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A Dichotomy for Derivations on on

By

Ola BRATTELI*-", David E. EVANS*-2), Frederick M. GOODMAN***
and Palle E. T. JORGENSEN***

Abstract

Let On be the Cuntz algebra generated by slf • • • , s n , and let <P(On) be the *-sub-
algebra of *-polynomials in the generators. We show that if d is a gauge-invariant
derivation mapping 3? (On) into <?(#n), and 8 is approximately inner, then d is inner.

§ L Introduction

The Cuntz algebra On is uniquely defined as the C*-algebra generated by
n—2, 3, ••• isometries s l t • • • , sn satisfying

s*sj=dljl, Ss lsf=l,
j=i

[7]. There is a canonical representation of the n-dimensional unitary group
U(ri) in the automorphism group of On defined by

for ^=[^ij]?,J=ieL/r(n). In [4, Theorem 2.4] it was proved that if d is a
^-derivation defined on the £/(n)-finite elements

OnF={x^On | Cauw(x) is finite dimensional}

for this action, then d has a unique decomposition

where dQ is the generator of a one-parameter subgroup of the action a, and o
is bounded. Now, none of the generators d0 are approximately inner on the
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polynomial *-algebra &(On) generated by slf • • - , sn, except for dQ= 0, and hence
this theorem has the remarkable consequence that if d : O%F-*On is any derivation
which is approximately inner on &(On), then d is actually inner, [4, Remark 2
to Theorem 2.4] (See also the end of § 2). This paper grew out of a desire to
understand this fact more algebraically, and hence pave the ground for an
understanding of the Lie algebra of all derivations mapping 3>(0n) into &(On).
It is already known that all these derivations are pregenerators, i. e. they are
closable and the closures are infinitesmal generators of one-parameter groups of
^-automorphisms, [3, Corollary 2.6]. Also, &(On) consists of analytic elements
for the derivations in Der(£P(On), 5*((5n)), [3], and hence it seems plausible that
the exponential map defines a representation of the covering group of
Der(£P(0J, &(On)), see [13]. Here we will take up the more restricted problem
whether all approximately inner derivations in Der(£P(#J, &(On}} are inner, and
our main result, Theorem 4.1, is that this is indeed true for gauge-invariant
derivations, i. e. derivations commuting with the restriction of a to the centre
T of U(ri). We expect this also to be true for derivations which are not gauge
invariant, but we do not have a proof for the moment.

As a byproduct of these considerations we will in § 2 give an alternative
construction of the action of the symplectic group U(n, 1) on On defined in [16]
and studied further in [6] ; our construction is based on infinitesmal analysis.
We will also give an alternative introduction to the Cuntz states from that of
[8], [6], and use these states to show that none of the non-zero generators of
the U(n, 1) action are approximately inner.

In section 5 we will give examples showing that if 3eDer(S>(0n), On\ then
d is not necessarily a pregenerator, although ±d are dissipative by [3, Prop-
osition 3.5], and also that d need not be inner if it is approximately inner, even
when d is gauge invariant.

§ 2. Preliminaries

First we recall some facts about Cuntz and Toeplitz algebras from [6], [7],
[8], [11], [12], [14], [15], [16].

Let Mn be a n-dimensional complex Hilbert space, where 2^n<oo, with
complete orthonormal basis {£,: *=1, 2, ••• , n}. The Toeplitz algebra <3n is the
unique unital C*-algebra generated by the range of a linear map / defined on
Mn such that

and

The Cuntz algebra On is the unique unital C*-algebra generated by the range
of a linear map s defined on Mn satisfying



A DICHOTOMY FOR DERIVATIONS ON On 105

and

We write /4 for /(£<) and st for s(£i). Then the Toeplitz algebra £TB can be
regarded as a C*-subalgebra of the Cuntz algebra On, by identifying /4 in £Tn,
with Sj in 0n+1 for l^zfgn. Also 2~n is an extension of On+1 by the compacts.
More precisely, let <Sn=$(3{n) denote the full Fock space

