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On the Uniqueness of Solutions of Stochastic
Differential Equations with Singular Drifts

By

Satoshi TAKANOBU*

§ 0. and

Let d^2. Let a, T: Rd-*Rd®Rd and 6, £: Rd-^Rd be bounded con-

tinuous functions and let n(dri) be a nonnegative bounded measure on R1.

We consider the following stochastic differential equation (SDE) with a singular

drift:

(0.1) dXi(t)= i a

the precise formulation of which is given below. We are concerned with the

existence and uniqueness of solutions of the SDE (0.1). This SDE was studied

by Y. Oshima [4], S. V. Anulova [1] and S. Takanobu [6]. Oshima obtained

the existence and uniqueness results in the case of Lipschitz continuous coef-

ficients and general fi under the assumption that j8d = 0. Anulova discussed

the case ju(d^) = d^drj) but with general f$d by the method of the submartingale

problem and obtained the existence of solutions. Takanobu obtained the

existence of solutions in a more general case of ($d and \i. Also it should be

remarked that in one dimension Le Gall [3] considered an SDE like (0.1) and

obtained the path wise uniqueness of solutions.

The purpose of present paper is to obtain the uniqueness of solutions of

(0.1) in the case of general f$d but \JL is restricted to a certain class of discrete

measures : The case \JL = <50 is the most typical case and actually, we consider only

cases which can be reduced to this special case. In Oshima's case, the method
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of skew product Is a fundamental tool but, in our case, this method is not appli-
cable and we have to exploit another method. For this, we use the method of
decomposing the solution into pieces called excursions in Rd\{x; xd = Q}.

By showing that the point process formed of these excursions is uniquely
represented by means of a Brownian motion and Poisson point process of
Brownian excursions, we can clarify the structure of solutions and consequently,
we can show the uniqueness of solutions. We remark that excursion point

processes have been discussed in Watanabe [8] and [9] with somewhat different

purposes.
Let a, b, T, ft and \JL be as above. In the following, we enumerate several

conditions considered in this paper on a, b, T, ft and ju:

(0.2) inf £ ad..(x)2>0
xeRd j=l

(0.2)' a] = 6j j = l,...,d, fo* = 0

(0.3) tj = 0 j = \,...,d

(0.4) sup rO^VWIrgl r,eRl

Sen*-1

(0.5)
keZ

where c^0(fce Z), JLkeZck< + 00, MkeZ(ak + !-a/{)> 0 and sup&6Z(afe+1-ak)
< +00

(0.5)'

(0.6) a, ft, T and ft are Lipschitz continuous.

First of all we give the formulation of SDE (0.1). By a solution of (0. 1) we

mean a system of continuous stochastic processes X = [Z(r) = (Z1(r),..., Xd(tJ),

B(t) = (Bi(t),...9 Bd(r))? M(i) = (M\t\..., Md(0)] defined on a filtered probability
space (O, ̂ , P9 &t) such that

( i ) X(t) is a system of ^rsemimartingales,

(ii) [B(r)5 M(0] is a system of J^-martingales with £(0) = M(0) = 0 such

that <#, B''Xt) = Sjt, <Bl, M^>(0 = 0 and <M% M-/>(0 = <
(iii) with probability one

(0.1)'

f
j = l J O
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where [Ln
t(X

d)\ £^0, ̂ eJ?1] denotes the local time of a continuous Jv

semimartingale Xd(t) and Lf(Xd) = (+" L1(Xd)i4dri).
J-QO

For a probability measure k(dx) on j?d, we denote by Sx\_a, b, T, /^ \i\ the

totality of all solutions 3t = [X(t), B(t), M(t)] of (0.1) for a, b, T, j8 and ^ such
that the probability law of X(Q) coincides with l(dx). We say that the uniqueness

holds for Si[a, b, T, /?, /i] If whenever X and 3E' are any two elements of

S^[_a9 b, T, /?, IJL\, then the probability laws of X( • ) and X'( - ) coincide.

The results in this paper are summarized in the following.

Theorem A (Existence theorem). Suppose that a, b, T, f$ and \i satisfy

(0.2), (0.3), (0.4) and (0.5). Then for any probability measure A(dx) on Rd
5

S^[a, b, T, j83 /i] is nonempty.

Theorem B (Uniqueness theorem). Suppose that a, b, T, /? anJ /x satisfy

(0.2), (0.3), (0.4), (0.5) an^ (0.6). Then for any probability measure A(dx)

on ^d, 5A[a, b, T, /?, /x] z"5 nonempty and its uniqueness holds.

Remark 0.1. In [6], Takanobu proved the existence theorem by assuming

(0.2), (0.3) and

sup |/P
^eltd-1

Also, Anulova's assumptions are (0.2), (0.3) and (0.4) with fjti(dri) =

Thus Theorem A is an extension of Anulova's, and, under the condition (0.5),

is also an extension of Takanobu's. In [4], Oshima assumed that (0.2), (0.3),

In §2 we shall prove Theorem B in the case of (0.5)' and the general case

will be proven by reducing it to the case (0.5)' In §4. §1 is devoted to preparing

some propositions which play an important role in §2. In §3 we shall prove

Theorem A.

Let a: Rd-*Rd®Rd and b: Rd^Rd be bounded Lipschitz continuous

functions such that aj = dj (j = i,...,d) and bd = ®. We denote the Lipschitz

constants of a and b by Ka and Kb, respectively. Let i^d be the set of all con-

tinuous paths w: [0, oo)-»i?d.

§§1.1. For each x£JHd, let Px be the unique solution to the martingale
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problem for 3? starting from x, where

^=4- £ (<*2 i,£i v

Setting (70(w) = inf {^0; wd(0 = 0} for we^d
? we define a probability measure

Px on -)Td by

; w ( - A cr0(w)) e *} .

§§1.2. We introduce the following subspaces

= the family of all we Wd such that (i) wd(0) = 0 and (ii) there exists a
o

positive cr(w) such that wd(i)GR+ for 0<t<o-(o>) and w(0 = w(0-(w))

e^^-ixlO} for ^cr(w)?

= ̂ 6 subfamily of -jTp such that w(0) = 0,

where J?+ and J?_ denote [0, oo) and (-00, 0]5 respectively. Let

^('T-^±)5 ^(TTg),... be the a-fields on ITfr*, tTfr*, ^d
j}... generated by

Borel cylinder sets.

§§1.2.1. Let

x)=

)= ll - exp {-(x^-j

for r>0 and x, yeRd~1xR + . Then there exists a unique <7-finite measure

Qd>± on (irfr*, a^fr*)) such that

(1.1) Q'.±{W; wC^e^,...,

E2

for 0<r 1 <- . -<r m and Ete^(Rd~l x JR±) (cf. [9] or p. 124^125 in [2]).

