^{i}\left(3^{a-i}(2 n+4)-2\right)} \text { with } i \leq a-1
$$

Then $S_{4}\left(i, n_{\imath}\right)$ implies that $\mathscr{P}^{3^{i}} u_{\imath} \in \sum_{j \leq i} \mathscr{P}^{3^{j}} D H^{*}$, and so we have that

$$
y \in \mathscr{P}^{3^{i}} w_{i} \text { for some } w_{i} \in H^{2 \cdot 3^{i}\left(3^{a-i}(n+2)-2\right)} \text { with } i \leq a-1 .
$$

Then $S_{3}\left(i, m_{i}\right)$ implies that $\mathscr{P}^{3^{i}} w_{i} \in D H^{*}$, and this is a contradiction. Thus x^{2} is not contained in $\mathscr{P}^{3^{a}} u$ for any $u \in H^{4 \cdot 3^{a}(n-1)}$. q. e.d.

Now we prove Proposition 2.5.
Proof of Proposition 2.5. By the same reason as in the proof of Proposition 2.4, we have only to prove that $S_{2}(a, m)$ is true for $m \geq$ $\max \left\{(t+2) / 3, \quad\left(m_{i}+2\right) / 3^{a-i},\left(n_{i}+2\right) / 2 \cdot 3^{a-i}, 4\right\}$ under the inductive assumption that $S_{2}(a, m+1)$ is true.

Let n be an integer with $n \not \equiv 0 \bmod 3$ and $n \geq m$, and let $x \in \mathscr{X}$ be a generator with $\operatorname{dim} x=2 \cdot 3^{a} n$. If $\mathscr{P}^{3^{a}} x \in D H^{*}$, then $\mathscr{P}^{3^{a}} x=0 \in \operatorname{Im} \mathscr{P}^{2 \cdot 3^{a}}$ in $Q H^{*}$. So we assume that

$$
\mathscr{P}^{3^{a}} x=y \in \mathscr{X} .
$$

Now we use the same method as in the proof of Proposition 2.4 to get (5.2) or (5.3). Here we notice that we use $S_{1}(a, t)$ to show that $y_{a}=\mathscr{P}^{3^{a}} y_{a}^{\prime}+d_{a}^{\prime}$ and $S_{2}(a, m+1)$ to show that $\mathscr{P}^{3^{a}} y_{a}^{\prime}=\mathscr{P}^{2 \cdot 3^{a}} y_{a}^{\prime \prime}+d_{a}^{\prime \prime}$ $\left(d_{a}^{\prime \prime} \in D H^{*}\right)$ instead of $S_{1}(a, m+1)$. Then we use $S_{4}\left(i, n_{i}\right)$ and Lemma 5.4 to get (5.3). Thus by using the same method as in the proof of Proposition 2.4, we have $x=\mathscr{P}^{3^{a}} x^{\prime}$ for some $x^{\prime} \in \mathscr{X}$, and hence $\mathscr{P}^{3^{a}} x=\left(\mathscr{P}^{3^{a}}\right)^{2} x^{\prime}=\mathscr{P}^{2 \cdot 3^{a}}\left(2 x^{\prime}\right)+\sum_{i \leq a-1} \mathscr{P}^{3^{i}} \gamma_{2} x^{\prime}(\gamma \in \mathscr{A})$ by (3.1). Finally we use $S_{3}\left(i, m_{\imath}\right)$ to get that $\mathscr{P}^{3^{i}} \gamma_{\imath} x^{\prime} \in D H^{*}(i \leq a-1)$ and hence $\mathscr{P}^{3^{a}} Q H^{2 \cdot 3^{a} n} \subset \mathscr{P}^{2 \cdot 3^{a}} Q H^{2 \cdot 3^{a}(n-2)}$. This proves that $S_{2}(a, m)$ is true since \mathscr{X} gives a basis for $Q H^{*}$.
q. e.d.