00

® ((^]m 4f \\\^ Ji nj ,
m=0

where ®°e#n denotes a one-dimensional Hilbert space spanned by a unit vector
Q called the vacuum. Then the projection

generates a closed two sided ideal JCn in STn, which is isomorphic to the compact
operators on £Fn, and contains p as a minimal projection. Moreover, J<n is
generated by matrix units

'*,-M'?» -'?,
which can be identified with the rank one operators

on £Fn, where |^® ••• ®%ir=Q if r— 0, and 5?(g)^ denotes the rank one operator
^-»<0, ^>5y on EF^, 9^, ^, 7]^3n- Then if 0 denotes the quotient map from 3^
onto £Tn/JCw, (5W is isomorphic to £Tn/JCw, if we identify s$ with 0(/f), /=!, ••• , n.

The Fock or regular representation of 2^ on 3n is constructed as follows.
Define bounded operators l(<p) on £Fn, for <p^3(n, by

If u^U(n)=U(&n), the group of unitaries on J^, let /"(M) denote the unitary

e (®m^)
m=o

on 3"n. Then
r(u)/(^)r(tt)*=/(M^), ^ejrn.

There is an automorphism j9tt=Ad/1(i/)|crn on £Tn leaving JCn invariant defined by

and an induced automorphism au on On=^n/^n defined by
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In particular, if j—a T, then the fixed point algebra JL=Jl(t4Cn)=Qr
n is a UHF

algebra, isomorphic to (g) Mn, where we identify
i

{stl •" sirs*r ••• s* : !<*!, — , ir

in JL with canonical matrix units

in 0 Mnd(g) Mn, if {et. : l^z, /^n} are canonical matrix units in Mn, the algebra
1 1 3

of nXn complex matrices.
We let £P(On) denote the *-algebra generated by slt ••• , sn and <P(JL) =

&(On)r\Jl. Recall, [3], that there is a bijection between derivations d from the
polynomial algebra ^(0 J into On and skew adjoint operators L in On, given by

Then d is gauge invariant (i.e. 3^(0=^(05 on £P(0J, or d(J.)dJl) if and only if
If 5=ad#|s> (C>n), where H^On) then Ls=H—a(H), if # denotes the

71

shift 2sl(-)s*, (Note that #|ji is the one-sided shift on 0 MJ. In this case 5
i=i 1

is gauge-invariant if and only if H is so. Thus an arbitrary d on <£(On) is
inner (respectively approximately inner) if and only if L5e(l— a)(On) (respec-
tively L5<E(1— a)(On)). Also a derivation 3 leaves <P(On) (respectively
globably invariant if and only if Ls^&(On) (respectively L8^^(Jl)},

As an example of the use of the correspondence between L and d we give
an infinitesimal construction of the action of U(n, 1) on On defined by Voiculescu
[16] (see also [6]). We take U(n, 1) to be the group of (n+l)x(n+l) invertible
matrices A with

AJA*=J,

where /=( n ), and ln is the identity nXn matrix. We will write\ U ln/

where aQ^C, A± is an nXn matrix, and &, |2 are vectors in Mn. The Lie
algebra u(n, 1) of U(n, 1) consists of (7i+l)x(n+l) matrices of the form

where z0efE, Zf=-Z1eM7l and ^Mn- Define sZs*=S ^,5*5? if X=
*j

[ZjJ^M^. We can then define for each X^u(n, 1) a skew adjoint operator
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in &(0n) by

We let £x denote the corresponding derivation of &(On). Then straightforward
computations show that X-^dx is a Lie algebra homomorphism from u(n, 1) into
Der(S»(0n), 5»((?B)). This amounts to showing

for all X, Y^u(n, 1). By [3, Corollary 2.6] and its proof, it follows that
consists of analytic elements for each dx, 8x is closable and its closure dx

generates a one-parameter group of ^-automorphisms of On. By [13, Theorem
3.1], we can thus integrate X— >dx to get an action a of U(n, 1) on On such that

The exponentiated action of the simply connected covering group £/(n, 1) can be
seen, by a direct calculation, to be trivial on the kernel of the covering map,
0(n, l)->£/(n, 1). The corresponding action ft of u(n, 1) on £rra is unitarily
implemented by an action u on 3n, [17]. In fact

where 0*(£), 0(f) are the unbounded 'creation' and 'annihilation' operators;

m

Then dj8(Z)(7)=ad(dM(Z))(]T) for 7eE5>(£rn) (acting on
In considering the range of 1— (7, it is useful to have available a large class

of shift invariant states. A family of shift invariant states was constructed by
Cuntz [8], and appeared in [6] as the weak limits of aexptx(t-^±°°\ for
hyperbolic elements X^u(n, 1). Here we give an alternative construction of
these states based on the following general considerations about completely
positive maps.

