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Microlocal Analysis and Calculations on Some
Relatively Invariant Hyperfunctions Related

to Zeta Functions Associated with the
Vector Spaces of Quadratic Forms

By

Masakazu MURO*

Introduction

In this paper, we shall give explicit formulas of the Fourier
transforms of some relatively invariant hyperfunctions on the vector
spaces of quadratic forms and some similar Hermitian forms,, These
calculations are applicable to the calculations of the functional equa-
tions and residues of zeta functions associated with each vector spaces,
(See Sato-Shintani [5] and Shintani [21]). Sato-Shintani [5] and
Shintani [21] has calculated some of them in a classical way, but, in
this paper, we shall give more results by making use of a different
way.

Let VR be the real vector space consisting of n X n symmetric matrices
over R« The real linear algebraic group GR~GL(n,R')+ acts on this
vector space VR by

(g,x)\ >g-x-*g, (g^GR and ^eF*),

and it is a rational representation of GR on VR. Then VR decomposes
into a finite number of orbits, and each orbit is parametrized by its
signature. We denote by Si the orbit consisting of the points whose
signature is (n — i—j,j). If i = Q, then SJ

Q is an open orbit in VR and
there exists a unique relatively invariant hyperfunction corresponding
to the character % (g)s = det (g)2s (s e C) which depends on s meromor-
phically and is supported on SJQ. The calculations of the Fourier trans-
forms of such relatively invariant hyperfunctions with a meromorphic

Communicated by M. Kashiwara, October 23, 1984. Revised November 25, 1985.
^Department of Mathematics, Kochi University, Kochi 780, Japan.



396 MASAKAZU MURO

parameter s^C is equivalent to the computations of the functional
equations of the zeta functions associated with quadratic forms which
is denoted by fJB)(j, L) in Shintani [21]. If z'^1, then S{ is a locally
closed orbit and its dimension is less than the dimension of VR. We
shall show that there exists a unique SL(n,R) -in variant measure on
each Sjt and that it is extended as a tempered distribution on VR

supported on S( and compute the Fourier transform of it. By using
the Poisson's summation formula, we can compute some contributions to
the residues of f (f (s, L) in terms of the explicit computations of the
Fourier transforms. But, so far, we can not compute all the contributions
by our results. For details, see Sato-Shintani [5] and Shintani [21].
Similarly, for the vector space VR of complex Hermitian forms, we
shall compute the same things. In such cases, we can compute the
residues of the zeta functions associated with them completely from
our calculations by making use of the method of Sato-Shintani [5].

In this paper, we start with the applications of the arguments in
Sato-Kashiwara-Kimura-Oshima [6], which we abbreviate S-K-K-O,
to the cases we shall deal with in this paper (§1). S-K-K-O [6]
gave a method to examine a holonomic system of relatively invariant

hyperfunctions. In §2, we restrict the holonomic systems to the real
form VR and investigate the real structures of them. The main result
of this section is an application of Kashiwara's theorem to our cases
(Proposition 2.11). Kashiwara's theorem (Theorem 2.8) was proved
in Kashiwara and Miwa [8], In Chapter II, we regard relatively
invariant hyperfunctions as solutions of the holonomic systems which we
shall investigate in Chapter I. We shall compute the Fourier trans-
forms of ]det x\s (Theorem 3.6) and construct the hyperfunctions
T {(x) whose support is contained in a closure of GR~orbit S{ and
which is a relatively invariant measure on Si (Theorem 4. 1). More-
over, we compute the Fourier transform of T{(x) (Theorem 4.3),

Among the above results, the Fourier transforms of ]det x\s have
been computed by some authors. Above all, T. Suzuki [37] has
computed them by utilizing microlocal analysis.

The main results of this paper are concentrated in §4. In almost all
parts of the explanations on microlocal analysis are due to M. Kashiwara
(Kashiwara-Miwa [8]) but the author added some complementaries
for our computations.
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Notations

We denote by Z,Q,R and C9 the ring of rational integers, the
rational number field, the real number field and the complex number
field, respectively. For any ring F, we denote M(n, m, F) (resp.
M(n, JF7)) the set of nXm (resp. n X n ) matrices. We denote by
GL(n, F) the group of invertible elements in M(n, F)0 For any
finite dimensional real vector space V, SP (V) is the space of rapidly
decreasing functions on F.

Chapter I. Holonomic Systems

In this chapter, we shall examine the microlocal structures of
relatively invariant hyperfunctions by analyzing the holonomic systems
and holonomy diagrams.

§ 1. Holonomic Systems of Relative Invariants^
(Reviews from the S-K-K-O [6] theory)

The contents of this section is essentially due to S-K-K-O [6] and
T6 Kimura [24]. For the details, see S-K-K-O [6] and T8 Kimura [24] 8
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Let (Gc, p, Fc) be a regular prehomogeneous vector space, which
is one of the fallowings.

(1.1) 1) Gc=GL(n,C),
Vc=Sym(n,Cy. = {x<=M(n,Cy, tx=x],
p(g) : x\ - >g-x-'g, (gGGc, x(E Fc).

2) Gc=GL(n,C)xGL(n,C),
Vc=M(n,C),

p(g) ; x\ — >gi'x-'g2, (g= (£i,&) eGc, *(E Fc).
3) Gc = GL(2n,C),

Cy, = {x^M(2n,C); 'x=~x},
' x • 'g, fee Gc, x e Fc) .

Irreducible relative invariants P(x) are by definition

(1.2) 1) P(*)
2) P(*)
3) P(*) =

respectively. Here (det AT) means the determinant of a matrix #
and (Pff ^) means the Pffafian of an alternative matrix #0 The
corresponding characters ^ i- e., P(p(g)x) ='X,(g)P(x)9 are

1) Zfe)-(det^)2,
2) x(?)=(dct ft) (det a),

3) Xfe) =det g,

respectively. The inner products < , > on Fc are defined by

(1.3) <^jO>=tr(*»,

and we identify Fc and its dual space FC by (1.3). The contragredient
representation p* of p defines a prehomogeneous vector space having
the same relative invariant P(x), whose corresponding character is

r1^).
Let & c

 De the Lie algebra of Gc, dp the infinitesimal representation
of p and d% the infinitesimal character of %„ Then we have the
equation,

«dp(A)x, Dx>-sdz(A))PsW=Q (A^9C).

Here Ps(x) means a generator of SFc~Module, where @YC is the sheaf

of differential operators on Fc, not a function. We consider the system
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of differential equations,

(1.4) mt;«dp(A)x,Dg>-sdx(A»u = 0 (A^9C).

We shall examine the system of differential equation (1.4) following
to the arguments in S-K-K-O [6],

The characteristic variety of 3KS is by definition,

(1.5) {(x,j>)*=T*Vci<dp(A)x,j>>=09 A^9C]

and we denote it by ch(3Ks) or for simplicity, by E. We identify
T*V$ and F C XF£. Then the group Gc acts on T* Fc naturally8

The characteristic variety & is an invariant subvariety under the actions
of Gc because

<dp (A) p ( g ) x , p* (g)y> = <p (g) ~l

and

defines an automorphism ofdp(&c)> Therefore, the sets {(#,jv) ^ T* Fc;
<dp(A)x,j>>=Q, A^&c] and {(x,y)eT*Vc;<dp(A)p(g)x, p* (g)y>
= 0, A^^c} coincide with each other. The characteristic variety ©
decomposes into several (?c-orbits in T*FC. In fact, we can construct
£ as a union of a finite number of 6c-orbits in T*FC= In order to
write it down, we begin with the orbital decomposition of Fc*

The vector space Vc = Sym(n,C) decomposes into (w + 1) GL(n,C}-

orbits SiC={x^Sym(n,C}\ rank(#) =w— i}, (i=0, 1, . . , « ) . The

orbit SiC is generated by ^t-= ""' ^ L Similarly, the vector space

Vc=M(n,C) (resp. Alt(2n,C)*) decomposes into (n + l)GL(n, C) X
GL(n,C r)-(respBGL(2?z, 17)-) orbits Sic= {^e M(w, C) ; rankW=w-t}
(resp. S^c = [x^Alt (In, C) ;rank (*) =2 (w -i) } ) , (i = 0, 1 , . ., w) . The orbit

r/ _ i r /n~* 1Sic is generated by ^ = 1 B ' Q I (resp. AT,.= -/n_f ). Here

Ik = \ ° . i I. The dimension of Fc is n(n + l)/2 (resp8 ?z2, n(2n — 1))

and we denote it by 7z',and the dimension of Sic is ( w ( w + l) — i(i + l)) /2
(resp. n2-!2, »(2»-l)-i(2i-l)) when Fc=Syi»(nf C) (resp. Fc-
M(n,C), Vc=Alt(2n,C)). The orbit Soc is an open dense orbit in
Fc and coincides with the set Fc— [x^ Vc',P(x) =0} . The other orbits
Sic(i^ 1) are contained in the set {#e Fc;P(;c) =0} . The Zariski closure

Sic of Sic is Sic U Si+ic U . . . U SnC*
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We identify T*F£ and FCX V$ in the same way as the identification

of T*F and VcxV$. We denote by ?r(resp. JT*) the projection map

(1.6) xiVcXVc >VC (resp. 7r*;FcxFS >Fg).

The maps TT and TT* are compatible with the action of Gc.

Let .A be a non-singular sub variety in Fc. We define the conormal

bundle of A by

(1.7) 2^Fc = w{(*oOeFcxFg;<floC> = 0 for all a

which is clearly a non-singular subvariety of dimension nf. If A is

irreducible, then T\VC is also irreducible. So the conormal bundle

Ts.Vc is an irreducible variety, and hence T|. Fc is irreducible. We

denote ^c = 5rs. Fc. Moreover we have n(AiC)=Si. In the same way,

by defining A*c = Ts.Vc, we have A*c is an irreducible subvariety

whose dimension is equal to n', and TT* (J*c) =Sj.

Let ^-yc be a Gc-orbit in Fc X F? generated by

(L8)

when Vc = Sym(n,C) or Fc=Jf (n, C), and

(1.9)

when Fc=^ift(272,C7). Here, /,-[ 7*1, and ?2^i^0,^^j^0 and
L~^* J

n. Then we have the orbital decompositions,

and hence AiC=A*-ic. From the definition of the characteristic variety

K, © is a closed set and coincides with \jT%.Vc, and hence

Proposition 1.1. 1) AiC=A%-.iC, and ® =
i^O

2) 77z£ varieties Aic and Ai+w have an intersection of dimension (n' —1)

z*£ contains a Gc-orbit of dimension (nf — l). In a neighborhood of a

point p of the (nf — I)-dimensional orbit, Aic and Ai+iC are smooth varieties and
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(1.11) TpAiC n TPAMC = Tp (Aic n 4+ic) •

Here, TPX is the tangent space of X at p.

3) Aic and AjC have no (nf — 1} -dimensional intersection if j — i^2a

The proof would be found in S-K-K-O [6],

We put Wc the Zariski closure of the set

(1.12) {(jc,j-grad,logP(*))eFcxFg; x^Vc-Sc, s^C}9

and a conormal bundle Aic is called a good Lagrangian subvariety if it

is contained in Wc and contains an open dense orbit in it, (See

S-K-K-O [6], Definition 4. 2, 4. 5 and 4, 14). Furthermore, for a good

Lagrangian subvariety AiC9 the order of SKS is defined and is given by

(1. 13) ord^c(SKO = j3*Uo) -try; dp* U0) + dimcF* ,

where A0 is an element of & c satisfying dp(AQ)Xi = Q and dp* ( A^yi =yi

for an element CK/,^-) ^2iin-ic. Let /? be a point in E. We say that

SKS is a simple holonomic system at /? if:

(1.14) 1) dimcS = 72 and E is non-singular.

2) the 0r,Fc-ideal generated by «dp(A)x, y>\A<= & c] is a

reduced ideal,

in a neighborhood of p. We say that two Lagrangian subvarieties

AiC and AjC have a g00rf intersection 2 if

(LI 5) 1) j ? i s a t9c-orbit in Aic of dimension n'-l,

2) Jic, JjC and Wc are non-singular in a neighborhood of

any point p^S.

3) TpAiCnTpAjC=TpS for any

Proposition 1. 2. 1) The variety Aic are all good Lagrangian subvarieties.