Since ^(iTg) n^'± = ̂ F(^'±), we can define a ^--finite measure Qd on

g)) as follows:
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Clearly w*(0eL2(>rg, Qd) for *>0 and i = l,..., d. Moreover, denoting by

^f(^o) the sub a-field of ^(^Q) generated by Borel cylinder sets up to time t,

we see easily that if 0<t<t' and If is ^(^^-measurable and belongs to

Qd) n L°°0rg, Qd\ then

„ (w'(f) - w'(0) OJ'(0 - w'

By virtue of this property of gd, for a ^f^^-progressively measurable process

f(t, w) satisfying

(1.2)
JO

we can define the stochastic integral with respect to Qd

in exactly the same way as ordinary Ito's integral (cf. [9]). Then this stochastic

integral has the following properties :

(i) For almost all w(Qd), t*-»P(f)(i) is continuous, li(/)(0) = 0 and

( ii ) /*(/)(*) e L2( >T g, gd) for f ̂  0.

(iii) If/£(u, w) is a ^ll(^g)-progressively measurable process satisfying

(1.2) (i = ls...,d), 0< r<r ' and If is ^f(^)-measurable and an element of

Qd) n L°°(^, 2d), then

where EQd stands for the integration by Qd. We here note the fundamental

inequality of Burkholder-Davis-Gundy type for the stochastic integral with

respect to Qd : For p > 0 and T> 0

(1.3) c^d[max I ( ' f ( s , w)dw I - (5) 2p 1 ^^
P LO^r^T I Jo J

£/(^w)dw^)|2p] /=!, . . . ,dmax
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where cp and Cp are positive universal constants depending only on p. This can

be derived from the above property (iii).

§§1.2.2. For ^ERd~l and cg:0, we now consider the following SDE

with respect to Qd :

(1.4) 3*(t, w) = £i + c: a*j(3(s, w), cwd(s))dwJ(s)
j=i Jo

+ c2 \ bl (3(s, w), c wd(s)) ds i = 1 , . . . , d - 1
Jo

where 3(t, w} = (E1(t, w),..., B*~l(t, w)) (cf. [9]). Since a and 6 are bounded

Lipschitz continuous, this SDE is uniquely solvable, and hence we denote the

unique solution by 3C^. Clearly Sc^(t /\a(w)) = Sc^(t) f^O. Using (1.3),

we can observe by the standard argument that for p^ 1, T>0 and C>0

(1.5) EQd[ max \(3C.,? (t)-^)-(Ec^t)

where the const, depends only on d, p., T, C, Ka and Kb. From this estimate,

we can prove the following:

Proposition 1.L We can choose a nice modification of Ec^(f) so that the

following is satisfied:

( i ) (c, £, f, w) e [0, oo) x R^1 x [0, oo) x ir$*-*3Ci£t, w) e R^1 is

oo) x @(Rd~l) x &[Q, oo) x ^(i^^)l^(Rd-l)-measurable and w^>3Ct£t, w) is

&t(Hr$)-measurable for fixed c, ^ t, where ~&(lfr$)(&t(i!f
r$j) is the completion

of ^f(^d) (resp. atfr$) by Qd.

(ii) For fixed w, (c, £, i)*-+3Cj£t, w) is continuous.

(iii) For eyerj; c, ^, t and w, Sc^(r A cr(w), w) = Sc^(r, w), 2^(0, w) =

Set XCt£t, w) = (Sc^(t, w), cwd(t)). Then Xc^eiTd
d for each c>0,

and w e TTg, JT0i« = (^ °) and a mapping (c, & w) e [0, oo) x ̂ d-J x i^^Xc^( - ,

w)-(f , 0) e ^g u {0} is ^[0, oo) x ^(J?*1-1) x &(Hr$)l&(1T$ U {0})-measurable.

Moreover, by the estimates (1.3) and (1.5), we can also have

Proposition L2, Let f: Rd-^R1 be bounded Lipschitz continuous. Then
rt

If(c, £, t, w)= \ f(XCt£s, w))dw'(s) i = l,..., d has a following nice modifi-

cation:

( i ) (c, £, t, w) e [0, oo) x Rd-i x [0, oo) x iT^Ifa, ^ t, w) e Rl is

oo) x @(Rd~i) x <^[0, oo) x <%(W$)-measurable.
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(ii) For fixed w, (c, £, fy^Ifa, £, t, w) is continuous.

(iii) For every c, £3 t and w, I l
f ( c 9 £, t/\a(w), w) = Ii

f(c, £, t, w), /}• (c, £,

05 w) = 0 and J>(0, {, f, w)=/(f, 0)w'(0-

§§1.2.3, For each n ̂  1 we define a left continuous function [ • ]n on [0, oo)

by

where Xi is the Indicator function of an interval I, and for a fixed x, j; e ^d and

yy^O we consider the following SDE with respect to Qd:

(1.6) Jf'(s, w) = x»+ £

("sA<r(w)

/ = !,.. .,d.

The solution of this SDE can be given by the following recursion formula:

'"+!,-*
if

W) = c . ^ tJ N -1- Z «/

+ fc/2» - if, w)) (s A a(w) - (DfL + fc/2» - 17) A

if Mw4-fe/2w-f7<s^Mn + (lc+l)/2n-?j and

If we denote It by Xn(x, y, 17; s, w), then the following Is easily verified:

(I) For fixed w, a family {Jfn(x? y, r\\ s9 w)}JJ^0 is equicontinuous In

(x, j? s )e^ dxJ? dx[0, oo).

(II) For fixed x, y and 77, Jfn(x, j;, fy ; s, • ) Is ^s(^$)-measurable for

each s^O and Xn(x, y,rj ' , - , - ) satisfies (1.6).

(iii) For fixed x, y, s and w, rje [0, oo)i-»Zn(x3 y, fj; s, w) e ^d is left con-

tinuous.

Moreover we have
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Proposition 1.3. For each T>0 there exists a constant C depending only

on d, || fl || QO, || & || oo, Ka, Kb and T, and the following estimates hold:

(1.7) sup En max \Xn(x, y, i/; s, w)-Xn(x, z, iy; s, w)|2]£C(l/2")1/2,
x,y,zeRd O^s^T

jj^O

(1.8) sup sup£
X6l?d 0,f?^0

(1.9) sup En max

Proof. For simplicity we denote ZM(x, 3;, ?j; s, w) by Fn(s, w) and Xn(x, z,

v\\ s, w) by ZB(s, w). Since Yn and Zn satisfy (1.6), we observe by (1.3) and the

Lipschitz continuity of a and b that for each k^ 1

«-?7j w)|2]

where the const, depends only on d, Kfl and K6. By setting

the above yields a series of inequalities of the Gronwall type :

ak+ i g 3a!+ const. (1 + k/2")l/2" £ a, fe^l

Hence, we obtain

(1.10) £2d[max {| Fn(s, w)- ZB(s, w)|2;

On the other hand, it is easy to see that

EQd[max{|Fn(s, w)-Zw(S, w)|2; 0^ s ̂ Mw+ 1/2- -iy}]^ const. (1/2")1/2

where the const, depends only on d, \\a\\ ̂  and \\b\\ m. Therefore, combining

this with (1.10), we have (1.7).