There is a well known correspondence between endomorphisms a of On and
unitaries u in On [8], (and, as we just explained, between derivations on
and skew adjoint operators in On, [3]), given by a(Si) = uSi and u=^a
Now let 0 be a completely positive map On into itself. Then

is a contraction since * = [(0(8>1)CS)]S*, where S=( l n J is a partial isometry

in Mn(On). Also, $(sl)=xsl. Conversely:
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Proposition 2.1. Let x be a contraction in On. Then there exists a completely
positive unital linear map $ on On, such that

If x is a co-isometry, then $ is unique and given by

(*) #(s4l - sirs*m ... s*)=(xs(l)(xsii) - («

Proof. Define a morphism it : Gn->M2(e>n) by

I x _ n _ t;t*)1/2\
where u = (,, , N 1 / 9 V ) is a unitary dilation of x. If V=(l, 0), define

\(1— z%)1/z #* /

If jcjc*=l, it is clear that (*) holds. In this case let 6 be any completely positive
unital linear map such that d(Si)—xSi. Then

Then by the Cauchy-Schwarz inequality (see the proof of [10, Theorem 31])

(«(8)l)(S^)=(fl(g)l)(S)(«(8)l)W)

for all A^Mn(On)> In particular

6 ( s i a } = e ( s i } 0 ( a } f for all aeO n ,

and so (*) follows for 6.
In particular take x— s({)* where £ is a unit vector in Jfn. Then there is

a unique completely positive unital map 0£ on On such that

fc(s(0)=<f,0>,
and fa is the Cuntz state:

- s(7l)*)= n <e, ̂ > n <^f f*> ,
c. f . [8], [6].

If {ej^, || f || = 1, the Cuntz state fa is clearly (7-invariant. If

is the skew-adjoint operator defining a typical generator of a one-parameter
subgroup of the action of U(n, 1) on On, we have

where Zf is the transpose of Zx. Thus, if fa(Lx)=Q for all f, then Z=0.
This proves that none of the nonzero generators of the U(n, 1) action are
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approximately inner.

We end this section by mentioning that L=s1(s1s*—a(s1sf)} is annihilated
by all the Cuntz states, but nevertheless L&(l—a)(On).

§ 3. The One-Sided Shift on a Algebra

In this section, let JL be the C*-tensor product of infinitely many copies of
00

the full nXn matrix algebra Mny i.e. Jl=(g) Mn, and let a be the one-sided
i

shift on JL defined on monomials by:

for x^Mn, 2=1, • • • , M. The map a extends to an injective morphism from JL
into JL. As noted in section 2, JL is the fixed point algebra in On for the gauge

n
action of T, and a is nothing but the restriction to JL of the shift ff(-)= S s t-s?

on 0n.

If MeJV, define <J^=® Mra=the tensor product of the M first factors Mn
M

in jZ, and define the polynomial algebra of JL as &(JL)=[J JLM, without closure,
The reason for this terminology is of course that &(J£)—&(On}r\J(. Use
(1 — ff)(JL) to denote the norm closure of (l—a)(JL).

Theorem 3.1. (l — o)(JL)r^JLM=(l — ff)(JlM-i) for M=l, 2, • • - , with the con-
vention that JLQ={0}.

Remark 3.2. Before proving Theorem 3.1, it is interesting to remark that
the corresponding result is not true for the unilateral shift on N, i. e. the
morphism a defined on the C*-algebra Jl=c0=all sequences converging to 0, by

0 if z = l

xl-1 if i^2.

If one defines JLM as the set of sequences x = {xl} such that xz=Q for i>M,
then x^JLM is in (l—a)(JL) if and only if 2 ^=0, but it is easy to check that

We prove Theorem 3.1 via two lemmas.