2) The order of SKS on Aic is

(1.16) ord A.c(ms~) = { (Vc=M(n,C»,

3) T/z^ Lagrangian subvarieties AiC and Ai+iC have a good intersection.
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The proof would be found in S-K-K-O [6]. Now, by applying
Theorems 6, 3, 60 6 and 8. 3 in S-K-K-O, we have the following normal
form of holonomic system near the point

Theorem L 3* Let z^SMin-iC. By a suitable quantized contact trans-
formation, 3KS is transformed to the following holonomic system in a neighbor-
hood of z,

(1.17)

with

(1. 18) Ai+lc= {(*, f) e I*Fc;*1=*2 = f3 = . • • = £.- = 0}

I* = ordAic (SKS) - ord,mc (2R.) - -1

s + i (Vc=M(n,C»,

From those mentioned above, we have known the microlocal struc-
tures of holonomic systems SKS on T*FC. It is simple on all the
Lagrangian subvarieties and all the intersections of codimension one
are good intersections,

Let 30^ be a holonomic system on an n '-dimensional complex
manifold JLC. We write a circle O to represent an irreducible Lag-
rangian component of ch(SKs) in T*XC* We connect some of them by
a line if and only if they have the same connected n'-\ dimensional
variety,, We call the diagram thus obtained the complex holonomy
diagram of SKS8 We write the codimension of the projection of a
Lagrangian subvariety in the circle- We write its order beside the
good Lagrangian subvariety. When two Lagrangian subvarieties have
a good intersection, we write (/^+1), which is defined in (L18),
beside the line connecting the two Lagrangian subvarietiese

Following to this definition, we have the complex holonomy dia-
grams in Figure 10
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A,, » (m- i ) \_ l u _£i»

Figure 1.

The microlocal structure of the holonomic system is completely
determined by the difference of orders when two Lagrangian subvarieties
have an intersection of codimension one0 From the method of the
calculations of ^-functions in S-K-K-O[6], we have the ^-function

of /»(*).

Proposition 1.4. 1) There exists a polynomial 6CO, which we call a
b-function, satisfying P(DX} °P(x)s+l=b(j) -PWS.

2) (Af. Kashiwara) The roots of b (s) are negative rational numbers.

The proofs of this Proposition is found in Sato-Shintani[5] and
S-K-K-O[6] and Kashiwara[36],
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Proposition 1.5. The b-functions of Ps(x) are

y=i
n

J=l

3) b(s)=n
modulo constant multiples,

Though the proof of this Theorem is possible by the direct com-

putation, we obtain these by drawing the complex holonomy diagrams

Figure 1. (See S-K-K-O[6], T. Kimura[24]).

§ 2. Real Forms of Holonomic Systems and Principal Symbols
(Applications of Kashiwara's Result)

The main purpose of this section is essentially an application of

Kashiwara's theory in [8] to some concrete examples. The results

from Definition 2. 1 to Theorem 2.6 may have been done in his
computations [37]. The explanations after Theorem 2.6 to Theorem

2. 12 are quoted from Kashiwara-Miwa[8] in a slightly different form

for our use.

In this section, we shall consider the real forms of (Gc, p, FC) and

examine the holonomic system on the real locus.

We say that (GR, p, VR) is a real form of (Gc, p, Fc) if GR is a
real form of the complex Lie group Gc, VR is a real form of Vc and

the restriction of p on GR is a representation of GR on VR. We denote

by GR the connected component of GR containing the neutral element.

We shall deal with (GR, p, F/j) in place of (GR, p, VR) as a real form
of (GCj p, Fc) if GR is not connected.

The followings are real forms of (Gc, P, Fc) in (1.1).

(2.1) 1) Gc=GL(n,C), Vc = Sym(n,C)

(real symmetric bilinear forms)

p(g)',xi
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2) Gc = GL(n,C)xGL(n,C), Vc=M(n,C)
(complex Hermitian forms)

VR = Her(n, C) = [x^M(n, C) ;'*=

P(g) I*' - >g'X-'g

3) Gc = GL(2n,C), Vc=Alt(1n,C)
(quaternion Hermitian forms)

(n, H) = [x^M(n, H) ;tx=x}

p(g) \x\ - >g*xotg

Here H stands for the quaternion field over R. We regard the real
Lie group GR (resp. the real vector space VR) as a sugroup of Gc

(resp0 as a vector subspace of Fc) in the following way0

(2.2) 1) GL(n,R) - >GL(n9C)
LU UJ
g > - > ^

Sym(n,R) - >Sj/m(n9 C)
Ib1 UJ
^ i - > A:

2) GL(n,C) - >GL(n,C)xGL(n,C)
UJ UJ

Her(n,C)
UJ UJ

3) GL(n,H) - >GL(2n,C)
UJ UJ
g « — > ^Cg)

Her(n,H) - >^ft(2^?C7)
U UJ
X I - > f W *Jn

Here ^ is the map U= — >Jf (2, C) defined by

(2.3) ^o-
~)/-l *3» AT0 — V — 1

where e\~e\= — \, e^— — e2e\9 and /„ is the 2n X 2n alternative matrix
defined by c(—Ine2}* We define the determinant of x<=M(n?H) by
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det* = Pff (<(*)./„).

The inner product < , > on FR are defined by

(2.4) 1) <*,j»

2) <*,.?>

3) <*,j»

Note that the restrictions of the inner products by (2.3) coincide

with the inner products in (2. 4) up to constant multiples. We identify

VR and VR by the inner products. Then VR X VR is a real form of

the complex vector space Vc X F£ on which GR operates by p®p*

and the triple (6rJ,/o*, FjjJ) is a real form of (Gc,p*9 Fc).
Let A: be a point in VR. The real locus /0(6r c) a#n VR is a GR-

invariant set and consists of a finite number of G^-orbits. Each orbit
is characterized by the signature of the orbit which is defined by the

following.

Definition 2.1. (Signatures of forms)

Let x be an element of VR = Sym(n,R) (resp. Her(n,C), Her(n,
H)). We say that a pair of non-negative integers (k, m) is the

signature of x, and denote is by sign(^) if there exist a basis j>i , . . ,

yn^.Rn (resp. Cn,Hn} of the real vector space Rn (resp. the complex

vector space Cn, the left quaternion vector space Hn) satisfying
tyi'X'jj=sidij with ef- = l, —1 or 0 for 1 ̂ i^k, k+ 1 ̂ i^k + m or i^k +

m + l, respectively (d{j; Kroneker's 5). In particular, we say that

k (resp. m) is the positive (resp. negative) signature of x.

The following Proposition 2. 2 is well know and Proposition 2. 3 is

easily verified.

Proposition 2. 2, (Orbital decompositions)

The real vector space VR = Sj/m(n,R) (resp. Her(n, C), Her(n,H))
decomposes into GL(n, R)+-orbits (resp. GL(n, C) -orbits, GL(n,IT)-
orbits),

(2.5) Sj
i={x^Sj/m(n,R') (resp. x<^Her(n, C), x<=Her(n, H)) ;

sign (*) = (j, « -i -j)}, (i -0, 1,.. , «, j = 0, . . , n -i).
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The orbit S{ is generated by x\» = I1"-1
 n 1 e VR, r0A*r* /<& -=|/J' _ T |.

L Ui J L ^n-i-jj

T/z^ r^a/ /OCMJ- S,- n VR = w Si.

In particular, among these GJ-orbits, SJ
Q(j = Q, . . , 72) are open orbits

in FR. We denote by F£° instead of SJ
Q. If z>0, then Si is contained

in the singular set {x e VR ; P O) = 0} . We denote it by S^, We have

(2. 6) F<"> U Ci U . . U F^ - F* -SB,

sR=^siR, siR= w si
Since the dual space VR is identified with VR, and hence F| has the

same decomposition. We denote them by

(2. 7) F;W U F;i? U . . . U F?(n) - F5 -SZ,

when we have to distinguish FJJ from F^0 We say that V}B) are open

orbits, and that Si are singular orbits,

Proposition 2.3. Let S{ be the GR-orbit defined in (2 8 6) 0 Then we

have

(2.8) Si=
n

Now, consider the holonomic system 3KS in (L 4) and the hyperfunc-

tion solutions to 2KS. Then the singular spectrum of the solution is

contained in ®«=ch(2)fis) n r*FB. We may regard the solution as a
microfunction whose support in contained in ®/g0 From Proposition

n

1.1, we have & = \jAiC and
i=0

Aic= W J^jyc (disjoint union),
j^n-i
k^i

where SkjC is the (?c-orbit in Fc X F£ generated by

°
Among the orbits in Aic, the orbit J^,n_ic is an open dense subset in

AIC and any point in 2itn-ic does not contained in any other Lagrangian

subvariety Ajc 0^0- Especially, we deonote by A°ic the (?c-orbit
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Sitn-ic* We note that

Aic = ( w
j^n—i

and that AiC is an open dense non-singular subvariety of Aic. (See
Proposition 1.1). We have the following theorem on the real loci
of the orbits 2ijC.

The following Proposition 2. 4 is fundamental in order to draw the
real holonomy diagrams of 3WS.

Proposition 2.4. 1) The real locus SijR—SijC^}VRxVR decomposes
into (n— z'+l) X (n — j + 1) G\-orbits. The generators of GR-orbits in 2ijR

are

7-' "0''(2 9)(2'9)

We denote by Sf?R the GR-orbits generated by (2. 9) . Especially, for

A°iR=2in-iR, each connected component is a real Lagrangian submanifold.

We denote 2p^iR by A!q
R (Q^p^n-i, O^g^z).

/\ x\

2) The real locus AiR=AiCr\(VRxV^) is a non-singular subvariety,
/\ x\

The intersection AiRr}Ai+iR consists of (n' — I) -dimensional GR-orbits and

it IS J&i+i n-iR>

3)

(2. 10) 4K n (1« n 4+«) =

4g n (4,-« n 4-«) =-ZfiL-?+« u J
i or

Proof. 1) Let M be a point in Siis. Since JT(M) ^SiK, ^(M) is reduced
to one of the points

(2.11) Q ,

by the actions of GR. On the other hand, from the definition of HijR,
we have u^Tg! VR and hence TT* (u) is contained in the conormal

iR

vector space V* (p) of SiR at x\p\ Let Gx.(p) be the isotropy subgroup

of G'R at A;p}. Then Gx.(p) acts on F* (p) by the contragredient

representation, and the action p* (p) (g) is given in the following

way.



MICROLOCAL ANALYSIS 409

A
r 4 &~i

(2.12) Gx.(p)

'j, K)

F* (/>) = fjj il e F£: JTeJIf (f,i ILU ^j

l (P) (s); ro o"
LO x

o o
o 'c-

Here, K is the field R (resp. C,H) when VR = Sym(n,K) (resp.

Her(n,C), Her(n,H)'). From the assumption, the matrix ^ v- is an

element of <S*R and hence X is of rank n-j. Therefore it is reduced
to the matrix,

(2.13)

Thus we have that any point in 2ijR is reduced to one of the points,

Next we shall show that the Gj-orbits generated by the points
(2. 14) differ from one another. Let u and v be the points in SijR

given by

(2.15) «=(['"' 0,].[°' /»,])-

We assume that p=£r or ^^^. Then we have that K(U) and TT(Z;) are
not contained in the same GJ-orbit or that it* (u) and TT* (y) are not
contained in the same GJ-orbit. Therefore, GR*U and GR*V are not
the same.

XX /\

2) Since yffc is a non-singular variety, it is evident that 4^ is
xx xx

non-singular. The second statement follows from that Aic fl Ai+iC =

^in-i+lC"

3) First we shall show that

(2. 16) A
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Let x be a point in J?f|lra_£fe. Then x is reduced to the point

/r/^>. . I TO • ~|\ i . l\In-i-\ 0»-«' \

(L' O.J- L" /i- J)-T h e pomt *•=([ -£ o J' L ^J/
is an element in A$R if £>0, and converges to a point in 2i+in-iR

when e->0. Thus we have,

(2. 17)

s °-'
'J for s>0, andIn the same way, x^ = \

oj
#e converges to a point in 2f+iq

n^iR when £-»0. Then we have

(2. is) ^gD j/a?.,̂
Thus (2. 16) is obtained.

Next we shall show that

(2. 19) Jf

In fact, we have

and

From Proposition 2.3, we have SinSf+^fi if /=£/>, />-! and S*f£H

Stli = $ if g^=q, and hence (2.19) is followed. Thus we have

(2. 20) J>| n (4* n Ai+lR) =IfR n ^-+iw-^
=iK^iR\js^,iB9

and hence the first line of (2. 10) is obtained.
By taking

and

and bringing s to zero, A;£ and x'E converges to a point in St«-?_1K and
in JP£?_;+iB, respectively. On the other hand, we have

(2. 22) 4* n ̂ /_i+lfl = # if ^?, ? -1 or
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because

and

Thus we have

(2.23) A

and hence we obtain the second line of (2.10). q0 e0 d0

From Proposition 1. 2, AiC and Ai+w have a good intersection
^t+in-iC' By restricting 2i+ln_ic to the real domain, the real locus
^i+in-iiz decomposes into (n— i) X (i + l)-6rj-orbits HUin-iR
(Q^p^n-i-l, O^gr^z) . From Proposition 204-3)9 The GJ-orbits in
4-fl which contains Hthn-in are ^l9 and JfJ, and the 6?J-orbits in
Ai+iR which contains JF££ln_f/e are -4f+i« and ^ff+i^. Thus we have the
following proposition.