Next, we show (1.8) and (1.9). To be simplified, we set Xn(s, w) = Xn(x, x, r\ ;
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s, w) and X(s, w) = Zli?(s, w). We note that Xn satisfies the following SDE

(1.6)' X'(s, w) = x' +

o

Noticing that 0^0-([0 + f7]n-jj)+5;i/2", we can easily show (1.8). To prove

(1.9), we define 4(s) (i = l,..., d) by

«i(s) = f
J=l

o

By (1.8), it is easy to see that for each T>0

(1.11) £Qd[ max |en(s)|2]^ const (1/2")1/2

o^s^r

where the const, depends only on d, T, \\a\\ ̂  \\b\\ ̂ ^ Ka and Kb. And, by (1.4)

and (1.6)', it holds that

Ŝ

Jo

in which we set £d = 0 for convenience. Hence, by (1.3), (1.11) and the Lipschitz

continuity of a and b, we observe that for each T>0

EQd[ max \Xn(s, w)-x-(X(s, w)-(f, 0))|2]
O^s^T

^ const. ((l/2»)1/2 + |x-(f, 0)|2)

+ const.

where the const, depends only on d9 T, \\a\\ ̂ ^ \\b\\ ̂  Ka and Kb. Thus (1.9)

immediately follows from Gronwall's inequality. |g

Let /: ^d-»^1 be a bounded Lipschitz continuous function with the

Lipschitz constant Kf. For a fixed x, ye^ d and 17^0 we define ljz (x, j, ^;

^ w) by

Jo

Then, since /j(x, y,rji t, w) can be written as
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/j(x, y , r i ; t , w)
=/(x)w<(* A ([>,]„+1/2"-»?))

it has the same properties on x, y, r\, t and w as Xn(x, y,n\t, w). Moreover, as

a corollary to Proposition 1.3, we have

Corollary 1.1. For each T>0 there exists a constant C depending only

on d, || a || ̂  ||b||oo, Ka, Kb9 Kf and T, and it holds that

sup £ed[max \Il
n(x9 y, TJ; t, w) — /}(!, ^, t, w)|2]

^C((l/2n)1/2 + |x-(^, 0)|2) xeRd, £eRd~l.

§§1.2A For c^O and we'T'g we define Tcw6^g U {0} by

if c>0

if c = 0,

and we also define a measurable mapping <P: J?d~1 x^*g U {0}->^^ U {0} as

follows :

r *li€(.,w)-«,o)6irg if we
](-)= [ o if w=

Then, by (1.1) it is easy to see that for each c>0

(1.12) ed>±{>v; TcwE*} = cQd>±(*) *e*0rg'±),

and, by using this we can verify that for each c>0 and

XCt^/c\w) = Xli^,Tcw) for a.a.

Hence, as to <P, it holds that for each c^O and £, e Rd~l

(1.13) ^K?Tcw](c%(w)) = ZcXw),w)-feO) for a.a.

In view of (1.4), we have the following estimate: For c0>0

(1.14) sup
0<s<t

where the const, depends only on d, c0, H ^ H ^ and H & H o o . Using this estimate,

we see easily that for some constant C depending only on d, \\a\\ m and \\b\\ m

(1.15) su
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(1.16) sup "

Further we have

Proposition 1.4. As e J, 05 the following holds:

(1.17) sup |c±£Gdf±[4>K, w]'(o-(w));e(c±)2<(7(w)^(c±)2]

{> s

(1.18) sup lEQ^I^K, w]'(cr(w)); e(c±
ZeR*-1

0<c±^l

' denotes (xl,...s xd~l)for x = (x1
3...3 x

d

Proof. From (1.12) and (1.13), we see

Since Sc±^ satisfies (1.4), using the martingale property of stochastic integrals

with respect to Qd
9 we observe that the right hand side in the above Is equal to

±c±«^, 0)

Here we have used the fact that E^d>±[wd(e); ff(w)>e]= + l. Therefore, by

noting that £2d'*[gAa]=47e/27r"and ed'±(<7>8)=V2/7re; and by (1.14), (1.17)

follows immediately. By tracing the similar argument as above, we can also

show (1.18). (S3

§ 2.

Let a, b, T, /? and \i satisfy (0.2)', (0.3), (0.4), (0.5)' and (0.6). Namely,
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a, T: Rd^>Rd®Rd and b, j8: Rd-+Rd are bounded Lipschitz continuous functions

satisfying

(2.1) a'j = 8<j j = l,...,d, fc"=0

(2.2) tj = 0 j=l,...,d

(2.3) sup |/>U 0)1^1.
SeRd-i

Our aim of this section is to show the uniqueness of S^a, b, T, /?, (50] /0r any

probability measure 2,(dx) on Rd.

Let A(dx) be a probability measure on Rd and let [Jf(0? B(i), M(tJ] be an

element of SJ^a, b, T, /?, <50] defined on a filtered probability space (Q, &, P3

&t). We set (70 = (7o(X) = inf {^0; Xd(0 = 0}. Then

(2.4) flr0 = inf {^0; Xd(0) + Ed(0 = 0}

and since L?A(To(Z
d) = 0 for any t^O, it is easy to see that M(t Acr0) = 0 for any

t^O. Hence, for i = l,...,d

X'(r A <70) = Zf(0) + Z T *X*(S A °
j = l JO

which, together with (2.4), implies that

(2.5) P(X( - A (70) e *) =

Here, Px denotes a probability measure on ^d introduced in §§1.1 for the

functions a and b. Next we define

where or0 is finite a.s. (P) from (2.4). Clearly [Z(0, B(t)9 M(t)~] E 5F(^(ffo)6]|B) [a,

fo, T, ^, 50] and further, with probability one, it belongs to S8<^tr } 0) [a, fc, T,

A ^ol witn respect to P( • |^0)- Now, if we suppose that for each £ e J?^1

(2.6) the uniqueness holds for ^(§>0) [X fo, T, jS, ^0]

and we denote by P5 the unique probability law of X( • ), then it follows from the

above that

*|^o)=JW*) a.s. (P).

Therefore, putting (2.5) and this together, we have that for 0 < t a < • • • < tn
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= Z \ jE'CP^/w^e^,..., w(sn)E*n) 5j = fj

and thus, the uniqueness for 5A[a, b, T, /?, c50] follows. Consequently, we

have seen that if we prove (2.6) for each £ e Rd~l, then our aim in this section is

attained. In the following, we shall present four propositions and we shall

prove (2.6).

We fix £0eRd-\ and let \_X(f), B(t\ M(t)~] be an element of ^(§0,0) IX b,

T, /?, c>0] defined on a filtered probability space (O, & , P, ^). We may assume

that &= v f>0^f and Z(0) = (^0, 0)- By (2.1) and (2.2), if we denote rj( - , 0)

and ^(-, 0) by T}(-) and /?*(•) respectively, then the SDE (0.1)' is rewritten as

(2.7) X'(0 = ft+ Z T a}(
7 = 1 JO

(2.8) X'(0 = *'(0f Pd(5(s))dL°(X<)
Jo

where S(0 = (^1(05---? ^
d~HO)- Applying Ito's formula to (2.8), we observe

\X\f)\=

This implies that [|Xd(f)|, L%(Xd)~] is a solution of the Skorohod equation and
~ ff

hence, by setting Bd(t} = \ sgn(Xd(s})dBd(s), it follows that
Jo

=- mn
O^s^f

\ X t ) \ = B*(t)- min B(5)
o^s^r

(cf. [5] or Lemma I1I-4.2 in [2]). Therefore, noting that Bd(t) is also an

^t - BMJ, we see that L^(Xd) = oo a.s. (F), and if we set A(t) = inf {s; L°s(X
d) > t},

then A(t)<oo for any r^O and ti->^4(0 is strictly increasing right continuous with

v4(0) = 0 and A(co)=co a.s. (P). Moreover we see from the above that with

probability one

Xd(A(t)) = 0 (r^O), Xd(A(t-)) = 0 (r>0)
|Zd(w)|>0 if A(t-)<u<A(t) and
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Now, from this and the fact :

Xd((s + A(t - )) A A(t)) = Bd((s + A(t - )) A A(ij) - Bd(A(t - )) s ̂  0, t > 0 ,

we define J^^-point processes p and g on ^"g as follows :

; A(t)>A(t-)}9

We also put £(t) = S(A(t)) (f^O) and c±(^) = {l±^d((^)}/2 (fefl*-1). Then

£(f) is an J^^-adapted (d— l)-dimensional right continuous process and c±(^)

is nonnegative from (2.3).