Lemma 3.3. // LeE(l-tf)U)n^M then

(0<8>i&)((l+<7+ - +<raf

a// (p^Jtftf, where we have made the obvious identification Jf2j/=JZjf®«Jjf.
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J.% is the dual of JLM-

Proof. Assume first that <p is a state. We have the identification

and (p defines a state a) on JL by

(0 =

But as <p(l)=l, we have

and thus

is a ^-invariant functional on Jl. But as Le(l— (j)(«J) it follows that

and since tfM#)i^v+1 for all Af, we have

and thus

This establishes that

if 0 is a positive functional, and thus by polarization (use (/>= 9^1+^2):

if 0! and ^2 are positive functionals. As any functional on JIM is a linear
combination of four positive functionals, this identity is valid for general
</>i, <p2^JL*f by linearity. This establishes the lemma.

Define the cyclic shift aN on JIN by

and define the flip j$zM on J12M=^M®^-M by

With these definitions, we prove:

Lemma 3.4. // L^JIM, the following conditions are equivalent:
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2. (l + <7+ ••• + <7Jf~1)(L) zs antisymmetric under the flip on JIZM—^M®^M°'

3. (1+^*+*!*+ - +<r!i?-1)(L)=0 .

4.

Proof. Put Lff = (l+(T+ ••• +o-Jf-1)(L).

: The condition 1 implies by polarization that

for all <p, 0e«j£. But as

it follows that

which is 2.

: Using 2, it suffices to show that

But

3=44: <JZM defines a representation of the cyclic group Zm of order 2M on
JL2M, and if a)=ez*il23f, then L has a Fourier decomposition

2-ftT-l

with respect to this representation. Here
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1 ZM-I
L*=-^TJ S o>kmff?«(L)

2M m=o

is the Fourier component such that

02M(Lk}

But condition 3 just says that
£o=0,

so putting
ZM-l T,

H— V•t-J-'^J -j
k=i 1—0

we have

The implication 4=^3 is trivial, and the implications 3=}2 and 2=U follows
by reversing the arguments in 2=^3 and 1=}2.

Proof of Theorem 3.1. Let Le(l— (y)(jl)njljf. Since then L^JIKM for all
, it follows from Lemma 3.3 and Lemma 3.4 that

for /T=l, 2, 3, ••• . But as L<=JIM we have that

a?K

for m=0, !••• , 2KM—M, and thus

From this we deduce two facts :

i.e. the sequence (l+(7+ ••• +<rm)(L) is uniformly bounded in ?n, and

( M-l \ /ZKM-M \ / 2KM

&) Mn)&)( (§) 1)®( ® -A
1 / \ M / \2tfM-M + l

for /r=l, 2, • • - . From the first fact we deduce that the sequence HK =
(l+o-+<72H +tf2JOf~Jf)(£) has a weak limit point H as X"-^oo in the trace
representation of Jl, and from the second fact it follows that this limit point H

must commute with all factors in the decomposition ® Mn except for the M—1

first ones. But the relative commutant of these factors in the trace represen-
tation is just the finite dimensional algebra JtM-i, and thus H^JlM-i- Further-
more, as
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K^>G*KM-M+l(L} is a central sequence in Jl, and the trace representation is a
factor representation, it follows that

where 2 is a scalar. But as the trace state r on Jl is ^-invariant and
l— a)(J) it follows that r(L)=0, and it follows by applying the trace to the

relation above that ^=0. Thus

L=H-a(H)

where H^JlM-\, and the theorem is proved.