Proposition 20 5. Let z=(x,y) be a point of Hf£ln..iRe Then there
exists a neighborhood Uz of z in T* F^ such that

(2. 24) Uz n ®R = (AiR U 4+i*) 0 U,

= ( (Af^ U A*£) U inm-iR U (AmR U ̂ |ls) ) n R,

in Ke

We write the Lagrangian subvarieties satisfying the conditions of
Proposition 20 5 as

O

/'o (y^\\ /iP+iQf~*\(^Z0 z.3) Am \^J

O
4?

and call, it a rea/ holonomy diagram.
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In the complex holonomy diagram, we write Q to represent an

irreducible Lagrangian component. But, in the real holonomy diagram,

it means a connected component of the real locus of AiC. In our cases,

each O is a GJ-orbit. By the diagram (2. 25), we express the intersec-

tion in (Figure 2).

-iff

Figure 2.

An-i-l i + lfA+ifl L

An-i i/^\ A
A/e \J *

An-i-l i fA +iiz I

In— i z'-l/^N 4
Lz'# vy "

An—i—l i— If

M_ t f-2/^v

"> An-i-2 i + lS~\J A+iif U

^n-i-l »

0 4
^

•> An-i-2 if
J A + 1K L

An— i— li — I

Atf-1 ;-2

0 4f

An-i-l 0

0 1 *
~l

yir«''"2 ;
»

f~*}\ /

)
AK-*"

D
An-i-2 i-2

fc f^i^ v^y

An-i-2 0A/?
fc ^^\
r v^x

<S1

A+lRVs.

d
5

A+lJB\.

A'/e
J ow

)

» C]1 {J

)

i np w

i OW V-X

An-i-l Or\ An-i-2 O^NA+i« W A+IR vj

Figure 3. Real holonomy diagram of the intersection of AiR and <4.i+
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The complete real holonomy diagram of intersections between AiR

and Ai+iR is (Figure 3).
In Theorem 1.39 we have shown that, in a neighborhood of a

point of Si+in-iC, the holonomic system 3KS is transformed to a holonomic
system (1. 17) by a suitable contact transformation. This contact
transformation gives a real contact transformation in T*VR and it
transforms Wls in the real locus.

Theorem 2.6. Let z^£p£in-iR. By a suitable real quantized contact
transformation^ 2KS is transformed to the following form in a neighborhood

(2.26)

With

(2.27)

|,, *! = & = £,= .. =£,,,=0,

.

Proof. In the following proof, we shall always consider all things
in a sufficiently small neighborhood of £. The proof of the existence of
the contact transformation of the holonomic system SKS to the normal
form (2. 26) can be carried out in the same way as the proof of
Theorem 1.3. In fact, our holonomic system 3Jts has an involutory
basis of micro-differential operators with real valued real analytic co-
efficients on T*VR, and hence the contact transformation in T*Vc
denned in Theorem 1.3 preserves T*VR. Thus, there exists a contact
coordinate transformation W which transforms Sfts to (2. 26) . That is
to say, we can write,

(2.28) ¥(Ai+lR) = i(x,^^T*VR; Xl=x2 = t3=.. =f.,=0},



414 MASAKAZU MURO

and the holonomic system Sfts is written as (2. 26) . Thus we have
only to show that if ¥(A£») =¥(AiR) n {*2>0} , then «&Offl!S) =

Let /, g be real analytic, real valued functions such that

(2.29)

It is obvious that such functions exist. The Poisson bracket {/, g} (z)
does not vanish and we may assume that [f, g] (z) >0 by taking
— g instead of g if necessary. Then we have

(2.30) 1) f\A. has a zero of order one on AiR fl Ai+iR, and does not

vanish on AiR - (AiR fl Ai+1R) .
2) g\A. has a zero of order one on AiR H Ai+iR and does not

J+1.R

vanish on AiR— (AiRnAi+lR).

Then we have

(2.31) (the signature of/ on Jf^13)
X (the signature of g on A?£IR)

does not depend on the choice of f,g. In fact, let/x,g' be other real
analytic, real valued functions satisfying (2. 30) and \f', g'} (z) >0.
Then there exist real valued, real analytic functions a, b which do
not vanish at z and satisfy

(2-32) /I4«=-/IV, s'\,i+lB=b^\Ai+1R.

We have

(2. 33) {/',/} (Z) = [af, bg} («) =aU)iU) [f,g] («).

Therefore if f/',^} Ce) >0, then flU)6(^)>0 and hence we have
in a neighborhood of z. Thus we obtain that the signature of (2. 31)
is the same as the signature of (2.31) calculated by using f,g'
instead of /, g.

We may take

(2.34) ,

Setting
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(2.35)

we have

(2. 36) ft(f) e^itf1*, &(0 6=,«8& if t>Q,

We can take /, g satisfying

(2.37) /(^ (*))=*,

1 r -,\
,[ 0 J =(*lff,) eJ?

» J /

"<U_i
1 2

OJ

Then we have {/,̂ } fe) = {<*j, f2>-<^2, fi>} =1>0, and hence /,

satisfy {/, ,?} (^) >0. We have

(2.38) /| ,+1,>0 and , 3 + 1 .
iK Ai+lR

On the other hand, by the contact transformation, we may take

(2.39) /=*, and g = £a.

In fact {/,^}(r(«))=l>0. We have

(2.40)

From (2. 38) and (2. 40) , if

then

Thus we have the result. q. e. d.
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In order to consider the hyperfunction solutions on VR to the

holonomie system SKS by "lifting up" SJJS on T*VR, we introduce the

real principal symbol of the microfunction solution. First, remember

the definition of the principal symbol of a simple holonomie system.

Let X be a real analytic manifold of dimension n and let Xc be its

complex neighborhood. Let HJJ be a holonomie system of differential

equations on JLC. It defines naturally £ x® -i Q 2K of microdiffe-

rential equations on T*XC. We also denote it by SK if there is no

fear of confusion.

We denote by ch(3K) the characteristic variety of SK. Let Ac be

an irreducible component of ch (9JJ), and let AC be the open subset

of AC consisting of non-singular points in ch (3K). We suppose that

3K is simple characteristic at any point of Ac*

Now, remember the definition of complex principal symbols of 3JJ

on AC* As in the definition 3. 11. in S-K-K-O [6], we correspond a

local holomorphic section of £?f1/2(x)J2f ~1/2 on AC at each point to thec c
holonomie system Eft. Here, QA and Qx^ are the sheaves of holomor-c c
phic ft-forms on Ac and on Xc, respectively. We call it the (complex)
principal symbol of Eft on Ac. It is defined as a solution of a system
of differential equations and it is defined modulo constant multi-
ples. In other words, for a simple holonomie system Eft on Ac, we
have a locally constant sheaf of rank one which is a subsheaf of
£f*/2®£f~1/2 and the principal symbol is a local section of it. There
does not always exists a global non-trivial section on AC.

We consider the hyperfunction or microfunction solutions to a
holonomie system Eft. Let &x be the sheaf of hyperfunctions on X.
We denote by Supp (/(#)) the support of a section f ( x ) e &x on X.
We denote by S.S. (/(#)) the singular spectrum of f ( x ) on T*X-X*
Namely; for a section f ( x ) &&x, the section sp (/(#)) of the sheaf of
microfunctions on T*X-X is defined. We denote it by /(#) for sim-
plicity. Then the support of f ( x ) on T*X-X is the singular spectrum
on T*X-X. Moreover, f ( x ) is naturally considered as a section on
T*X by corresponding /(*) on X and sp (/(*)) on T*X-X. This
section /(#) on T*X is called a microfunction on T*X. By this
correspondence, any hyperfunction is naturally viewed as a microfunc-

\y
tion on T*X. We denote by S.S. (/(AT)) the support of the microfunc-
tion f ( x ) on T*X, If /(#) is a solution of a holonomie system 3K,
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then

(2.41) S^S. (/(*)) cch(2K).

For any hyperfunction f(x) , we have

(2.42) Supp (ft*)) =ff(sTs. (/(*))),

where TT; T*X->X is the projection map8

Let AC be an irreducible component of ch(SK). We suppose that
A=Acr\ T*X is a real Lagrangian subvariety in T*X. Let £0 — (-^JVo)
be a point in A° = A°cri T*X and let M be a microfunction solution to
3K supported on A° defined near £0. We suppose that, in a neighborhood
of XQ in X, 7r(yf ) = {x1=° - ' =xk = 0] by a local coordinate (#!, . . , xk,
xk+i, . . ,#„) , and ^i is an open set in TJU) FR = {(#, f) e 3T* FB ; #1 = • • =
,^ = 0, |ft+i= ° • =fn==0} . By using a microdifferential operator of frac-

tional order (defined in S-K-K-O[6] §2 as ^
j=0

defined in a neighborhood of (#0,j)>o) , we have an expression of u
near ( x Q , 0 ) ,

This is the plane wave expansion of microfunction u with respect to

the coordinate (#',£')• Here, we set;

1) x = (xl9 . . , *j) , ^ - (^+1, . . , ̂ )

f = ( & , . . , & ) , f =(fm,. . , f . ) .
2) ^Afe) =r(^) (-*;)-*. This function is defined for -7r+s<arg(^)

<^7r— e and we take the branch satisfying 0^( — l)=F(X).

3) rfai(f)=2(-l)^d|1A..A^-iArffy+iA..Arff», is the measure
;=l

on (A — 1) dimensional sphere ( I f 7 ! — 1}.

Let \QA\ (resp. \QX\) be the line bundle of the volume element
on A (resp. X), We can regard \BX\ as the line bundle on A, whose
transition function is defined by pulling back the transition function
on X by the projection map TT.

Definition 2e 1, (Kashiwara) Let u be a local section of a micro-
function solution on -4° defined near ZQ expressed as (2.41). We

define a local section aA(u) of V \QA \ X V \OX \ l by
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(2. 43) aA(u) = (2x)k/2Pi(x\ £') V |rf*Wf |/V \dx\,

and call it the real principal symbol of u. This definition does not
depend on the choice of the local coordinate (x, j) on T*X.

The real principal symbol (2. 43) is obtained as a restriction of a
complex principal symbol. Namely, let £0 be a point in A° and
let ^4 be a non-trivial local section of complex principal symbol of
the simple holonomic system 2ft defined near £0. Then, for any
microfunction solution u defined near £0, we have <JA(U) ~c • ^4 \A with

a constant £. This is easily verified by proving that 0A(u)i\dx\
satisfies the differential equation for the principal symbol.

Conversely, let A be a local section of a principal symbol on A°
defined near £0. Then there exists a unique microfunction solution
u defined near £0 such that A=aA(u), In fact, let Sol (2ft) *0 be the

vector space of microfunction solutions of 2ft near £0 and let Symbol (2ft) ZQ

be the vector space of principal symbols of 2ft near £0. ThenSol (2ft) ^

and Symbol (2ft) g are one dimensional vector spaces over C because

2ft is simple characteristic. Moreover,

<SA\U I - > <7j(M)

m rn
Sol (2ft) 2Q - >Symbol(2ft),0,

is a linear isomorphism. Thus, for a point zQEiA0, if

(2. 44) ^i is written as the conormal bundle of the non-singular
subvariety n:(A) in a neighborhood of £05

then we have a one to one correspondence between Sol (2ft) *0 and

Symbol (2ft) ZQ through the map <JA. Henceforth, we suppose that

(2.45) for any point z^A°, the condition (2. 44) is satisfied.

Let ^U.. . \jAk = A° be the connected component decomposition.
Let Sol (2ft) (A1) be the vector space of global sections of microfunction
solutions on A1 and let Symbol (2ft) (A*) be the vector space of global
sections of principal symbols on A\ Since A1 is connected, Sol (2ft) (A*)
and Symbol (2ft) (A1) are at most one-dimensional and there exists a
one to one correspondence between them by the linear isomorphism
aA for each i. Therefore any microfunction solution u on A° =
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A1 U . . . U Ak is determined by the global section of the real principal
symbol ffA(u) on A° '. Namely, we have the following proposition,

Proposition 28 80 Let SK be a holonomic system of differential equations

with the characteristic variety ch(SK) = \jAi€ with Aic an irreducible component,
i

For each irreducible component AiC^ we denote by A°c the subset consisting
of nonsingular points in ch (3JJ) . We suppose that Eft is simple on each A°c

and the condition (2. 45) is satisfied on J-=J°cfl T*Xa We put A\\J...

\jAil be the connected component decomposition of A°« Let u(x) and v(x)

be two hyperf unction solutions to Eft., If their principal symbols tfj.(^W)

and tfjf.CK*)) coincides with each other on every connected component A{,

then u(x) coincides with v(x) as a micr of unction on the subset

Remark 20 9. 1) It is not yet proved that u(x) coincides with
v(x) as a hyperfunction on X. Later, we will prove that u(x) actually
coincides with v(x) in some special cases0 See Theorem 2, 14.