Firstly, as to an J^^-point process p on ^g, we state the following. The

idea of the proof is due to S. Watanabe.

Proposition 20L An ^A^~point process p on i^Q is of class QL with com-

pensator
+(dw n irfr+)+c-(t(t-))dtQ'--(dw n

Proof. It is sufficient to show that for t' > t and F e ^OTg'1) with Qd'±(F)

oo,

(2.9)

To do this, we set

i = l,..., d-1, N"±(t)= ±
Jo

where R+ =(0, oo) and R_ =(- oo, 0). By applying It69s formula to (2.8), we

first note that

Jo

where Xd(t) = Xd(t)vQ and Xi(t) = (-Xd(f)) vO. Similarly as \X*(t)\, this

expression implies that

= - min
(2.10)

- min
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Noting that limttoo N
l
±(t) exists and is finite a.s. on [<7±(oo) = <JYV>(oo)<

we define Bl
±(t) i = !,..., d as

imNiCO if
B\(f)= '"*>

N'±(i±(0) if f< f f ± (oo )

where T+(£) = inf {s; a±(s)>£}. Then [5 + ,..., J8±] is a J-dimensional Brownian
motion up to time (j+(oo) and it is clear that

(2.11) S'±((7±(0) = NI±(0 i = l,...,d.

Now, like as p[f], we define p + [_f] ei^$>+ U {§} for r>0 as follows:

Then, by the general theory of time change, the following holds : For f > t and

re &(1Tfr+) with ed' +(/!< + oo

(2.12)

where ^±=^ti(().

On the other hand, we can observe that for t >0 and F e

(2.13) *{s6(0,t];p[s]6r}

Indeed, this is shown in the following: Firstly, by virtue of (2.11), we note that
(2.10) becomes

t ^

o

From this, it follows immediately that

(2.14) l±(t

Now, let t>0 be such as j>[f]e'*ro'±- Then> since ^d(«)e«± for any M;
y4(i — )<w <A(i), it follows from the definition of a± and NV that

p[t]'(u) if ie {!,..., d-1]

±p\f}d(u) if i = d
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for 0<>u^A(t)-A(t-). Hence, these, together with (2.11), imply that for

) if ie {!,..., d-1}

±p[f]'(u) if i = d.

On the other hand, if we notic that Bd
± + 1+ is a 1-dimensional reflecting

Brownian motion up to time <r±(oo), then, by (2.10)' we easily verify that (/+)"1

(l±(a±(A(t)))-) = a±(A(t-)) and (/±)-i(/±(ff±G4(0))) = <r±0*(0). Therefore,
combining this and the above, we have

pp]=(p±W1,.-,P±Wd-1, ±P±[>]')
where s = /±(t7±(A(r))), which, as to (2.13), says that the left hand side is less
than or equal to the right one. Next we show the opposite sign of inequality.

For this, we fix *>0 and let s>0 be such as 0<s^l±((r±(A(t))) and p±[s]
We take *0 = inf {*'; s = I ±(a ±(A(t')))} . Then, by noting that

(l±rl(l±(v±(A(um = *±(AW for any u*0

we observe that

)=^^

Since (/±)~1(s)>('±)~1(s-)J
 tnis implies ^(r0)>^(r0-)3 that is,

Thus, as we saw in the above, it follows that

Therefore, as to (2.13), we obtain the another inequality and consequently,

the proof of (2.13) is complete.

Finally we prove (2.9): We denote ^(i±)-1(i±(^±(A(t)))) by &t for simplicity.
Applying the optional sampling theorem, we conclude by (2.12), (2.13) and (2.14)
that for t'>t and r E ̂ (irfr*) with Qd>±(F)< + oo

t

Thus- (2.9) follows immediately by noting that

Secondly, as to an J^^-point process ^ on ^g, we present the following:

Proposition 2.28 FFi'r/i probability one, it holds that for any teD
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Here #[£, w] is introduced in §§1.2.4.

To prove this proposition, we present the following lemma: For each n^l,

let [ • ]n be a left continuous function on [0, oo) defined in §§1.2.3 and let l_Xn(f)

= (ZJ(0,..-, X*(t)y] denote a unique solution of the following SDE:

y'(0 = tt +
7=1 JO

+ £ r T}(
7 = 1 JO O

where y'(t) = (y1(0>--- j ^"KO) and £o = 0 f°r convenience. Then we have

Lemma 2.1. For each T>0 and p>Q

(2.15) lim£[ sup
Mt°o o^r^T

(2.16) lim£[max

The proof of this lemma is carried out in the standard way, and so we

omit it.

Proof of Proposition 2.2. For simplicity we denote L®(Xd) by L(t). It is

enough to prove that for each s>0 and T>0

(2.17) £[ E KAW-^-)>. max l«M(0-*K(s-), P
0<s<L(T) 0£t£A(s)-A(s-)

To do this, we define an J^(0-point process qn on ^g as follows:

This gK is well-defined, since

Jo

And it is easily seen that for any s e D

qnls-](.) = Xn(Xn(A(s-)l Xn(tA(S-Kn), A(s-);-, p[.s])-XJ(A(s-)).

Hence, from this and the definition of q and qn we observe that the left hand

side of (2.17) is dominated by

(2.18) £[ Z ^W-^(,-». max
0<s<L(T) Q^t^A(s)-
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-{X(A(s-))-Xn(A(s-m~]

x max \Xn(Xn(A(s-», Xn([>4(s -)]„), A(s-); t,
A(s-)

-Xn(Xn(A(s-)), Xn(A(s-)), A(s-); t, p[s

x max \Xn(Xn(A(s-)), Xn(A(s-)l A(s-); t,

Noting that A(s)<A(L(T)-)^T for 0<s<L(T) and C^n([^(s-)]n); s^O] is

^(^-predictable, we see that each term of (2.18) is also dominated as follows:

CL(T)-r CL(
the first term ̂ 2E\ max \X(f)-Xtt(i)\\

\_0£t£T JO

the second term^E\ \ \ d Xa(W)>s
\—J 0 J " 5

x max_ \Xn(x, y, r\\ f, w) - Xn(x5 x, ?^; f, w)| x=Xnu(s_» Np(dsdw)

rCL(T)=E[}0
x max

x max

BL(T)

0

s-)) Np(dsdw)
J

x max |Xn(x, x, ?/; f, w) — x — (X1^(t, w) — (£, 0)) x=xnu<

Therefore, by (1.7), (1.9), (2.16) and Proposition 2.1 it follows that each term of

(2.18) tends to zero as n t oo, which implies (2.17). SB

Thirdly, we state the following, which plays an important role in the proof

of Proposition 2.4 below.