§ 4. The Dichotomy

Theorem 4,1. Let d be a derivation mapping the polynomial *-subalgebra
of the Cuntz's algebra On into itself, and assume there exists a sequence

n such that

for x^£>(On). Assume that d^t^Tt^ for all t^T, where j is the gauge action
on On. It follows that there exists a H^Or

n^^(On) such that

for all x

Proof. Without loss of generality we may assume that d is a *-derivation

and Hm=—H*l. As d?t=rtd we may also replace Hm by dtjt(Hm], and hence

we may assume that Hm^Or
n=Jt. But if L=^d(sl)sf is the skew adjoint

i
operator defining d, we have that

L=lim(Hn-a(Hm» ,
m

00

where a identifies with the one-sided shift on Jl=(g) Mn. As d(^(On}}^^(On}fi
we have L^.3?(Jl}—Jir\g?(On}, and it now follows from Theorem 3.1 that there
exists an H=—H*^£E>(Jl} such that

L = H - f f ( H ) .
But this means that

*) = [#, *]

for x = slf i=l, ••• , n, and thus for all x^<P(On). This ends the proaf of
Theorem 4.1.
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§ 5. Some Counterexamples

We now know that if d is a ^-derivation such that D(d)=^(On] and
)^&(On\ then d is a pregenerator, [3, Corollary 2.6] and if d in addition

is gauge-invariant and approximately inner, then d is inner, Theorem 4.1. We
now exhibit two examples showing that both these statements are no longer
true if the condition d(&(On}}^g(On} is removed.

Example 5.1. We first show that a gauge-invariant derivation d from <£(On}
into On which is approximately inner is not necessarily inner.

Assume ad absurdum that all approximately inner gauge-invariant derivations
were inner. This would mean that the range 31 of the operator 1—0 on

JL=(J§ Mn were closed. The kernel of 1—0 is Cl (since a is asymptoticallyi
abelian and JL is simple), and thus 1— a induces a continuous bijection
But as & is closed, the inverse of this injection is bounded, i. e.

for some C>0, and all x^JL, where

\\x+Cl\\=mf{\\x+tl\\
But if h^JL, define

hm=h+a(h}+ ••• +<7™-1(/z)

for m—\, 2, • • • , and put x=hm in the above relation. Then

\\h
If h has the form

where p is a nontrivial orthogonal projection in Mn, then

Spectrum(hm)={Q, 1, 2, • • • , 772},
and hence

\\hm+Cl\\=m/2.

But this contradicts the uniform boundedness of ||/2m+Cl||, and this contradiction
establishes that Si is not closed, and hence there exist gauge-invariant derivations
from &(On} into On which are approximately inner, but not inner.

Example 5.2. We will now exhibit a derivation d from &(On} into On which
is not a pre-generator.

The shift algebra £T1=C*(s1) generated by Sj contains the compact operators
JK as the ideal generated by the projection l—s^f, and C*(Si)/JC=C(T) where
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T is the circle, [9].
If /eC(T), let Mf: L2(T}->L2(T) be the operator of multiplication by /,

and consider the Toeplitz operator Tf=PMf: L2(T}>-> L2(T), where P is the
orthogonal projection on L2(T) defined by

P( 2 ane*mt)= 2 ameimt.
\m=-oo / m=o

The C*-algebra C*(Tf | /eC(T)) generated by the bounded operators T/ on
L2(T) is canonically isomorphic to the shift algebra C*(Sj), the isomorphism is
determined by T^-^S! where id(^)=z for all zeT, Also, if /, g^C(T) then
TfTg—Tfg^J<:, and hence if ^:C*(s1)->C*(s1)/JC=C(7') is the quotient map,

is a morphism, and thus

In particular, if f(T)^iR, then

(^-7?)) = !(/-/)=/,

and thus T/ is skew-adjoint modulo compacts.
Now, let/eC(T) be a function such that f(T}^iR and /(elO=/V"RT when

\tK~-. Let

and let d be the '"-derivation from &(On) into Ora defined by

d(st}=Lsi, 2 = 1, '», n.

We will argue that d is not a pregenerator by using an ad absurdum
argument: If ets exists, then

since if St is the strongly continuous one-parameter family of morphisms from
On into On determined by

then

where the first equality follows from [5, Theorem 3.1.30], and the last inclusion
from e'LeC*(s!). But then etd map the canonical ideal JC in C^sO onto itself,
and using the quotient map 0:C*(s1)'-»C(r), eta defines a one-parameter group
of automorphisms of C(T). But as
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we see that the generator of the latter group is an extension of

defined on the polynomials in z and z. But since I// is integrable near the
zero at t=Q, this derivation has no generator extensions [1], [2], This con-
tradiction establishes that d is not a pregenerator.
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