2) Let Eft be a holonomic system and let A be an irreducible
component of ch(Eft). For a microfunction solution u(x) on J°9 we
do not yet have defined the real principal symbol ffj(M(#)) at the
point £0eyf° — A°Teg. Here, A°eg is the subset of the points satisfying the
condition (2 0 44) B Then A°es is an open dense subset of A°, In fact,
we can not extend the real principal symbol on A°eg as a real analytic
section on A° in general. In order to correct the section on A°eg so
as to be extendable real analytically to A°, we have to multiply a locally
constant function on A°eg which is written by Maslov index. See for
detail Kashiwara-Miwa [8].

Now, we go back to the case of the holonomic system SKS:

Each Lagrangian subvariety AiC in ch (HJJS) is an irreducible component
of ch(SWs) and A°c=^in-ic is the subset of Aic consisting of the
non-singular points in ch(3Ks)0 From Propositions 4. 12 and 40 14 of
S-K-K-O [6], we have

Proposition 2* 10. The locally constant sheaf of complex principal
symbol of Sfts on A°c is generated by the nonzero section,
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with

aAi

Here,

TT ; T* Fc = Fc X Fg Z> FTC - > F£ (the projection map)
UJ UJ

dx=dxl/\. . . f\dxn, with a linear coordinate (xl9 . . . y xn,)9

JJ.A
and mA. and JJLA. are the constants such that ~mA.s—~-iyL- is the order of

Sfts on Aic.

Next, consider 3KS in the real domain. The real locus A°iR =A°C n T*VR

is a real Lagrangian subvariety satisfying the condition (2.45), and

has the connected component decomposition,

(see Proposition 2.4,1)) . On each connected component A?R, \PA.\S

and V \Q)A. | are a real analytic function and a real analytic half-volume

element, respectively. Here, PA and COA, are the restrictions of PA.C

and cw^c to AiR. Then the section \PA. \s^l \COA \ gives a non-zero real

analytic section of i\QA. | defined on ^i/R.

Proposision 2. 11. 0?z ^ac/z connected component A{R,

(2646) l ^ | s VT

is a basis of the vector space Symbol (3KS) (AjR) of global sections of real

principal symbols. Therefore, for any microfunction solution u of STls, the

real principal symbol,
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with a constant c.

Definition 2.12. (the coefficient or the associated number)
For a microfunction solution of S7JS3 we put

(2. 47) a (u) =c „ PA. |'V K. |/V |<fc | ,
^/H ^ifl z z

and we call the constant c pq the coefficient or the associated number of
^f/2

u on ./ifj with respect to the basis \PA, \5\ \<OA. |/V |fl?* |. The constant

term c pq depends on the solution w, so we often denote it by £ * 9 (w) 0
AiR AiR

Now, we have the following distinguished relations between the
associated numbers. This theorem is obtained by an adaptation of
the relation formula of real principal symbols in Kashiwara-Miwa [8]
(p. 139, formula (3.5)).

Theorem 2* 13. (Relations of the coefficients)

Ai+lR
(2. 49)

i+lR J

X

X

- s - - ^ - J f + i , exp

expf-J-V-l (i-2A;)0

7C

c .s-i~lk

(-(1+0/2
(2050) j,=

2 (VR
:

4 (IF

Here, for s=(si+l-k) (A = 0, 1, 2, ...) the matrix in (2. 49) is not
well defined because the T-function has a pole0 However, by computing
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the inverse matrix of it, we have,

(2.51)

exp — - V - 1 (1 + J.-+1-.0, e x p - V -1 (1 + J.-+1--0

X
li+lR

L

For the number j=(j£ +i —A) (A = 0, 1, 2 , . . . ) , (2.51) is well defined

and we interpret the relation matrix (2.49) as the relation matrix

(2.51). Then the relations among the coefficients {c jk] are well
AiR

defined for all s&C.

Let [cjf} be a set of the coefficients on {A}R} which are compatible

with the relation matrices (2.49), i. e., {c^} satisfies the relations
defined by (2.49). Then, by Proposition 2.8, there exists a unique

n
microfunction solution u(x) on \j J°Cch(SKs)jR whose coefficients

«=o
c j k ( u ( x ) ) on A}R are cj*. However, this statement does not give

iR
guarantee for the existence of the microfunction solution to 3KS on

n
ch(9JJs)i2=W Ai whose coefficients on A}R are c{k. If the existence of

«=0

the microfunction solution globally defined on ch(SPrJs)je is proved,

then it means the existence of the hyperfunction solution on VR. In
the next section, we shall show the global existence of the hyperfunction

solution on VR.

We conclude this section by showing the uniqueness of the hyper-

function solution, i.e., if there exists a hyperfunction solution u(x)

such that £# (« (# ) ) =d*5 then such hyperfunction solution is uniquely
iR

determineda Namely, we have the following theorem.

Theorem 2.14. Let Ui(x) and u2(x) be two hyperfunction solutions

to the holonomic system 3KS- Then the following three conditions are

equivalent.

(2.52) i) ^00=1^00.
if) The real principal symbol OA (HI(x)) and ffA.(u2(x")') coincides
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with each other on every connected component A{R.
m) c j k ( u i ( x ) ) =c . j k ( u 2 ( x ) ) for every Aj£.

A AiR

Proof, The conditions ii) and iii) are appearently equivalent.
The condition i) clearly implies ii). We shall show the converse

. Note the following lemmaa

Lemma 2. 15. (Holmgren's type theorem) Let X be a real analytic

manifold and let u(x) be a hyperf unction defined near a point xQ£=X,
Let p ( x ) be a real valued real analytic function defined near XQ such that
P(XQ) =0 and dp(xQ)=£Q. We suppose that

(2.53) i) Supp(ii(*))E{>(*)^0},
ii) S.S. (M(;0)S(*o, rf/>(*o)) orS.S. (M(*))$(*O, ~dp(x0)).

Here, S. S. (u(x)) means the singular spectrum of u(x) in T*X~Xa

Then we have u(x) = 0 near XQ.

The proof of this lemma is given in S-K-K [7] p. 471 Proposition
2, 1. 3 and the next remark,,

Corollary 2. 16. Let X be a real analytic manifold and let Y be a
non- singular real analytic subvariety in X near x0^X0 Let u(x) be a
hyperfunction defined near XQ. We suppose that

2) S.S. (u(x»D(nX-X)nx-l(xQ-)»

Here n is the projection map T*X-*X0 Then u(x) =0 near xQa

Proof, There exists a local coordinate (pl9 . . . , pn) difined near XQ

such that Y = {/>i= • • ° =pm
 = ®} ? and pi(xQ) =Q. From the condition 2),

there exists a point (*0,jVo) ^ (T*YX-X) such that (x0,yQ) €S0 S.(M(A:)).
m

We can take p(x) =^cipi(x') with Ci^R such that dp(xQ) =y^ Then
z=i

the condition (2.53) i), ii) are satisfied. Thus we have the result,,

Now we go to the proof of the theorem. We put v(x) =Ui(x) —
w2(#)B Since v(x) is a hyperfunction solution to 2RS, we have
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S. S. (» 00 ) c (ch (2R.) n T * VB) - VB = \j (T^VR - F«) ,

by (2.41). On the other hand, v(x) = «iOO —u2(x) = 0 on VR — SR

because ff(ai(*)) = ( ^ 0 ) ) on FB - S* X {0} C T* F*. Therefore,

Supp (v 00 ) c TT ( w^;) = SB = 5lfi U S2R U . . . U SU
z'̂ 1

by (2. 42).

We shall prove that v(x) — 0 by induction. Suppose that

(2. 54) Supp (v (*) ) C S« = S« U . . . U S,*.

Then, for any point x0^SiR, SiR is a non-singular subvariety near
x0. Since the real principal symbol ff^.O^OO) =0 on A°, we have

S.S. (000)0^ = 0.

The variety -4J is an open dense subset of Ai = Ts.RVR and hence

s. s. (v oo ) =) TI. F* n ^r-1 (*o) ^ £ n 7T-1 (^0) .
Thus, by Corollary 2. 16, we have v(x) =0 near #0, and hence we
have

(2.55)

Then, by induction on z, we have Supp (v (x)) =$, i. e., v(x) =0 on FR.
q. e. d.

Chapter II. Constructions of Relatively Invariant
Hyperfunctions and the Fourier Transforms

The purpose of this chapter is to construct some hyperfunction
solutions to 2fts and to calculate the Fourier transforms of them. The
results of the Fourier transforms in §3 were first computed by M. Sato
and T. Shintani [5] and T. Shintani [21] by another method when
VR=Her(n, (7) and VR=Sym(n, jR), respectively. As far as the results
in Theorem 3. 9, T. Suzuki has obtained them by using Kashiwara's
method. But he did not state nothing about the results after Theorem
3.10.

The coefficients of real principal symbols on a Lagrangian subvariety
is always with respect to the basis in (2. 47) . In this chapter, we shall
always deal with the real forms, so we often omit R beside the notations.
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For example, we denote simply F instead of VR.

§3. The Hyperf unctions \P\l(x) and Their Fourier Transforms

We begin with the definition of tempered distributions with
meromorphic parameter s^C.

Definition 3. 1. Let Q be a domain in C and let X be a finite
dimensional real vector space.

1) We say that us(x) is a tempered distribution with a holomorphic
parameter s^Q if

i) For any s^.Q, us(x) is a tempered distribution on X,

ii) For any /e^(JT), Ts(f)=\us(x)f(x)dx is holomorphic in

2) We say that us(x) is a tempered distribution with a meromorphic
parameter s^Q if us (x) is written as m ( s ) X h s ( x ) where m(s) is a
meromorphic function on Q and hs (x) is a tempered distribution with
a holomorphic parameter s^Q. We say that us(x) has a pole ats=sQ

if m(X) has a pole at SQ and MS(#) is not a tempered distribution with
a holomorphic parameter at s=s0.

Then we have the following propositions.

Proposition 3. 2. Let Q be a domain in C and let X be a finite
dimensional real vector space.

1) Let us(x) and vs(x) be two tempered distributions on X with a
meromorphic parameter sEiQ. If us (x) = vs (x) for any s in an open subset
J2'c<G, then us(x) =vs(x) for any s£=£}.

2) Let us(x) be a tempered distribution on X with a meromorphic
parameter s^Q. Then the Fourier transform iis(x*) with respect to the
variable x^X is a tempered distribution on X* (the dual vector space to X)
with a meromorphic parameter s^Q whose poles are located at the same
place as us (#) .

3) Let u s ( x ) be a tempered distribution on X with a meromorphic
parameter s&Q and let P(s, x, Z)J be a differential operator on X whose
coefficients are polynomials with respect to x and holomorphic with respect

to s. Then P(s, x, Dx)us(x) is a tempered distribution on X with a
meromorphic parameter s^Q and the set of the locations of the poles of
P(s9 x, Dx) is contained in the set of the locations of the poles of us(x)0
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Proof. 1) It is trivial from the uniqueness of the analytic

continuation.

2) We denote by u(y) the Fourier transform of a tempered

distribution u(x). First, we suppose that us(x) is a tempered distribu-

tion with a holomorphic parameter sE=:Q. We have to show that

defines a tempered distribution for any je-0, and that T s ( f ) is
holomorphic with respect to ^e^ for any /e^(JT*). In fact,
' T s ( f ) = T s ( f ) by definition and jT - >/ is a linear continuous isomor-
phism from ^(JT*) to ^(JT)e Therefore,

defines a tempered distribution on X* and T s ( f ) is holomorphic with
respect to jeJ2 for any /e ^ ( JIT*) . Thus us(y} is a tempered distribu-
tion with a holomorphic parameter s^Qa

Next, consider the case of us(x) with a meromorphic parameter
s^G. From the definition, us(x) = m(s) Xvs(x) with m(s) a meromor-
phic function on Q and 0S(#) a tempered distribution on X with a
holomorphic parameter jefl. The Fourier transform is us(y) =m(s)
Xt)s(jy) and hence us(y) is a tempered distribution with a meromorphic
parameter s^Q whose poles are located at the same place as us(x) .
In fact, if us(y) does not have a pole at S=SQ, then us(x) does not
have a pole at s=s0, i.e., holomorphic, because it is the inverse
Fourier transform of z2s(j/).