Proposition 2c3o Let f: Rd^>R1 be bounded Lipschitz continuous. Then

for each t>0 it holds that
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fA(s)M
l . i .m. £ f(X(6))dBl(B)

Jo Jo

Here L(0 stands for LQ
t(X

d).

For the proof of this proposition, we present the following lemma :

Lemma 2.20 With probability one, it holds that for any seD and f^

Proof. We take Jfn introduced just before Lemma 2.1 and set

Jo Jo

Then we easily see by Lemma 2.1 that l imE[max |I^(s)-l^(s)|2] = 0 for
nt oo o^s^r

each T> 03 and so it follows that

(2.19) limE[max £ |/'(A(s) A r)_j^(s-) A f)
nfoo O^f^T s;A(s)--4(s-)>e

for each E > 0 and T> 0. We next define I'n(t , S, S') (f ̂  0, S' ̂  S ̂  0) by

Ii(t, S, S')

-sr
A(*-Sr AS' .

Then, since |/j(t, S, S')-(/i(f A S;)-/j(f A S))| is dominated by 2 max \Bl(s)\

\f(Xn(t A S))-f(Xn([t A S]n))|, we observe from (2.15) that

lim£[ max \I*n(t AS')-/i(f A S)

for each T>0. Hence it follows that

(2.20) Mm £[max S l/i(4(s) A t)- /i(X(s-) A t)
nt°o O^t^T s;A(s)-^4(s-)>8

-/ia4(s-),4(5))i]=o
for each s>0 and T>0. On the other hand, since it can be easily verified

that for any s e D
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from (2.16), Corollary 1.1 and Proposition 2.1 we observe that

(2.21) lim£[max Z \Ifr, A(s-), A(s)) -
n t o o Q^t^T s;A(s)-A(s->)>E

glim £[~(L(

ii too LJo
x max \I*(x9 y9n\u9 w)-/>(!, & u, w)|

= 0

for each e>0 and T>0. Thus, by putting (2.19), (2.20) and (2.21) together, the
lemma follows immediately. H

To prove Proposition 2.3, we must trace the proof of Theorem 2 in [8]
almost similarly. We shall here sketch the proof.

A sketch of the proof of Proposition 2.3. For simplicity we denote ̂ A(^
by &t. Setting p[r] = q[f\ = 0 if r<£D, we define a family («^)f>0 of sub er-fields
of J5" by

Then it is easily checked that jeta^t, for Q<t<t' and

(2.22) cr(X(s), B(s) ; 0 ̂  s ̂  f) c jf t c &t c ^L(f) r > 0 .

For a bounded Lipschitz continuous /, we observe by Lemma 2.2 that for
each £>0 and e>0

fA(s)At
f(X(0)) dB'(B)

s;A(s)-A(s-)>E

O

fL( t )

JO

We denote by M}-jE(0 and Vl
fiB(t), the first term and second term in the right

hand side, respectively. Also we define Ml
f(f) and ¥l

f(t) as follows :

* -X (t-A(s-)r, w)Np(dsdw)
JO J%^o

-))ds.
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Then we see that for each t > 0

(2.23) l.i.m.M^e(0 = MXO> 1-i-m. Vi
f,£(t)

£ 4 - 0 £ 4 - 0

Hence we have that for each t > 0

l.i.m. 2
£±0 s;A(s)-A(s-)>e J A(s~) M

Therefore, if we show that for each t > 0

(2.24) MXO=)o/(*(0))dB'(0) a.s. (P),

then the proof of Proposition 2.3 is completed. To do this, let t'>t>Q, let

[G^w); w^O] be a real bounded ^-predictable process and let G2: ̂
2d-^R1 be

bounded Borel measurable. Setting a bounded Jfr-measurable F by

by the same way as in the proof of Theorem 2 in [8] we can show that

o(l) as e|0

as £ | 0 .

Hence, by (2.23) we obtain that

Thus, noting that Ml
f(u) and \ " f(X(0))2d9 are ^-measurable a.s. (P) for each

u>Q, from the arbitrariness of tf>t>Q, Gl and G2 we see that for a bounded

Lipschitz continuous /

(2.25) [M>(0; *>0] and [M>(02- /(^))2^; ^>0] are Smarting ales.

Further, from the linearity of Il
f with respect to /and (2.25), we see that for a

bounded Lipschitz continuous / and g

(2.26) [Mj.(OMi(0- \ f(X(0))g(X(0))dO; t>0~] is also an ^-martingale,
Jo

On the other hand, it can be seen that M[(t) = Bi(f) a.s. (P) for each t>0.

Therefore, by this, (2.22), (2.25) and (2.26) we observe that for each t>Q
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lira
f i too

, , f(xmnw(x(6))de \ -E \ f(xmdef(xm
LJo J I. Jo

so that it follows that EJYM}(r) - (' /(X(0))rfB*(0)Yl = 0 for each t>0. Conse-

quently we have (2.24), and complete the proof of the proposition. H

Fourthly, using Proposition 1.4 and 2.3, we shall derive an SDE of jump

type which £(f) satisfies: We define an ^A(t} — BM$ B*(t) and a bounded Lipschitz

continuous /?: J?**"1-*^"1 as follows:

And we define c(£, w) (^ e J?^1, w e TTg) by

Then we have

Proposition 2.4. ^4« ^A^-adapted (d—l)-dimensional right continuous

process ^(t) satisfies the following SDE of jump type:

j = i o
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Proof. First of all we note the following: With probability one, it holds

that c(£(s —), j?[s])>0 for any s 6 D and

tt{seD; 0<s^r , A(s)-A(s-)>Bc(£(s-), p[s])}< + oo for any

We define J^(f)-adapted (d— l)-dimensional right continuous processes

Ce(0 and C(0 as follows:

S6JJ

t

From the above note and the estimate (1.15), £e(0 and C(0 are well-defined.

We first show that for each T>0

(2.27) lim£[ sup
e - l - O

From the definition of the point process q and Proposition 2.2, we observe that

Cfi(0= Z xff(p[a])>Ec«(S-)fp[S

JO

By virtue of the estimates (1.15) and (1.16), the last hand side is written as

rJo

( dO J 2^o

.̂O J^ o

r+

in which 0<e<l. For the third and the fourth term in this expression, the

following Is true: By (1.15),

lim£[ sup \the third term|2] = 0.
£ 4 - 0 O^t^T
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By (1.17) and by noting that c+(£)-c-(£)=$*(£),

lim sup \thefourth term- T {$(£)-pf(Q + Pd(Qaf
d(£, 0)}|^(s)Js|=0.