§6. Proof of Proposition 1.6

Let X be the homotopy associative H-space in Theorem 1.2, and let $P_{3} H^{*}(X ; \mathbb{Z} / 3)$ be the module of all A_{3}-primitive classes in $H^{*}(X$; $\mathbb{Z} / 3)$. Then we have the natural inclusion $\varepsilon: P_{3} H^{*}(X ; \mathbb{Z} / 3) \subset P H^{*}$ $(X ; \mathbb{Z} / 3)$, where $P H^{*}(X ; \mathbb{Z} / 3)$ is the module of all primitive classes
in $H^{*}(X ; \boldsymbol{Z} / 3)$. Let $\rho: P H^{*}(X ; \boldsymbol{Z} / 3) \rightarrow Q H^{*}(X ; \mathbb{Z} / 3)$ be the natural projection. Since $H^{*}(X ; \mathbb{Z} / 3)$ is A_{3}-primitively generated, $\rho \varepsilon$ is an epimorphism, and so is $\rho_{\text {。 }}$ Thus the natural projection $\rho_{*}: P H_{*}(X$; $\mathbb{Z} / 3) \rightarrow Q H_{*}(X ; \mathbb{Z} / 3)$, which is the dual of ρ, is a monomorphism, and so the Pontrjagin product on $H_{*}(X ; \boldsymbol{Z} / 3)$ is commutative by $[6 ; 4$. 20]. This implies by Zabrodsky $\left[9 ; 3.2\right.$ (d)] that $H^{*}(X ; \mathbb{Z} / 3)$ is a free algebra. But since $H^{*}(X ; \mathbb{Z} / 3)$ is finite, it is an exterior algebra generated by finitely many odd dimensional classes, and hence ρ is an isomorphism by $[6 ; 4.21]$. Thus ε is also an isomorphism, and we have the following

Lemma 6. 1. $H^{*}(X ; \mathbb{Z} / 3)=\Lambda\left(x_{1}, \cdots, x_{k}\right)$,
where $x_{i}(1 \leq i \leq k)$ are A_{3}-primitive odd dimensional classes.

Now we can prove Proposition 1.6 by the same method as Iwase [4].

Proof of Proposition 1.6. Let $P_{t} X$ be the projective t-space for $X(t=2,3)$, and let $\iota_{2}: \Sigma X \subset P_{2} X$ and $\iota_{3}: P_{2} X \subset P_{3} X$ be the natural inclusions. Then the composition $\epsilon_{3} \varepsilon_{2}$ is equal to the inclusion $6: \Sigma X$ $\subset P_{3} X$ in §l. Now we have the following diagram (see [4]):

$$
\begin{aligned}
& \tilde{H}^{*}(\Sigma X ; \mathbb{Z} / 3) \stackrel{l_{2}^{*}}{\longleftarrow} \tilde{H}^{*}\left(P_{2} X ; \mathbb{Z} / 3\right) \stackrel{l_{3}^{*}}{\leftrightarrows} \tilde{H}^{*}\left(P_{3} X ; \mathbb{Z} / 3\right) \\
& \alpha_{1}\left\lceil\beta_{1} \downarrow \quad \alpha_{2} / \quad \beta_{2} \downarrow \quad \alpha_{3}\right\rceil \\
& \tilde{H}^{*}(X ; \mathbb{Z} / 3) \quad \tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3) \quad \tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3) \\
& \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3),
\end{aligned}
$$

where α_{i} and β_{i} are $\mathbb{Z} / 3$-module homomorphisms of degree i and $-i$, respectively, with $\beta_{1} \alpha_{1}(u)=-\tilde{\mu}^{*}(u)=-\mu^{*}(u)+1 \otimes u+u \otimes 1$ and $\beta_{2} \alpha_{2}(u \otimes v)=-\tilde{\mu}^{*}(u) \otimes v+u \otimes \tilde{\mu}^{*}(v)$. We notice that α_{1}^{-1} is the suspension isomorphism σ 。 Since $x_{i} \in H^{*}(X ; \mathbb{Z} / 3)$ are A_{3}-primitive, we have $y_{i} \in H^{*}\left(P_{3} X ; \mathbb{Z} / 3\right)$ with $\operatorname{dim} y_{i}=\operatorname{dim} x_{i}+1$ so that

$$
\sigma \iota^{*} y_{i}=\alpha_{1}^{-1} \iota_{2}^{*} \iota_{3}^{*} y_{i}=x_{i} .
$$

Put $S=\alpha_{3}\left(D H^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3)+\tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes\right.$ $D H^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3)+\tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes \tilde{H}^{*}(X ; \mathbb{Z} / 3) \otimes D H^{*}(X ;$
$\mathbb{Z} / 3)$). Then, clearly, $\mathscr{A}(S) \subset S$ and $\iota^{*}(S)=0$. Furthermore, by the same reason as [4], we have $H^{*}\left(P_{3} X ; \mathbb{Z} / 3\right) / S \cong T^{4}\left[y_{1}, \cdots y_{k}\right]$. q. e. d.