3) First, we suppose that us(x) is a tempered distribution with
a holomorphic parameter s^G. Let

P ( j, #, Z)J = 2 #a ( J-, #) Z)J? (a finite sum) ,

where <2a(j, ^) is a polynomial whose coefficients are holomorphic
functions in jeJ2. Namely, we have

<z« (s, x) = 2 ^ (j) ̂ , (a finite sum) ,

with aa0(s) a holomorphic function in s^Q. Therefore we have to
show that vaps(x) =aap(s)x®D"us(x) is a tempered distribution with a
holomorphic parameter jeJ2. Apparently, va$s(x) is a tempered distri-
bution for any fixed s^Q« Consider the integral
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(*) dx = aap (j) (*'£>;«, (*) )/(*) dx

Here, /We ^(Jf). Then Z)J (**/(*) ) e ^ (X) and hence Taps(x) Is
holomorphic in s^Q. Thus va/3s(x) Is a tempered distribution with a
holomorphic parameter s^£2.

Next3 consider the case that us(x) Is a tempered distribution with
a meromorphic parameter s^Q. However, it is evident from the
definition that P(s, x, Dx)us(x) Is a tempered distribution with a
meromorphic parameter sEzQ, because

P(s, x3 Dx)us(x} =P(s, x, Dx) OH(J) X v s ( x ) )
= m(s) XP (s, x, Dx) vs (x) 3

where m(s) Is a meromorphic function on J2 and vs(x) is a tempered
distribution with a holomorphic parameter sEiQe The locations of the
poles of P(s, x? Dx)us(x') is continued in those of m(s) and we have
the result, q0 e0 d0

Let us consider some examples of tempered distributions with a
meromorphic parameter. Recall the connected component decomposition
of ^R — ̂ R in the preceding section;

(3.1) n n ) U F ^ i U 0 0 0 \JVP = VR-SR

where F,-n) is the connected component of VR — SR consisting of the
elements of signature (i,n—i). We define the hyperfunction?

r |PO) | s If x^Vln\(3-2) i 'nw={v if^w;
This hyperfunction |P|*(#) is a continuous function when s has a
sufficiently large real part and is a tempered distribution on VR with
a holomorphic parameter s&lQk= {s^C; Re(,si)>^}0 Here we put k
to be sufficiently large so as that \P \(x) is a continuous function on
VR. In fact, if s(=^k, then

is convergent and defines a tempered distribution on VRo We shall
continue |P[f(#) as a tempered distribution with a meromorphic
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parameter s^C in the following way. When s^Qk, the tempered
distribution \P\\(x) is a continuous function on F. By Proposition 1. 4,
we have, modulo constant multiples,

P(DX} | POO \l+l=b(s) |POO \l

where b(s) is the ^-function of P s ( x ) . When 0(#)e^(F), we have

(3.3)

and hence |POOU is defined by this formula for s^Qk-i. We can
define |P|-(V) for s^Qk.m inductively by

(3.4)
J j=o

Thus |P|JOO is well defined as a tempered distribution with a
meromorphic parameter s^C. The poles of |P|K#) with respect to
s are located in the set,

(3.5) [s(=C', s is a root of b(s+j) =0 with some j = 0, 1,2, . .} .

Definition 3.3 (critical points). We say that s^C is a critical
point for P(*)s if

(3.6) jefo-jeC; jf- is a root of *(j)=0 and j = l,2,3, . . .},

and we denote by Crit(P(#)s) the set of critical points for P(x)s.
The hyperfunction \ P \ i ( x ) is well defined for any j^Crit(P(#)s) and
has a possible poles at the points in Crit(P(#)s)-

Proposition 3.4 1) Let s be a point in the complement of
Crit(P(#)s). Then the hyperfunction \P\\(x) is a solution to the holonomic
system SKS, i.e., ((dp(A)x, D^-sd^A)} \P\i(x)=0 for any As=&R.

q
2) Let rq(s) =H F(s~Si}. Here st is the roots of the b-f unction,

which is defined in (2.50) explicitly. Then rq(s)~l \p \] (x) (/ = 0, 1, . . . , n)
is a tempered distribution with a holomorphic parameter s in the domain
{.?e(7;Re(.y) >J9+1}. In particular, when q = n, Fn ( s} ~l P \ J- (#) is a
tempered distribution with a holomorphic parameter s in C0 Moreover, if
Re(j)>J,+1 (resp. s^C), then Fq (s) ~l \ P \ } (*) (resp. Fn(srl |P|}W) »
a solution to the holonomic system SKS.
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Proof. 1) LetA^&R. Then exp(M)eGJ for sufficiently small

t(=R. We have

(3.7)

for any s^C with a sufficiently large real part since |P|-(#) is a

continuous function on F/j. By differentiating (3. 7) with t and by

putting £ = 0, we have

(3.8) <dp(A)x9Dx>\P\\(X)=sd^A) |P!JOO,

for s&C with a sufficiently large real part so as that |P|*(-*0 is C1-

class. Thus, |P|K#) is a solution of 2fts for any s^C with a

sufficiently large real part. Since \P\Kx) is continued to the complex

plane as a tempered distribution with a meromorphic parameter s^C,

both hands of (3. 8) are tempered distributions with a meromorphic

parameter s^C by Proposition 3.2. The equation (3.8) holds for
any jGC f-Grit(P(^)s) by the analytic continuation.

2) Note that,

(3.9) b(s)b(s+l)...b(s + m)- \P\IW,

is a tempered distribution with a holomorphic parameter s in J2_m_i

= freC^ReCy)) — m — 1}. In fact, if |P|J(#) is holomorphic with

respect to s in Qk, then (3. 9) is holomorphic with respect to s in

take m a sufficiently large integer. All the zeros of

, . . . ,b(s + rn) are contained in Re (s) ^g — 1, hence ]P] - (^ )

actually does not have a pole in Re CO > — 1, i. e., holomorphic.

Similarly, all the zeros of i( j-hl) , 6(j + 2) , . . . , b(s-}-in) are contained
in ^Cr)5^— 2, and hence 4( j ) |P | J (#) does not have a pole in

Re( j ) ^— 2. Moreover, since all the zeros of b(s + k), b(s + k + 2'),

.•.9b(s + rri) are contained in Re(j) ̂  — (A:+l) 3

(3.10) *( j )6( j+l ) . . .* ( j + A-l) |P|J(*),

is holomorphic in Re (5) >— (&+ 1).

Next we consider rq(s)~l \P \IW. ri(srl = r(s~-s1r
l has a simple

pole at s = Si — k (k = Q, 1, 2, . . . ) • Namely, among the poles of

the first pole (s — Si + k) l is canceled by r(s — Si) L. Therefore, for
any integer m^O, the poles of

rl(srlb(sr*(s + irl...b(s + mrl,
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are located in Re(j)^^2 since Si^>s2^>s3. . . ^>sn. Similarly, among the

poles of (3.11), the poles (s~s, + kr\ (j-Ja + A;)-1, . . ., (s-s. + k)-1

are canceled by rq(s)-l = r(s~sl)-
1r(s~^2)~

l. . . r(s-sq)~
1. Then, for

any integer m^O, the poles of

(3.12) rq(srlb(srlb(s+irl...b(s + m)-1

is located in Re(j)^jg+1. In particular, if q = n9 then all the poles

of (3. 11) are canceled by r^-^and hence rn(s)-1K^~1b(s + ir1-^
~l is an entire function for any integer m^O. Therefore,

(3.13) rq(sri\p\i(x)=rq(srl
j=Q j=0

is a tempered distribution with a holomorphic parameter s in

Re (j) >max { — m — 1, ̂ +1}}, for any integer m^O, and hence it is

holomorphic in Re(j)>j?+i. In particular," if q — n^ then (3.13) is
holomorphic in Q-m-\ for any integer m^O, and hence it is entire

with respect to s.

Lastly, we shall show that rq(s)~l\P\l(x) is a solution to % for

any s in Re (s) >^+i- In fact, since

(3.14) «dp(A)x9D3ty-sdx(A))rq(srl\P\l(x)=09

for any jEiC with a sufficiently large real part, we have the result

by an analytic continuation to {s e C ; Re ( s) >^+1} (Proposition 3. 2, 1)).

In particular, if q=n9 then (3.14) is valid for any s^C,

q. e. d.

We introduce the Euclidean measure dx on VR by

(3.15) 1) ^=|(A^«)A(A^y)l» when VR = Sym(n,R).
i=l i<j

2) d*=|(A<fe«)(A(<iRe(*y)ArfIm(^))|, when
f=l »<J

Ffi^S'erCra, C).

3) e/*=|(A^«)(A(^yA^Arf*?yA^))l, when

R = Her(n,E). Here, we write xij=x}j

x\j6ie2 with x^^R and 61=62= — 19 eie2=~

We define the Fourier transform of u(x)^£f( VR) by

(3.16) 000 =" 00
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and the inverse Fourier transform for u(y) ^£P (¥%), by

(3.17) H (*) = JM ( y} exp ( - 2^^T<

Thus, as a well known result, we have

(3. 18) (*) = 2-"c"-1)I"V*

where o = l (F« = Sfym(H,/2)), 2 (F*=JEfer(;i, C)) and 4

Recall the holonomic system

Here, dp and d% are the infinitesimal representation of p and the
infinitesimal character of % ; < , > is the bilinear form on VR X VR
defined in (2. 4) ; s is a complex number. We define the "dual"
holonomic system on F£ of 2KS by

(3.19) mf; «dp*(A)y,Dyy-sdI(A»v(^=Q.

Here, dp* is the infinitesimal representation of the contragredient
representation of p. Then we have the following propositions.

Proposition 3. 5« 1) If we identify VR and VR by the inner product

<#,_y> defined in (2, 4) , then the holonomic systems 3Jis and 2K*S are the

same.

2) We denote by Sol(2Ks)^w the tempered distribution solution space to

the holonomic system %RS. Then we have

(3.20) (1) «(*)eSoiaw.)fim o fl(
(2) .(7)eSol(3Kf)(OT^ H

(3.21) (1) u(x) eSol(3Ks)(OT <^> u(x) is a tempered distribution on
VR and u(p(g)x)=i(gYu(x) for all £<E&£.

(2) v(y) eSol(SWs*)(em O ^(7) w a tempered distribution on
V*R and v(p*(g)y)=i(gYv(y) for all g^G^.

3) Let «(*)eSol(SK,)i»(r«A »(j»)eSol(SW;+(llVll))fM). Then u(x)
(resp. v(j>)) is real analytic on VR — SR(resp. VR — SR) and

(3.22) (1) u(X)\VR.Stt=^ai\P\\(X-)\YR_SR,

(2) » ( y ) \ * _ , = T>J>i\P\r-WM(y)\. .,
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with some constants a{^C (resp. ^eC).

Proof. 1) Note that we identify VR and VR by the inner product
^x^yy=tr(xiy). Then the Lie algebra & R is naturally identified with
a Lie subalgebra in gl ( VR) = gl ( F#) by rf^ and rfp*. However, the
images of & R by rf/o and dp* coincides with each other by the automor-
phism 0;^4-> — *A. In fact, we have

(3.23)

Therefore, we have

(3. 24) «dp(A)x, Dxy-
= {<dp* (A) x, Dxy+sdxCA); A<=&R}.

Thus we have the result.
2) First we shall show that (3.21) (1). Then (3.21) (2) is

evident by 1). Let u (*) eSol(3Ks),,m. Then, for any /(*) e & ( VR) ,
we have

(3.25)

Here, <^dp(A)x, Dxy* stands for the formal adjoint operator of (dp(A)x,
Dxy. Since

<dp (A) x, Z?,>* - - <DX, dp (A) xy

we have

(3.26)

On the other hand, for a sufficiently small t^R, the element
is denned and

(3.27)

are convergent in ^(VR). Thus we have

(3.28)
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= (u (*) £ (tm/m \)(-<dp (A) x, £>,» »/(*) rf*
J m=0

Since

we have

(3.29)

for all /(#) e «$? ( FR) . Thus we have

(3.30) u(p(g)x)=z(gyuW,

with ^ = exp(^) for sufficiently small t^R. Any element g&Gx is
written as

(3. 31) £ = exp(Mi) - - - exp(^fc),

with ^eJK and -4£e^«. Therefore (3.30) is valid for all
Conversely, if (3.29) is valid, then (3.28) is also true. By

differentiating (3.28) by t and by putting £ = 0, we have (3026).
Thus, we have u (x) e Sol (2KS) tem.

Next we shall show (3.20), (1). We have to show that

(3.32) u(p(g)x) =x(g)su(X)&u(p*(g)y) =x(gy+<*'M&(y).

We suppose that u(p(g)x) =%(g)su(x). Then we have

(3.33) *(p*(gWf(y)dy = &(y)f(f(gr^^^

because,
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p

/( JO exp (2

Thus we have

The converse is shown in the same waye For (3.20), (2)9 the proof

is the same,

3) In fact, SKs is an elliptic system on VR — SR3 and hence u(x) is
real analytic on VR — SRa Moreover, since 3KS is a simple holonomic

system on VR~SR and |P|-(Y) is a basis of the solution on FJ-n), we

have (3o22), (!)„ For (3B22)? (2), we can show it in the same waya

q, e. d.