Hence, putting all this together, we immediately obtain (2.27). Applying (1.18)

instead of (1.17), by the same way as above we see that for each T>0

(2.28) lim£[ sup |CE(0-C£(OI2] = 0-

Next, from (2.7) the following is obvious: For each s>0 and £^0

X'(A(s)At)-X'(A(s-)Ai)
d fA(s)At fA(s)At

= £ a',(X(Q))dBi(e) + b'(X(9J)d6
j = l J^i(s-)Af J^l(s-)Af

CA(s)l\t
where L(&) = L°e(X

d). But, from the fact that \ dL(&) = 0 for s > 0 and t^ 0,
JA(s-)M

the last two terms in the above formula are identically zero. Hence, for each

, summing up over 0<s^L(t) such that A(s) — A(s— )>e, we have

(2.29)

= £ z \AWM a'j(x(e))dBJ\e)
j=l s;A(s)-A(s-)>E jA(s-)At

b'(X(9))d9.
A(s-)At

Here, by applying Proposition 2.3, the first term in the right hand side of (2.29)
converges in L2, as e I 0, to

d f t

Also, it is clear that the second term converges, as 8 | 0, to \ b'(X(8))dQ a.s. (P),
Jo

because the Lebesgue measure of the set (0, oo)\WseDG4(s — ), A(s)) is zero a.s. (P).
Therefore, we conclude that the right hand side of (2.29) converges in L2, as

e | 0, to
d f t f t fL(t)
Z a'j(X(0))dBi(B)+ \ b'(X(ff»d8+\ ai
j=i Jo Jo Jo

that is,
d f t CL(t)

'(0-fo- Z *'j(B(G))aM*(e)-j = i J o J Jo
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where we have to recall (2.7). On the other hand, by (2.27) and (2.28), the left

hand side of (2.29) converges in probability to ti(L(t)-) + X'(f)-^(L(f)-} as

e J, 0. Thus, combining with these, we have that for each t > 0

r'j(B(0))dMJ(0)+
7=1 JO O

f MO"

Jo

a.s. (P).

But, since both sides are left continuous in r, we see that this identity holds for

all r>0a.s. (P). Consequently, replacing t by A(t) and then taking the right

hand limits in f, we obtain the conclusion of the proposition. E3

Putting the above propositions together, we shall prove (2.6).

Proof of (2.6). As before, we denote ^A(t) by & v We now take a filtered
probability space (Qr, &", P', ^'t) and an J^-stationary Poisson point process

p' on i^$ with characteristic measure Qd(dw). And we put a filtered probability

space (O, ^, P, &t) as follows:

Then we may regard the processes £(•), J3*(-)9 A P'"- as defined on
(£, ^, P, ^t). Clearly 5* is an J^-BMg. Noting that c(^s-), p[s])>0

for any s e Dp and Dp n 1>P' = $ a.s. (P), we define an <Frpoint process p on

as follows :

% = DPU {seDp.'9

for seBp, such as

From its definition, it is clear that

(2.30)

Further, by Proposition 2.1, the point process p is an ^-stationary Poisson

point process on ^Q with characteristic measure Qd(dw).

By (2.30) and Proposition 2.4, the SDE which £(f) satisfies becomes as

follows :
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= & + £
y=i Jo

Hence, recalling (1.13), we see that <!;(() is a solution of the following SDE of

jump type:

£'(») = & + £ (' T}(£
j=l Jo

where /(£, w) = Sc(^}W)j(,(tj(w), w) — <^. Therefore, since T and j5 are bounded

Lipschitz continuous, and since, by (1.5) and (1.14), it holds that

sup £
{eR*-1

£Q-[|/«, w)-/«', w)|2; (i(w)^l]^ const. |f-{'|

we apply Theorem IV-9.1 in [2] to obtain the following:

(2.31) An &t-adapted (d — l)-dimensional right continuous process £(i) is a

functional, which is uniquely determined from T, /? and /, of £0, an

^t~BM$ B* and an 3Ft-stationary Poisson point process p on WQ with

characteristic measure Qd(dw).

Also, the following is easily verified :

(2.32)

And, by Proposition 2.2 and (2.30) it is easy to see that for each r>0

(2.33) X ( t )

if L(r) e Dp and c(£(L(0 -), J>[L(r)]) >0

) —), 0) otherwise.

Thus, from (2.31)~(2.33) we can clarify the structure of X ( - ) , and as its conse-

quence we establish the uniqueness of Sd(S 0) [a, b, T, f$, (50]. g
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§ 3o Existence

Let a, b, T, j8 and /i satisfy (0.2)', (0.3), (0.4) and (0.5), and A(dx) be a

probability measure on Rd. In this section, we show the nonemptiness of

S^a, b, T, /3, JLL]. The general case is reduced to this case, ifwe use themethods

in [7] or Theorem IV-7.2 in [2], i.e., the following methods; transformation of

Brownian motion by an orthogonal matrix, time change and transformation of

drift.

First we start with the following proposition: Let oc:R1->R1 be a bounded

and uniformly positive Borel measurable function and let B(t) be an ^t — BM^

defined on a filtered probability space (Q, &, P, J%). Let y: [0, oo)xOx j?1

-+H1 be ^-progressively measurable and satisfy supSi0)jj; \y(s, co, q)\^ 1.

Suppose we are given a 1-dimensional continuous J^-semi martingale Y(t)

satisfying

(3.1) Y(t) = 7(0)+ r *(Y(s))dB(s)+ (' 7(s9 Y(s))dL$*(Y)
Jo Jo

where L?z( Y) = Z fc6ZLf(Y). Then we have

i 3.L For anj p>0 there exists a constant C depending only

on p and sup^ej?i a(yy) sucfc ffcaf

'-^)|r'-^ /or f, r'^0.

Proo/. By time change by means of\ oc(F(s))2ds, we can assume a= l .
Jo

We set functional F1 and F2 defined on {w e^1 ; w(0) = 0} by

F1(w)(0 = vv(t) — min w(s), F2(w)(r)=— min w(s)

Note that [F^w), F2(w)] is the unique solution of the Skorohod equation for

0 and w (cf. [5] or Lemma III-4.2 in [2]). Now we define a sequence of ^t-

stopping times {Tn}£L0 as follows:

f^0 ; 7(0 E Z}

+ 00 if T I I_ I =

Then we can observe that with probability one,,

(3.2) tn< + oo
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(3.3) r0 =

(3.4) rn + 1

(3.5) LfA(->+i_In)(y(.+o)=r2(J§n)(0 n^o

where Bn(f) = ( ' sgn ( Y(s + rn) - Y(rn))dB(s + rn) and 4(0 = Bn(t A (TB + 1 - tn)).Jo
Indeed, they are shown as follows : From the fact

(3.6) L?*0(y) = 0 for any ^0,

it immediately follows that TO < + oo and (3.3) holds a.s. (P). To see (3.2), (3.4)

and (3.5), we assume that (3.2) is true for n = k (/c^O). Since

(3.7) L{(Y) is flat on [tfc, t,+ 1)/or anj IE Z^{7(Tfc)},

we see by Ito's formula that

|7(rA(T f c+1-T f e) + Tj-7(Tfc)| = 4(0 + L^) + i_ t k )(F(

This expression implies that

L^ + ,-tO (n ' + ̂ ) = ^2(4) (0 = r2(Bfe) (t A (Tk+1-T fc)).