87. Example

In this section, we give an example to show that (1.3) in Theorem 1.2 is required.

Consider the spinor group $\operatorname{Spin}(2 k)$. Since $\operatorname{Spin}(2 k)$ is a Lie group, it is a homotopy associative H-space. Furthermore, $H^{*}(S p i n$ $(2 k) ; \mathbb{Z} / 3) \cong H^{*}(S O(2 k) ; \mathbb{Z} / 3)$ as \mathscr{A}-algebras. Thus, by [2; Prop. 10.2] and [3;Cor. 14.3], we have that

$$
\begin{align*}
& H^{*}(\operatorname{Spin}(2 k) ; \mathbb{Z} / 3)=\Lambda\left(x_{3}, x_{7}, \cdots, x_{4 k-5}, e\right), \text { and } \tag{7.1}\\
& e \notin \tilde{\mathscr{A}}\left(H^{*}(\operatorname{Spin}(2 k) ; \mathbb{Z} / 3)\right),
\end{align*}
$$

for some universal transgressive elements x_{i} and e with $\operatorname{dim} x_{i}=i$ and $\operatorname{dim} e=2 k-1$, where $\tilde{\mathscr{A}}$ is the augmentation ideal of \mathscr{A}. Since universal transgressive elements are A_{3}-primitive by definition, H^{*} $(\operatorname{Spin}(2 k) ; \mathbb{Z} / 3)$ satisfies the conditions in Theorem 1.2. We consider the case of $k=3^{a} n$ with $n \not \equiv 0 \bmod 3$ and $n>3$. Then $4 \circ 3^{a}(n-1)-1$ $\leq 4 k-5$ and $4 \cdot 3^{a} n-1>4 k-5$. Thus, by Milnor-Moore [6; Prop. 4.21], we have that

$$
\begin{array}{r}
P_{3} H^{4 \cdot 3^{a} t-1}(S p i n(2 k) ; \mathbb{Z} / 3)=P H^{4 \cdot 3^{a} t-1}(S \operatorname{Sin}(2 k) ; \mathbb{Z} / 3)=0 \\
\text { if and only if } t \geq n .
\end{array}
$$

On the other hand, $e \notin \operatorname{Im} \mathscr{P}^{3^{a}}$ by (7.1). These show that (1.3) is required.

We can also show that (1.5) in Theorem 1.4 is required by considering $H^{*}=A^{*} / D^{4} A^{*}$, where $A^{*}=H^{*}(B \operatorname{Spin}(2 k) ; \mathbb{Z} / 3)$.

References

[1] J. F. Adams, The sphere, considered as an H-space $\bmod p$, Quart. J. Math. Oxford (2) 12 (1961), 52-60.
[2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[3] A. Borel et J. -P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409-448.
[4] N. Iwase, On the K-ring structure of X-projective n-space, Memoirs of the Faculty of Science, Kyushu Univ. Ser. A 38 (1984), 285-297.
[5] J. P. Lin, Steenrod squares in the mod 2 cohomology of a finite H-space, Comment.

Math. Helv. 55 (1980), 398-412.
[6] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
[7] J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
[8] E. Thomas, Steenrod squares and H-spaces: II, Ann. of Math. 81 (1965), 473-495.
[9] A. Zabrodsky, Implications in the cohomology of H-spaces, Illinois J. Math. 14 (1970), 363-375.

[^0]: Communicated by N. Shimada, June 15, 1987. Revised August 2, 1987

 * Department of Mathematics, Faculty of Science, Kochi University, Kochi 780, Japan.