Proposition 3.6. Let j^Crit(P(#)s). Then we have

(\P(x) |s ifi=j,
(3.34) VB ( |P |K^))= ' ' / ^FJ x{0) I 0 if i^j.

(3. 35) *(n)( \P |K*)) ^ (

? (0}xF|(ra) (rwj&. FJn)X{0}) is the Lagrangian subvariety AQ
n
l(resp,

Proof. (3034) is evident by definition, because |P|-(X) is a real

analytic function on F£° (Definition 2. 7) .

Now we consider the tempered distribution

(3. 36) |P |K*) =

The distribution |P|KjO is a homogeneous distribution on F^ of

degree —sn~n'a In fact, it is proved by that |P|K#) is a homogeneous
distribution on VR of degree j/2e Therefore, we can view

1/1100 |F._{0) as a distribution |P|{(r«») =r— -|^|{(«) on (r, a.) e

"'~1 where 5"'"1 is the unit sphere in F« by the map
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(3.37) (r,oi) i - » ro)
m m

Moreover, we can extend this as a distribution on R X 5"'"1 by

(3.38)

where r+"s~ra/ is a tempered distribution that is equal to r~ns~n' on
r>0 and is equal to 0 on r<00 (Of course such distribution is not
uniquely determined,,) The distribution (3. 38) is naturally a tempered
distribution on F| by

(3.39)
J-ooJSn X

with /(A;) e ^ ( FJ) . Here dco is the rotation invariant measure on
V

Sn'~l
a The tempered distribution (3. 39) coincides with \P\\(y)

except for the origin. Therefore, we have

\P\IW = ^
JS

where O(^) is a real analytic function on VRo In fact, the Fourier
transform of any compactly supported distribution is an entire function,,
Note that the Fourier transform of r+(l^C) is calculated to be

(3.40)
J— oo

+ 0(0)

(3.41) =0;i+i(V

Here 0(ff) is a real analytic function in a and ^+i(V —1 C^ + iO)) is
well defined for any %£=.€ as a microfunction whose singular support
is (0, da) and the meaning of the expression (3,41) is a hyperfunction

which coincides with ^A+i(V — 1 (0 + iQ)) modulo real analytic functions.
(For the definition of 0^ see §23 and for the proof, for example, see
Gelfand-Shilov [3].) Thus we have

(3.42) \ P \ l ( x ) = 0 _ r t ( V
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= (2;r) »s . 2«(n-1)u/2 P| 5 (<w) 0_ns ( V^T «*, coy + iO) ) rf®

+ 000.

Therefore, the microfunction |P|-(^) is expressed on {0} X V* by the
integral (3.42) since |P|-(^) is real analytic on V*. Thus, from the
definition of the real principal symbol, we have

(3.43) % lxr.( If !!(*))

({(J') V \dy |/V |rf* | !r*.

q. e. d.

Proposition 3. 7.

(3. 44) |/> w J'V io> w | = i/foi 5V | Ai | jP| , 'r(j) V \dy
AnR

n(n— l)v
where KQ = l and ̂  = 2 2

Proof. Note that 4=- {0} X F* and that

JF^Zariski closure of

— Zariski closure of
{(^-.grad-logPCj);), j ;)eFxF*

= Zariski closure of

{(j-jT^jOeFxF*; je/Z, det(j;)^0}.

Hence from (2.44), we have

We have

and

~*'J"" A ^ /da I . =5

n(n-l)» _ 2n'
= 2 2 -(det(j;)) » dy.
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Thus we have the result. q* e. d.

Let <$>(*) be the coefficient of |P|J(*) on A°J = {0} X V*M. We have
the following formula of the Fourier transforms by (3,35) and (3.44).

. ,n f n(n-l)v V

(3.45) (27r)"+^.2^~iP|Kj)L* .,
FJZ"AK

n ra(«—l)t>

Thus we have

Theorem 3.8 (Formulas of Fourier transforms). Let ^$Crit(P(^)s).
Then we have.

(3.46) \ |P|f(*)exp(-2*rV-l<*,

where ft^dim F andv —

The calculation of the Fourier transform is reduced to the
calculation of the coefficient c { j ( s ) . By the formula (2.49) (Chapter
I Proposition 2. 13), we have the relations of the coefficients on A{

and those on Ai+1. Thus we can compute the relations between the
coefficients on An and those on AQ inductively.

Now, we shall calculate c^ (s). Let t be a variable, and we set
c io=tl. Then we have

^0

(3.47) CA,J =£ eft W .cAn = Z c$ (s) • t;.

n n

Conversely, from the relation c.0 i=ZI £»• ? CO *''5 we have c 0,- = ^c\n^(s)c i0An i=l An t=l ^0
for arbitrary coefficients. On the other hand, when we give the

associated numbers c ^ = tl we have c j k : c ,-_lfe —^: 1. This is proved
AQ A\ A\

by induction on i using the relation matrix (2049), which does not
depend on j. Therefore we have from (2,49),

(3.48) c j.lk+l
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with

(3.49)

Then we have

(3. 50) cfl = /?_„_! (j) /?_„_ (j) . . . *•+_ * ( J)
n

X F-_,-_IO (5) F-_,-_2o 0) . . . F^ 0) c^o0.

(3.51) F+.! ,_: (j) FB
+_2 ,_2 W . . . F:., „ (5)

X *•-_,_! o (J) F-_y_2 o (s) ... F^0 (j)

is equal to;

(3.52) (V2¥)

X ri exp — - V ^
p=l

X ff exP(|-V^T?)(i • exP(-^V^
q=l \^ / \ \^

when V=Sym(n,R)°,

(3.53)

X / • exp - , -

when V=Her(n,C);

(3.54) (V2^)
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when V=Her(n,H)e

Theorem 30 9 (Explicit computations of ctj (s) ) .
1. In the case of V=Sj/m(n9R).
Putting

(3.55) ^(j) =(2^)'2-n
P=l

X e x p .

(3.56) //« = ! (mod 2),
min((j-l)/2, (t-D/2)

2 \/ 2
X(

/

if i=l and j=l (mod0 2) „
min(j/2, (i-l

2) a{j)(j) = (-l)<*+

l=max<S, (j+i-n)

2 W 2
x|

i/z = l and j=0 (mod. 2).

l=max(Q, (j+i—nlt

,n-i-I
,2 2

X

if i = 0 and j=l (mod82)0

mm(j72,t/2)
4) a^(j) = (-l)

/=max(0, (j'+i-ii-D/Z)
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_
2

X exp(— fcrV-

/
i/x = 0 and j = 0 (mod. 2).

(3.57) If n=0 (mod. 2),

1) affGO^C-l)
l=max(!>, (j-n+i)

i , , n— i
2\/ 2

x

2

if i = 0 and j = 0 (mod. 2)

if i = 0 and j=l (mod. 2)

wtn(j/2.(f-l)/2)

, i —- 1 x , n — i — 1
2

x

if i=l andj = 0 (mod. 2)
«tn((j

r i — 1v . n— i — I
, 2 \ 2 ,

X (exp(W-U)
7

+ exp(— TrV — ls))exp( — 4^V —

if i=l and j=l (mod. 2)

2. In the case of V=Her(n,C).

(3.58) ^>(j) =(27r)-- /
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-
2

- > AY? ~-X ( - 1 ) > ~ - e x p (
V/ V v

3. In the case of V=Her(n,H).

(3.59) ^J )(j)=(27r)-

X ( - 1 ) -+? I J/exp ( -
V v

Theorem 3. 10. L*f j$Crit(PWs) (r<w/>. -s- (ri /ri) $Crit(P(»s)).

1) L^^ u(x) (resp. v ( y ) ) be a hyperf unction solution to SKS on VR—-SR

(resp.to 3Kf+(n//n) on VR—SR). Then, u ( x ) (resp. v ( y ) ) is uniquely extended

to VR(resp. VR) as a hyperf unction solution.

2) The hyperfunction |P|K*) (resp. \P\7s~(n'M ( y ) } (z = l , . . . , ; z )
forms a basis of the hyperfunction solution to 3KS on VR (resp. to %+(„//„)

on n).

Proof. 1) Let u(x) be a hyperfunction solution on VR~SR to 3KS

with $$Crit(P(»s)- From Proposition 3.5,3), we have

Since ^$Crit(P(^)s), S f l » l - P | i W is weH defined as a tempered distri-
i

bution on VR by Proposition 3.4,1), and hence u ( x ) is extendable

to VR as a solution of %.

Next, we shall show the uniqueness of the extension. Since u(x)

is a solution of the linear differential equation 271,, we have to show

that if u(x) \VR-SR=®, then M(#) =0 on F*.

If M(*) IF^-S^^O, then the coefficients on Ff X {0}, C V ^ X ( Q ] ( U ( X ^ are

zero for any j. Note that the matrices in (2. 49) is well defined for

any j$Crit(P(jv)s)3 and for any O^i^n — 1. Then we have

for any Q^j^n-l and O^gl by the matrix (2.49) with i=0.
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Moreover9 since the coefficients of u(x) on A° are determined by
those on A]^ by the matrices (4.29) with i = l, we have that the
coefficients of u(x) on A°t are all zero if the coefficients of u(x) on A^

are all zero. Thus, by induction on /, we have that all the coefficients

^#0*00) are zero. Therefore, by Theorem 2.4, we have u(x) = 0.

By Proposition 3.5,1) this theorem is true for the solution v(y)

to SWr+o,//,) on VR.
2) Any solution u(x) to 3KS on FR is written as

by Proposition 3.5,3) and hence, by 1), we have

on VR. Thus we have the result. Similarly, we can prove the theorem

for a solution v ( y ) to 3Ks*+(n//B).
q. e. da

Theorem 3. 11. 7%0 formulas of Fourier transforms in Theorem 30 8

are valid not only on VR — SR but also on VR and not only for

j$Crit(P(jv)s) but also for all s^C* That is to say, we have

(3.60)

= (27T)

for any s^C by considering \P l ( x ) to be a tempered distribution with

a meromorphic parameter s^Ca Here, we use the same notations as in

Theorem 3,8,

Proof. We suppose that s $ Grit (P (#)s) and —j—(« ' /« )$
Grit(P00s). Then both \P\l(x) and |P \Js~(nW (y) are well defined,
and the formula (3.60) is valid on VR — SR. However, the left hand

side of (3.60) is a solution to the holonomic system 2Ks+(ra,/ra) on VR

by Proposition 3.5,2), and the right hand side of (3.60) is a solution

to 3Kf+ (n//n) on VR — SR. Therefore, since — s~ (n'/n) $ Grit (P 00s) 5

the right hand side is extended uniquely as a solution to 3Ks*+(ra//ra) on
VR by Theorem 3. 10. Thus the formula (3.60) is valid for any s in

(3.61) A={sE^C;s$Crit(P(x)s) and -s- (ri/ri) $Grit(PWs)}0
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Since A is the complement of a discrete set in C, (3. 60) is valid
for any s^C by the analytic continuation of Theorem 3.2,1).

0 e, d0

§ 4. Invariant Measures on Singular Orbits
and Their Fourier Transforms

In this section, we use the term associated numbers instead of
coefficients in order to avoid confusions.

Theorem 4. 1. Let S{= {x^ F;sign(#) — (j, n — i — j)} . There exist
hyperf unctions Tj

is(x) (i = 0, 1,. . , n, ^' = 0, 1,. . , n—i) with meromorphic
parameter s&C satisfying the following properties.

(4.1) 1) Tis(p(g)x)=X(gms(x)0

2) For i^l, the support of T{s.(x} is contained in S* and T{s.(x)

dx gives a non-zero measure on S{0

3) The associated number of TJ
is.(x) on Af is 1.

Proof. We define Tj
is(x) by induction on i. First3 we set

(4.2) U(*) = |P|}W (j = 0 , l , . . . , n ) .

Then T%~p (x) is a hyperfunction whose support is V^2P. Suppose that
we have defined Tj

is(x) for i = 0, l , . . , y and j = Q, 1, . . , n~ i. We
define

(4. 3) Ti+ls W = f l f f(j) (

for j=0, 1,. . , w— - g r — l . Here9 we set

(4.4) flffW=V2^r(j-Jfl+1)-1,

where

1 (V=Sym(n,R)}

2 (V=Her(n,C))

. 4 (V=Her(n,H)).
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From the definition, Tj
i5(x) is a linear combination of \P\s

k(x) with
entire function coefficients on sEiC. Therefore Tj

is(x) is a hyperfunction
solution of Sfts, and hence satisfies the condition 1).

Lemma 4.1.1. Let c A j k ( T p s ( x ) ) be the associated number of Tq
ps(x)

on Aji. Then, for p^l, we have

(4.5) 1) C (T | S (* ) ) U=0 if

2) ^(7

3) ^(T|s(*)) |.^=0 f/ i>^ andj<q~(i-p)

or if i^>p andj^>q.