Hence, noting

(3.8) Bkisan^t+Tk-BM^

we see that (3.2) is true for n = k+ 1, and so are (3.4) and (3.5) for n = k. Thus,

putting all this together, we conclude that (3.2), (3.4) and (3.5) hold for any rc^O.

From (3.6) and (3.7), it is easily seen that

By (3.4) and (3.5), this implies that for every J^

= F2(4)((
k=0 j=l

We here note that TO, B0, Bl9... are independent and 6n(-) is equivalent in law

to B(- AT), where T = inf {f^O; F1(B)(0 = 1}. This is derived from (3.4), (3.8)

and the Jr
Tn+1-measur ability of Bn. By the same way as above, for 7(0) + B ( - )

we can observe that for every t^Q

= £ F2(
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where {An}n^0 possesses the same property as {Bn}n^0. Thus we see that the

law of L8.Z(Y) coincides with one of Ldz(Y(Q) + B), and if we show that for

p>Q and f, r '^0

(3.9) £[|L^(7(0) + B)-Lfz(y(0) + B)|2^]^const.(l + |r ' -r |p) |r ' -rK

where the const, depends only on p, then the proof of the proposition is com-

pleted.

We prove (3.9). By applying Ito's formula to Z(f)=Y(0) + B(t) with a
rrj

function 2 \ (b — \b~])db, it is easy to see that for 0^ t^ t'
Jo

r z ( f ) ft ' . .
2 (b-[b-])db = 2\ (Z(s)-[

Jz ( r ) J t

Hence, we have that for p > 0

where the const, depends only on p, and therefore, taking the expectation,

we obtain (3.9) at once. H

As a corollary to Proposition 3.1, we have

Corollary 3.1. Let a, b, i, ft and \JL satisfy (0.2)', (0.3), (0.4) and (0.5).

Then, for any probability measure A(dx) on Rd and any [X(t), B(t), M(i)~] e

SA[a, b, T, j5, //], the following estimate holds: For p>Q

(3.10) £[| EL

where {ak}keZ is a sequence appearing in (0.5) a?t^ the const, depends only

on p, inffceZ (ak+ 1 - ak) and supfceZ (ak+ 1 - ak).

Proof. Let \_X(t\ B(t), M(f)] e SA[fl, b, T, 0, /z] be defined on a filtered

probability space (O, J5", F, J^,). We define F(f/)e C(J^) as follows:

_ 1-ak
ak + l ak ak+l~~ak

Then

(3.11) F+(r{ ,ak+i ak ak+i ak

(3.12) F"(dr,) = H l - - —-l- Sak (dr,)
~ —
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where F+(F~) denotes the right (left) derivative of F and F"(dri) denotes the

second derivative of F in the distribution sense. Applying Ito's formula to

Xd(t) with this F, we see from (3.11) and (3.12) that

(3.13) F(Xd(t)) = F(Xd(0))+ T F+(Xd(s))dBd(s)
Jo

I ft IY i i \
I L \^ \ )( ± J_ ± l/o P d( 77 ( v\ n \

T ^ 2^ \ }{ "• .« j^ kP V ^ V ^ / s ^fc/
^ fceZ JO i\ "k+1 "fc "fc "fc-1 /

1 1

Hence, by noting that for each fe e Z

(3.14) L\(F(X*))

dLJKJT-),

(3.13) becomes

ct ct
y(s,

keZ Jo

where

1 -ak)(l-ckp<>(3(s), ak))

Thus, we can apply Proposition 3.1 to observe that for p>Q

E[_\Ld
t^(F(Xd))~Ld

t
z(F(Xd))\2P']^consL (l + \tf- 1\*) \tr - 1\' t,t'^Q

where the const, depends only on p and inffe6Z (ak+1 — ak). Since dL°k(Xd)

(al+1 — al)dLk
t(F(Xd)) for every fceZ, which is clear from (3.14), the

above estimate implies (3.10). H

Remark 3.1. For the process X(t) considered in the above, we define a

sequence of ^-stopping times {TW}^=O by

r^0; Xd(t)sF}

mf{t^in_1;X
d(t)EF^{Xd(rn_i)}} if T^

+00 if !„_!= + oo n^l

where F={ak; he Z}. Then, with probability one, it holds that rn< +00 (n^O)

and limntoo in= + 00, because {TW}^°=O defined in the proof of Proposition 3.1

has this property.
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Now, using Corollary 3.1 and the result of [6], we prove the nonemptiness

of 5A[fl, b, T, p, fjQ. Here a, b, T, p and \JL satisfy (0.2)', (0.3), (0.4) and (0.5),

and k(dx) is a probability measure on Rd.

Proof of Theorem A. Let {ak}keZ and {ck}keZ be sequences appearing

in (0.5). For each e>0 we take a bounded continuous function PE: Rd-*Rd

and a sequence {cEik}keZ satisfying c£ j /£>0 (kez) and Zkez c
£,/c< + °° sucn tnat

(3.15) sup|cek-c f c | >0 , Hft- jSIL >0 as e iO
keZ

(3.16) sup \f$d(£9 ak)cE)k\<l for every keZ.

Such a j5E and a {ce>k}fceZ obviously exist. From (3.15), there exist bounded

continuous functions /?£, p: Rd^>Rd and f£, f: Rd->Md®Rd satisfying f j f j—0

and T^ = 0 (j = l,..., d) such that

(3.17) II^-^IL >0, llf.-fIL >0 as eiO

(3.18)

for every fef l*- 1 and fceZ.

Now, by virtue of (3.16), on a filtered probability space (O£, ^E, P£, J^), we

take a [^6(0, BB(t)9 Ma(0] e SA[fl, 6, T, j8B, /ij, where /xe(diy)=i;tez c8iAk(^)
(cf. [6]). Since a, fe, T, & and /xa satisfy (0.2)', (0.3), (0.4) and (0.5), by Corollary

3.1 we have the following estimate

(3.19)
fceZ

where the const, depends only on infkeZ (ak+1 — ak) and supkeZ (ak+l— ak). Also,

if we define an ^"£^-martingale N*s (i = 1,..., d) by

fr 1
J o k e Z k \JCE,k

and we set LE(f)^= Z*6z
 Ltk(xt) for simplicity, then

(3.20)

(3.21)

+ t
7=1 JO JO

where we have derived (3.21) using (3.18). Hence, by (3.19), (3.20) and (3.21), we
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have the tightness of {[*£(0, B.(t), Ne(t), La(0]}.>0-
In the following we trace the same argument as done in [6]. We choose a

positive sequence {en}*=1 tending to zero such that the continuous process [XBn(t)9

BBn(t)9 NBn(t)9 LSn(ty] converges in law to a continuous process \_X(t), B(i),

N(t), L(r)] as n t oo. By the celebrated theorem due to Skorohod, we may

assume the following :

(i) (Ofin, jF£n, P£n) = (0, JF, P) for H^ l , and [*(*), B(t), N(i), L(i)~] is

defined on this probability space (Q, 3?, P).