Proof. First, in order to prove (4. 5) , we shall show that the
associated numbers of T*ps(x) on A{k are entire functions in s and
that they vanish at s=sp if i<^p. We shall show these by induction
on p. Consider the hyperfunction a0 (s) \P \s

q(x) (q = Q, 1, . . , n). Their
associated numbers on AJ

Q°(j = Q9 I, . . , n) are

(4.6)
10

They all vanish at s = Si because aQ(s) is an entire function with the
zero of order 1 at s = Si. Therefore the associated numbers of T\s(x)
also vanish on all A£ because i0(j) is an entire function. The
associated numbers on Aj\ (j = Q, 1, .., n — l,k = Q, 1) are all entire
functions on s&C, since they can be written as fl0CO- r(s-~ Si) X
(an entire function) from the relations of the associated numbers (2. 49) .
Thus we obtain that our assertion is valid for p = I .

Suppose that

(4.7) 1) The associated numbers of Tq
ps(x) on A{k are entire func-

tion on s€=.C when i^p,

2) They vanish at s=sp if i<^p.

Consider the hyperfunction ap(s)T$s(x). Since ap(s) is an entire
function with a zero of order 1 at s=sp+i, the associated numbers
on all A&tf^p) are entire functions in s^C and vanish at S=SP+I.
Moreover3 the associated numbers on A*+i are entire functions in s
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because they can be written as ap(s) *F(s~ sp+-^) X (an entire function) .

Since Tj+isOO are written as a linear combination of ap(s)Tq
ps(x)

(q = Q, . . , n—p) with coefficients of entire functions, we obtain that

(4.8) 1) The associated numbers of T|+ls(^) on A{k (i^p + l) are
entire functions on sEiC.

2) They vanish at s=sq+i if i^p.

Thus the assertion (4.5) 1) has been proved by induction.
Next we shall show that

(4.9) The associated numbers c A J k ( T q
p s ( x ) } |s=s (O^k^p) coincide

with one another.

Note that r(s — Sp)c.j+ik(T^(x)) and F(s— sp)c AJk (Tq
ps(x)) are holomo-AP-I Ap-i

rphic at s=sp. We denote by a± and a2 the values of them at s=sp,

respectively. From the relation matrix of associated numbers (2, 49) 3

we have

(4. 10)

Thus we have that cAJk(T
q

ps(x)} |s=s (0^k^p)coincide with one another.

We shall show that

j=9,

by induction on p. When p = Q, it is evident from the definition.

We assume that (4. 11) is valid for an integer/?. Then the associatep

numbers cAJP(Tps) are all identically zero if k^j+1, and c j+iP(Tps)

are all identically zero if k^j + 2. Therefore we have

(4.12) c AJP+i(TP+ls)AP+I

and

(4.13) cAkp^(Ti+
+\s)=Q for k<j,AP+I
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from the induction hypothesis. For &>j, the associated number of

T3
p+ls on Ak

p
p+i are determined by the associated numbers on Ak

p
+lp and

Ak
p*. We have

(4.14)

=0,

for k^>j. Thus we have

\ * / - *K]j-ri. \— p-ri.*/ i .-AP+I (Q

Thus we complete the proof by induction. By (4.9) and (4.11),
we have the assertion (4. 5) 2).

Now we shall show (4.5) 3) by induction on i. From (4.5)
2) and the relation matrix of associated numbers, we have

(4. 16)

if j<^q— 1 or j><7- Suppose that for a fixed i, c AJk(T
q

ps(x)) |s=s =0

if j<^q — i+p or j>g. Then, the associated number cAJk (Tq
ps(x)) \s=s

(j<^q — (i + 1 —p) or j^>q) are written as linear combinations of the

associated numbers on A&(j<iq~(i—p} or j^>q). Then we have

(4.17)

— (i + 1 — p) or j^>q. Thus by induction we have (4.5) 3).

Lemma 40 1. 1 q. e. d.

From Lemma 4. 1. 1, the singular spectrum of Tq
ps.(x) is contained

in

n-p p+i

w( w (w
*=0 fefeO k=Q
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Therefore the support of Tq
ps.(x) Is contained in

(4. 18) ;r(w( w (W4J+**))) =S}U GSl+iUSfci) U.. U
t=0 t^j^O k=Q

by Proposition 2.3. Thus we have Supp( r jOO) cSj by (2 642) 0

Lemma 4, L 2. L0f p be a point in V and let K be a non-singular
variety in V of codimension m defined in a neighborhood of p. Suppose
that a hyperfunction u(x) defined in a neighborhood of p satisfies

Supp(M(*))=lL
Let A be a Lagrangian variety T#F, and we denote by AC its complexi-

fication. We suppose that the hyperfunction u(x) satisfies a holonomic
system whose characteristic variety contains Ac, and the holonomic system is
simple on Ac and the order of u(x) is m/2. Then there exists a local
coordinate system (xly . . , #„,) near p satisfying

(4.19) i) K={xl = ..=xm = Q}.
ii) u(x') =P (xm+l, . . , #„,) 3 (#i) . . 8 (xj , where P (xm+1, . . , xn,) is

a non zero real analytic function.

Proof. Since the hyperfunction u(x) satisfies simple holonomic
system on Ac, we can write as a microfunction u(x) =P(x, Dx)8(xi). .
8(xm) on A by using a local coordinate system (#1? . . , #„,) satisfying
K= [xi = . . =xm = 0} , and a microdifferential operator of fractional
order P(x, Dx). We may assume that P(x, Dx) is written as P(xm+i, . . ,
xn/, DXl, . , , Dx ) and it is uniquely determined by this expression (see

the definition of real principal symbol (2. 43) ) . Since the support of
u(x) is contained in K, P(x,Dx) is a proper differential operator9

i. e., without any terms of order less than — 1 and with terms of

integer order. The order of u(y) on A is ord (a (P) ) + ^-? and hence

P is of order 0, i. e.3 an analytic function. Therefore we obtain the
expression

with some analytic function in a neighborhood of p.
Lemma 4. 1. 2 q. e. d0
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We apply this Lemma to Tq
pSp(x). Let *eS|. Then Sq

p is a non-

singular subvariety in a neighborhood of £, and the codimension is
p(p + l)/2 (resp. p\ p(2p~l)) when V = Sym(n,R) (resp. F =
Her(n,C), V=Her(n,H)). The order of T*p3pW on T*g F is-/u>-

T" -(resp. —pSp — -^r-> ~pSp—p(2p — l)} and hence coincides with

a half of the codimension of &|. Therefore Lemma 4.1.2 can be
applied, and hence we have the result (4.1) 2).

q. e. d.

We define the hyperfunction

(4.20) ri(*):=n,00.

This hyperfunction is relatively invariant and its support coincides

with Si and it defines a (^-invariant measure on Sj
ie That is to say,

we have the following theorem.

Theorem 4, 2, There exists a Gl-invariant measure dv{ on S{ and
satisfies

(4.21)

for a^/(*)eC0~(F) such that

Conversely, for any Gl-invariant measure dv{ on SJ^

(4.22)

z'j absolutely convergent and coincides with

(4.23)

for any

Proof, In this proof, we denote G(w)1 and F(ra) instead of G1 and
F, respectively for the later convenience.

The formula (4.21) is the direct consequence of Theorem 4.1.
Namely, T{(x) is a hyperfunction on F, whose support is contained
in S{. Therefore,
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gives a measure on S{. It follows from that Tj
{(p(g)x)d(p(g)x} =

T\(x)dx (g^GMl) that this measure is a G(n)1-in variant measure,
Next we shall show the converse,
We consider the relatively invariant measure dxM on F?°. By

Sato-Shintani [5] p. 138, there exists a G(ra)1-invariant n' — l form
con(x) on V\n} such that

(4.24) |</(P(*)) A". 00 l=<fc ( B ) .

Here, ?z' is the dimension of F(w) and P(x) is the restriction of the
relative invariant defined in (1.2). Then, for any /(#) <E ^ ( F(M)) ,
we have

(4.25) cB)/00 |POO I'rf*00

and they are absolutely convergent when
Let/(A:)e«^(FCl l )). We put

where Uw is the compact group O(n, R) fl G(ra)1(respa U(n, C), U(n,.
in the case of VM = Sym(n, R) (resp. Her(n, C), Her(n, J?)), and dg
stands for a Uw-invariant measure. Then f c o ( x ) also belongs to

We put

L^Sym(n—i9R) (resp, Her(n, C]

(4.27) MII'» = '(Q pV- Her(n,H)),\p(L)\=t,sign(L)

Then there exists a G(n)1-invariant measure o)n-{ on Aff'J-) given by
(4.21), We put

We can regard Mf'j} as

(4, 29) U^/(U(n'i} X U(i)) n U(n) XMp}.

Here U(n"° X U(f) is a subgroup of U(n) by

(4. 30) {(* 2Y ^ e tT(-», Be I7(£)).
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There exists a U(ra)-invariant measure co on U™/(U(n~* X J7(0) fl I7(n)

and we introduce a measure wn-i on Mf-^ by

(4.31) 0.-«=|a>A<»,-<|.

Note that

(4.32) Sl

Lemma 4. 2. 1B TTze measure

(4.33) K_,-Ar1/2^ | (r*tf. |
2*5- <2 G(nn-invariant measure on S{.

Proof. We put (A,B)=(4 ^\^G(n}\ Then, by the action of

(A,B), the volume form \&n^/\dt\ is multiplied by the factor
Idet^l"1 (resp. 1, |det^4|2). Therefore, |ft)n_t-Adt | is invariant by the

action of (A, J3) . From the definition, it is invariant under the
actions of U(n). Since any point in Si is reduced to the point

""*' ^ t'ie acti°ns °f an (A9B) and an element in U(n\ ando
since there exists a G(n)1-invariant measure on S^, the measure
\a)n_i/\tadt\ with fl= — 1/2 (resp.a = Q,a = l) is a G(n)1-invariant measure

on SI
q. e. d. of Lemma 4. 2. 1

Now let /<E^(F(W)) and define /•(*) by (4.26). Then /° (*)
is invariant by the actions of I7(n) and

(4. 34)

Here, by the inclusion map

(4,35) %H_»g 0),

m m

F01"0 can be viewed as a subspace of Fw. The restriction of/™(x)
on F"~° is an element of ^(T"""0) and it is {/^'-invariant.
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Lemma 4. 28 2. Let /e & ( F(n)) . Then,

(4.36) /i(0

zj a C°° -function on t^>Q and rapidly decreasing at infinity* Moreover,

(4.37) /J(0)=lim/,(0
f-»0

exists and is finite.

Proof. In fact, ft(t) is absolutely convergent for £>0, and

(4-38) ^
where

(4. 39) -g^ = Igrad P(X) |-2(grad />(*), ^-).

Since - \fW is a C°°-function except at the origin and since

-7jp7~r /(*) *s rapidly decreasing at infinity, f ^ v/)i(0 ig absolutely

convergent for ^^>0, and hence it is continuous in ^ and rapidly

decreasing at infinity. In the same way, we can show that

is continuous on £^>0 and rapidly decreasing at infinity.

Now we shall show (4. 37) by induction on n. Suppose that

(4.37) is proved for n^k. We put n=k+l. From the definition,

coincides with

(4. 40)

where di>i is a G(ft+1)1-invariant measure on the orbit of codimension

one Si= {x<= F(*+1);P(#) =0, rank (A;) =k] which is naturally induced by

®te the (k + iy — l form defined by (4.24). From Lemma 4.2.1 and

(48 34), the integrability of \ ,• f(x) dv{ is reduced to the integrability
Jsi

of

(4. 41)

with a = — 1/2 (resp. a = 0, « = 1). From the induction hypothesis.
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.;) f° (*) !Fcw<»* (*) - (« l F cw) y(0

is a bounded C°°-function which is rapidly decreasing at infinity.
Hence (4. 40) is integrable.

q. e. d. of Lemma 4. 20 2

From Lemma 4.2.1 and (4.34), the integrability of \sjfWdi>{ is

reduced to the integrability of

(4. 42)

where a = — 1/2 (resp. <2 = 0, a = l). From Lemma 4.2.2,

is a bounded C°°-function on £>0 and rapidly decreasing at infinity,
hence (4. 42) is absolutely integrable. Thus,

(4. 43) /f

defines a hyperfunction which is also a tempered distribution with

support S{. We put it T'- (x) . From (4. 1) 1), 2), the hyperfunction
T{(x) dx defines a G(tt)1-invariant measure on Si, and hence

T(x)=T{(x)-T{'(x)

is a hyperfunction whose support is contained in S{ — S{. Moreover

T(x) is a solution of SJts. because we have T{(p(g)x) =l(g)SiT{(x),

If T'(^) is not zero, the singular spectrum of T'(^) is contained in

Lemma 4.2,3. Let u(x) be a hyperfunction solution to S?JS^ Suppose

that Supp(u(x)) dSi+i. Then u(x) =0.

Proof. Since u(x) is a hyperfunction solution to 3KS.5 it is deter-

mined by the associated numbers on A{k. (Theorem 2. 14). From the

assumption, the support of u(x) is contained in Sf-+i, and hence u(x)
is zero on the real Lagrangian subvariety A] for O^j^i. Therefore,
the associated numbers c u ( u ( x ) ) =0 for O^j^i and for any h9L On
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the other hand, the relation matrix (2. 49) is well defined if s^>si+i.
Since jl->j/+b (2.49) is well defined for s=si9 and hence we have

(4.44) CU

for any k, L Next, consider the matrix (2. 49) substituting i + 1 to
i. Then, it is well defined for s = s{ because s{^>si+2a Hence we have
c hi (wOO)=0 for any k, I by (4.44). Similarly, by induction, we

z+2

have c kl (u (x) ) = 0 for any j and for any k, L After all, we haveAj
u(x)=Q by Theorem 2. 14.

q. e. d.

Note that T(x) satisfies the condition of Lemma 4. 2. 3. In fact,

by Proposition 2. 3, and hence the support of T(x) is contained in S{.
Then, by applying Lemma 4. 2. 3, we have T(x) = 0. Therefore we
have

Thus we have the result.
q. e. d.

The hyperfunction T{(x) is a solution of a holonomic system 3KS..

When we give associated numbers on AI of a solution, then we can
calculate the associated numbers on Ai+l, and inductively we know
the associated numbers on Ai+29 • • ? An. In order to calculate these
associated numbers, we set cjf = ts, where cjf is the associated number
on Ajf. Then we have

(4.45) c$:cj,-"=t:l (i7>f),

inductively. We define F^ W as defined in (3. 29) . We have

(4. 46) dr£+l = Ft,h (j,) 4-u (i1 ̂ i) ,

from the relation matrix of associated numbers (2. 49).
Therefore we have

(4. 47)

= 2 a^cS0 = 2 at*?, (*<« - 0 •
i-O J=0
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^ « ~ 0 .
j=0 j=0

Here <2{fe is the coefficient of ts of the polynomial

F:-U-I(^ • • 'FB
+.,oU-)F-_,_10te) -

if k<^n—i, or

if k^n~i.

The support of 7K*) is contained in S{9 and the associated
numbers on Aj* (k = Q, 1, . . , w) are all 1. The associated numbers on
<4i* (/'=£;) are all zero, i. e., there are no singular spectrums. Therefore,
the principal symbol on Af is given by

(4. 48) <>cn(*)) =fl/4 IP^ i s v i 01 »i ,
^n ^n Jn

with ^ = 0, 1, . . . , w.
Thus, as in the same way of Theorem 3. 8, we have the formula

of the Fourier transforms,

_(4. 49) T{ (*) exp ( - 2^^1<X,^) dx \

= (2n) -"'/2-"si2-n(n-iW j, ajh det i -s'-r,
k=0 k

where 72', v are defined in (3.46) and st is defined in (2. 50) 8
_n^_ w s _ _ra(n-l)t;

By computing fljft explicitely and by putting iff7 = (2;r) 2 ''2 4 •
fljj, we have the following formula of the Fourier transforms of T{(x).

Theorem 4. 3. 1. /« the case of V=Sym(n,K).

(4. 50)

(4.51) 1) n-i=0,jsO (mod. 2)
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2) n-i = Q,j=l (mod. 2)
%)J' = 0

3) n-i=l, j=l (mod. 2)

6t<j>j = (27T) («+D(2-n)/42-n(«-D/4 g F (/>/2)

4) w-i = l, j = 0 (mod. 2)

4£" = (27r) c«+

2. In the case of V=Her(n,C)a

(4. 52) \T{ Wexp( -2^^<^j»^| . „ - S iff' |det y\ r»
J j=o

(4. 53) ^)j' = (2^) -(«(
#

V^T((»-i) (2k -n}

(4. 54) Ti Wexp-2W^T<^»^| ,_* = II «S)J'I det

(4.55) ^ - ( 2 7 r ) n " r a z " 2 - « ( "
/»=! \ J

Lastly3 we shall give a relation formula between the 6r(n)1-in variant
measure dv{ on Si and the invariant measure dgwl on G(n)1

0 From
now on, we denote by GM or G(nn instead of GR or G1

R, respectively
and VR is denoted by F(n).

The (?(n)1-orbit S{- is a homogeneous space0 The integration on
G(n)1 by a (?(n)1-invariant measure dg(nn is divided into the integration
on Si by the Gwl invariant measure and the integration on the
fiber G^n)1 (x^S{) by the left invariant measure,, We shall determine
the measure on G£"}1 naturally defined by determining the measure
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on Si.

Let x(
Q

j)=I(
n
j\ Then XQ is a generic point of the 6?(n)-orbit Vf\

We can identify Vf and Gw/Gfy where Gfy is the isotropy

subgroup of Gw at xtf\ There exists the 6(n)-invariant measure
POO \~n'tndx™ on V~S. Here «/ = dim F(w) and dxM is the Euclidean

volume element on F(w) which is defined in (3.6). Then we have

(4. 56) !/>(*) I -*''*dxo» \x x(j) = \ A dX{J\,
^-^o »^j

(resp. = | (/\dXa) A (A (dXljAdXfj ) I,
z=l i<j

= | (/\dxa) A (A (dXlj
1=1 »<J

with

* = (A",,) e 5»m (ii, 12) = T ̂  F'"'

(resp. *= TO ^Her(n, C)=T (i

and *y=*y + V-

and Xi~X}j

Thus, there exists a left invariant measure rf^% on the isotropy
*o

subgroup G^$) satisfying

(4. 57)

where rfg00 is a C?u)-invariant measure on G(n) and
o

Let ^ (w) be the Lie algebra of G(n\ which is identified with the
tangent space of Gw at the neutral element e^G(n\ We normalize
the 6?(n)-invariant measure dgw on Gw by

(4.58) rfgw(«) = | A dA:j\ with (4y) e SP w=Jlf («, R)

(resp. dgw (e) = ^

with (^}J- + V^rT^

<#">(«) = ! A

with (^+eiAjj+e 2A 3 f j+e
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The vector space &™/&™ is identified with TXQVW for xQ^V~S,

Then dx(n} is regarded as the volume form on ^u)/^?^ ), and hence

we have,

(4. 59) dg» (e) - </*<"> (*0) /\dg% (e) \ ,

by normalizing dg™ suitably. Especially, for xQ=I(
n
j\ the isotropy

subgroup is O(j9n-j,R) (resp. U(j9n-j9 C), U(j, n-j9 #)). The
Lie algebra &™ is written as

(4060) ^w={^

(resp. &™={A^M (n, C) ',

We define the volume form dg™ (e) on ^^} by the relation (4,59) and

denote it by dA™9 i.e., dgM(e) = dxw/\dA™\ with A^&™.

r/cj). ~|
We put #P = ""'' Q L The tangent space of S{ at x\^ is written

L_ t_J

as

(4.61) T ,j}S{=§Xl ^1; Xl^*» lux 0- J JST 6

We define the volume form | dX^dX2 \ on T o)Si by
*i

(4. 62) rfAi = A dXJt with ^ = (Xft) e Sjfm (« - i, /Z).
J^*

(resp. dXl = (A rf^v) A (A (dX}ky-i ;<*

^ - (A dXjS) A (A (^ A^

with (Xjk)<=Her(n-i,H) and XJk = Xl

and
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(4. 63) dX2 = /\dXjk with X* = (Xik) <^M(n- i, i, R) .

(resp. dX2 = A(dXjk/\dX]t)

with (Xjk + ̂ 1^1 Xjk)

dX2 = A (dX}h /\dX]t /\dX?k

with (X}k + e,Xjk + e2Xjk + euJCfo e Jf (n - i, », H) .) .

Then, for the (rte)1-invariant measure dv'{ on Si defined in Theorem
4. 2, we have

Lemma 4. 4.

(4. 64)

(resp.

Proof, We shall prove this lemma only in the case of V—
Sym(n,R). Similar proofs are possible in the cases of V=Her(n, C)
and V=Her(n,H).

r
We denote f"-^

L '*2

We put flf^=p2' J; x^Syrnd, R)}.

Then3 Si-1- intersects with S{ at x& transversally, and

We take a coordinate system u = (ukm) i^k^m^i which satisfies

(4. 65) ukm\ SJ± =xn-.i+kn-i+m \sj±,

and

Si=[ukm = Q for all

in a neighborhood of x\j}
a Then

where ^3=
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Let dfi be the G(n)1-invariant measure on S{ normalizing by

d(JL(xW)=\dXi/\dX2\. When we regard dp as a measure on F(ra),

we can write it as

(4. 66) dp =/(*) Ud (Ut J | du/\dXl/\dx2\ ,
k^m

by using a local coordinate system (M, #b x2) in a neighborhood of xlj\

where f(x) is an analytic function with /(#P)=1, and du = /\dukw

dxi = A fl^w and flfAT2= A flfoftf*- Moreover, by regarding (4. 66)

as a hyperfunction on V(n\ the principal symbol is by definition

(4.67) (2;r) —/,

where (u*m) is the dual coordinate of (ukm) and

Therefore, the principal symbol at x is

_«•(»•+!) ,_

(4,68)

where |^X*| is the volume form | A d(X*)km\ on the cotangent
k^m

vector space 3T*y)Sj by the dual coordinate X* = ((X^km) of Jfg.

On the other hand, the measure dv{ on S{ is also a G(w)1-invariant

measure,, The principal symbol of the measure du{, regarding as a
hyperfunction on F(n) defined near #P, is

(4.69) |P^[^~

from (4.1). Here A is the conormal bundle of ^J0 In order to

write (4. 69) by using the coordinate system (ukm)9 we restrict (4. 69)

to Si-1-. We have P (x) | sj± = det (ukm) . Therefore we have

(4.70) WnT*Si = The Zariski closure of

{(u, a gradJog(det(M)) eT*^-1; det

Let TT be the projection map from Wn T^S^ to Si\ Then,

(4.71) PA

in T*^ where ;' = di
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By a similar calculations in (3.24), we have

V \dx\ \T*sl±=^ \du*\/J \du\,

with

c0 = | (det u) • det (gradjog (det u)) | = 1,

and

<?!= | (det M)2"". (Hessjog(det M) | =1,

and hence

(4. 72) |P, |N |^| /V |rf*|

Thus we have

f (»'+!)

(4.73) rfu{ (^P) - (2;r) ""

q. e. d.

We can identify Si and G(nn/G("}]. Let ^(ra)1 be the Lie algebra
xi

of G(n)1. We can write

(4. 74) 0(M)1 = [A GE g ? < » > ; Re (Tr (4)) = 0},

and ^(n)1 is regarded as the tangent space of GMl at the neutral

element e. We denote the invariant measure on G(nn by dg(nn and

suppose that it is normalized by

(4.75) dgwl(e) = | A

(resp. dg(nn(e) — | A

Let #$} be the Lie algebra of G^j. Then ^(ra)1/^^-) is identified

with the tangent space of Si at #P. The volume form [rf^A^-^l

on TjflS* is regarded as that on ^(W)I/^^Q> Note that &(nn=&($®

&<»*/&<**. There exists a left invariant measure dg$ on Gffl nor-

malized by
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(4. 76) dg^ («) = | (dX, f\dX2) /\dgfi («) I •

We can write the Lie algebra ^ ($ as

(M Bl
(4.77) »<$ =

; {[0 Cj CeM(i,K), Tr(,4) +Tr(C) =0

A B-\
(resp. 9$ = :

Cj CeMQ, C),Re(Tr(^)+Tr(C))=0)

'A Bl
; *° I)

o cl
with xkfl=I%li. Then we have

Lemma 4. 5.

(4. 78) dg$(f) = |rf^7J

Here, dA^J^ is the volume form dx(n~n (x^) defined by (4.59),dBis the
xa

volume form defined by /\dBfj and dC is the volume form dg(in in (4. 75) .

Proof. Let A=PJ ^le ^ Cn)1 and put dD = /\dDtj. Then ^(n)10) =

\dA/\dB/\d€/\dD\. The action of A to *P is

<«•»>
So we have

(4.80) dA=dXl/\dA<ftn and dD=dX2.
Xti

Therefore we have

(4. 81) dg^(e) =\ (dXl/\dX2)A(dA^/\dB/\dC) \ ,
XQ

and hence we have the result. q0 ee d8

Let flf^(j) be the left invariant measure on G(^1 normalized by

(4. 82) dg^ (e) - 1 rfuj (^>) A^y) W I .

Then we have from (4. 64) ,
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-fr'+l)—(4.83)
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