(ii) [Z JO, BJO, NBn(t), LJ01 converges to [*(0, B(t\ N(t)9 L(tJ]
uniformly in t on every finite interval as n t oo. We set ^t = r\d>0 0(X(s), B(s),

N(s), L(s); O^s^r-f 6). Clearly L(f) is an J^-adapted continuous increasing

process with L(0) = 0. Since <£jn, B{n)(t) = 5*jt ( i , j = l,..., d) and (3.20) holds

for e = ew, we see from (3.19) and the above (ii) that \_B(i), N(tJ] is a system of &t-

martingales with B(Q) = N(Q) = Q such that <B', B*)(t) = 5y, <B% JV-''>(r) = 0 and

<1V*, NJy(t) = 6i
jL(t) for i, y' = l,..., d. Hence, applying Proposition 2 in [6],

we observe from (ii) and (3.17) that as n t oo, (3.21) becomes

(3.21)' ^(r)=X'(0)+ Z T aj(X(s))dBJ(s)+ (' bi(X(s))ds
7=1 JO Jo

+ £ r fj(^
7=1 Jo

which especially implies that X(0 is a system of J^-semimartingales. It remains

to show that

(3.22) L(t)=^L°«(Xd) t^O.
fceZ

If this is true, then, by setting M(t)= Y^I{a^(Xd(s))^dN(s), [X(t)9 B(t)9

M(0] e S£a, b, T:, ^ \i\ follows from (3°18).
To prove (3.22), it is sufficient to show that for each k E Z

(3.23) l.i.p. max \La
t*(Xd

E ) - L^(Xd)\ =0 T> 0 ,
n

because (3.22) is the implication of this, (3.30) and (3.28)' below. Now, applying

Ito's formula to (3.21) for i = d and (3.21)' for i = d, respectively, we see that

for each YJG R1

(3.24) L*(Xin) = |*i(0 - n\ ~ 1*1(0) - rj\ - sgn (X'n(s) -
Jo
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- sgn (^(5)-f
Jo

= : TOO - 1,1 - |*?n(0) - n\ - in(n ; 0 - *to ; 0

(3.24)'

o
= : \X'(t)-ri\-\X<(0)-ri\-I(rii t)-V(r,; t).

By (3.19) and the same estimate for L( • ), which is clear from (3.19), (3.24) and

(3.24)' yield the following estimates:

(3.25) sup£[L?TO], sup £[L?(^)]^ const. (1+VOV7 t*
jyeK1 neR1

where the const, depends only on inffceZ (ak+l— ak), supfceZ (ak+1 — ak) and
suPn^ill/^JIoo- By these estimates and Proposition 2 in [6], we can observe

that for each r\ e Rl and T>0

(3.26) lim£[max \In(rj; f)-I(n\ OI2]=0.

In fact, if we choose pdeCb(R
l) for £>0 such that \pd(rj) —

for r\ e J?1, then by (3.25)

Mm Mm sup E|~ max /B(^; f) - (' pd(X*n(s)-rj)dB*n(s) 2]
540 nt°o LO^t^T Jo J

Mm E|~ max /(r/; 0 - T pd(X
d(s) - rj) dBd(s) * 1 = 0

540 LO^r^T Jo J

and by Proposition 2 in [6]

= 0

liml(m
nto Lo^r
l i m l m a x

o^ r^ r ' Jo

Hence, by putting all this together, (3.26) follows immediately. On the other

hand, we can also observe that for each k e Z

(3.27) Vn(ak;-)=^V(ak;.) as n t o o .
c

Here " =| " denotes the compact uniform convergence in t. Indeed, (3.27) is
c

shown in the following way : Since

(3.28) LEn(t)=EL?*(XdJ r^
keZ

(3.29) LJ-)=JL(') as
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for any subsequence {n'} of {n}, we find a further subsequence {n"} of {ri} and
a continuous increasing function Lk(f) (k e Z) such that

(3.30) L?K^L,)=:^(-) as n " T o o .
c

We note that L k ( - ) has the following property:

(3.31)

Hence, letting n" t oo in (3.28), we see from (3.29), (3.30) and (3.31) that

(3.28)'

Therefore, since

Vn(ak'f)= ;o i<k Jo

by (3.17), (3.30) and (3.28)', FM»(ak ; .)=t F(a fc;-)as n"too, which implies (3.27)
c

from the arbitrariness of {n'}. Consequently, combining (3.26) and (3.27),
we immediately have (3.23) from (3.24) and (3.24)'. Thus we conclude the proof

of Theorem A. H

§ 4. Uniqueness II

In this section we prove Theorem B in the general case. By the same reason

as stated in the beginning of §3, we have only to show the uniqueness for S£a, b,

T, ft /x] in the case when a, h, T, p and \JL satisfy (0.2)', (0.3), (0.4), (0.5) and (0.6),
and l(dx) is a probability measure on Rd.

Let a, b, T, ft p, and A be such those and fixed. Let {ck}keZ and {ak}keZ be
sequences appearing in (0.5). For fceZ and xeRd, Sdx[a, b, T, ft ckdak] is
nonempty and its uniqueness holds from the conclusions in §2 and §3. Hence,
we denote by P* the unique probability law of X( •), where [X(f)> B(f), M(i)~\ e

$dx{.a> b> T> & C/AJ- Note that for each k E Z, a mapping xt-*Pk is continuous,
which is a consequence of the estimate given in Corollary 3.1 and the uniqueness
for Sdx[a, ft, T, ft ckdaj.

Now, let [X(f)9 B(t\ M(0] be an element of S£a, b, T, ft \i\ defined on a

filtered probability space (Q9 ̂ , P, ^t). Let {TW}^=O be a sequence of &t-

stopping times defined in Remark 3.1. Then rn< + oo (n^O) a.s. (P) and

(4.1) limTn= + oo a.s. (P).
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First it is easy to see that T0 = inf {r^O; Xd(Q) + B*(i)e F} and

7=1 JO

where F= {ak\ k E Z}, so that it holds that

(4.2) P(X( - A T0) e *) = ( Px(*)%dx)

where P* stands for a probability measure on i^d given in §§1.1 for a and 6.

r, in view of (0.1)' we observe the following: For each n^O

o

^^7=1 o o

1 = 1,..., d O^Tn+1

Here /cn is an J^-measurable random variable defined by afen = Zd(Tn). Hence,

from the uniqueness of Sdx[a, b, t, f$, ckdakj it follows that for each n^O

(4.3) P(X(-A(T B + 1 -Tj + TjeH^J = P^B)W-AOe*)| fc^ a.s. (P)

where afc(w) = inf {r^O; wd(t)e F^{ak}} for we^Td and keZ. Therefore,

putting (4.2) and (4.3) together, we can see that for each n^O

(4.4) the probability law of X(> A TB) is uniquely determined.

Indeed, this is shown by induction on n ( ̂  0) :

(i) For n = 0, (4.4) is clear from (4.2).

(ii) We assume that (4.4) is true for n^p (p^O). Then, since

P(X(- AT p + 1 ) e* )

by using (4.3), our assumption implies that (4.4) is true for n = p+l. Hence,

from (i) and (ii) it follows that (4.4) holds for any n^O. Consequently,

combining (4.1) and (4.4), we conclude that the probability law of X ( - ) is

uniquely determined, and thus the proof of the uniqueness of 5A[a, 6, T, $, /x]

is completed.
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