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The Completion of the Maximal Op*- Algebra
on a Frechet Domain

By

Klaus-Detlef KURSTEN*

Abstract

This paper investigates the completion of the maximal Op*-algebra L+ (D) of (possibly)
unbounded operators on a dense domain D in a Hilbert space. It is assumed that D is a
Frechet space with respect to the graph topology. Let D+ denote the strong dual of D,
equipped with the complex conjugate linear structure. It is shown that the completion of
L+(D} (endowed with the uniform topology) is the space of continuous linear operators
X (D, D+) . This space is studied as an ordered locally convex space with an involution
and a partially defined multiplication. A characterization of bounded subsets of D in terms
of self-adjoint operators is given. The existence of special factorizations for several kinds
of operators is proved. It is shown that the bounded operators are uniformly dense in

§ 1. Introduction

Non-normable topological *-algebras satisfying various completeness conditions
have been studied in several papers (see, e.g., [7, 8, 10, 12, 22, 23, 31, 34]).
However, these conditions are not fulfilled for the maximal *-algebra L+(D] of
(possibly unbounded) operators on a dense linear subspace D of some Hilbert
space H (for precise definitions, see Section 2). On the other hand, L+(D) is
one of the most important unbounded operator algebras because it contains all
*-algebras of operators on a fixed domain D.

It is the aim of this paper to study the completion of L+(D) with respect
to the uniform topology. We assume throughout that D is a Frechet space in
the topology defined by the graph norms of operators belonging to L+(D}.
However, some of the results can be obtained for more general domains D by
the same proofs (see Remark 3 after Proposition 3.8 and the remarks after
Proposition 5.1 and Corollary 5.6).

Among others we show that the completion of L+(D] is the space of con-
tinuous linear operators J7(D, D+}. Here D+ denotes the strong dual of D,
equipped with the complex conjugate linear structure. This completion is not
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an algebra if D^H. However, it has the structure of an ordered locally convex
space with continuous involution and with a partially defined multiplication.

Note that the question wether or not JC(D, D+} is the completion of L+(D)
arose in [24] in connection with the study of the time development of thermo-
dynamical systems in quantum statistics. It was explained in [25] that the
problem of defining products on £(D, D+} is connected with quantization pro-
cedures, if D is the Schwartz space @ of test functions. Our definition of the
partial product is more general than that of [24, 25]. However, it is closely
related to the product of operators on partial inner product spaces which was
defined in [3]. Linear spaces with a partially defined multiplication were
previously considered also in [4, 5, 6, 11].

The pattern of the paper is as follows. In Section 2, we recall some
definitions, notations, and some known or easy results. In particular, we endow
the space £(D, D+} with the topology of uniform convergence on bounded sets.
£(D, D+) contains both the algebra L+(D} and the algebra C(H, H} which is
isomorphic to the algebra of all norm continuous linear operators on H. In
Section 3, we define a partial multiplication on JC(D, D+] which generalizes the
familiar multiplication of L+(D) and C(H, H}. Moreover, we give examples
which indicate some of the difficulties connected with the definition of such a
partial multiplication. In Section 4, we characterize bounded subsets of D in
terms of self-adjoint operators. Some applications of this characterization are
given. In Section 5, we prove the existence of special factorizations for several
kinds of operators. In Section 6, we show that J7(D, D+) is the completion of
L*(D).

The study of the space JC(D, D+] will be continued in [21]. In particular,
we show there that X(D9 D+] is the second strong dual of its subspace of
completely continuous operators. In [20, 33], the methods of the present paper
are applied to the investigation of closed ideals in L+(D\
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§ 2. Notations and Preliminary Results

In this section, we fix some definitions and notations. Moreover, we collect
some well-known or simple facts for later use.

Suppose that IMs a dense linear subspace of a complex Hilbert space H.
We denote the norm, the unit ball, and the scalar product of H by ||-||, UH,
and <-, •>, respectively. We assume the scalar product to be linear in the
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second argument. For an operator A on H, let A, D(A), and 11,411 denote the
closure, domain, and the norm of A (provided the later exists), respectively.

The following definition was introduced in [22]. Let

L"(£) = {4eEnd(£): DdD(A*) and A*(D)dD}.

Then L+(J9) is a *-algebra of closable operators with involution A->A+ : = A* \ D.
We endow D with the locally convex topology defined by the system of

seminorms ^>->]|A^)]| where A^L+(D). Throughout this paper, we assume that
D is a Frechet space. In this case we simply say that D is a Frechet domain.
Then D is reflexive [9, 29]. Furthermore, there exists a sequence (An) in L+(D)
such that the following conditions are satisfied (see, e.g., [6, 22]):

a) The topology of D is generated by the sequence of seminorms ( | | A W ( - ) I I ) -
Moreover, D=r\D(An\

b) For each A^L+(D) there exists n^N such that \(A<p, <p>\ ̂ (An<p, <p> for all

c) A1cp=<py <An
2<p, yy^An+w, <p>, and \\An<p\\^\\An+1(p\\ for all

We fix a sequence (An) satisfying the conditions a), b), and c).
Let Dr denote the strong dual of D. Replacing the multiplication with

scalars in a locally convex space by the mapping U, x)-*I-x, we obtain a new
locally convex space which is called the complex conjugate space. Let D and
D^ denote the complex conjugate spaces of D and D', respectively.

We always identify f^H with the linear functional </, •> on D. Then we
have the continuous inclusions DdHciD+. Elements of D are denoted by greek
letters <p, (p, ••• . Elements of D+ are denoted by /, g, h, ••• , or </, •>, <£, •>,
</z, •>, • • - . The complex conjugate number of </, <p> is denoted by <y>, />.
The pair of locally convex spaces (D, D+) is a reflexive pairing with respect to
the bilinear functional

Note that D is a dense linear subspace of D+ because it is weakly dense.
If E and F are locally convex spaces, we denote by £(E, F] the linear

space of all continuous linear operators mapping E into F. We use the abbre-
viation X for the space £(D, D+) equipped with the topology of uniform
convergence on bounded sets. This topology is generated by the system of
seminorms

where M runs through the system of bounded subsets of D.
If Te.T, then the adjoint operator T' belongs to JC(D, Df) and satisfies

(T'<p}((p}=(<p, T(py for all ip^D and <p^D. Note that D and D coincide as real
linear topological spaces. The same is true for Dr and D+. Hence, there exists
a unique operator T^^X satisfying
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for all (p,
The mapping T-^T+ is an involution of X. An element T^X is said to

be hermitian if T=T+. Let J?^ denote the set of all hermitian elements of X.
The formula

shows that X=
We define a partial order relation on Xh as follows:

T^T2 if and only if <7>, <p>^<T2<p, 9) for all

Recall that D is a Frechet space and hence bornological. Therefore the
following proposition follows from the theory of locally convex spaces (see e. g.,
[17], §40, 2).

Proposition 2.1. For a bilinear form t(<p, (f)} defined on DxD, the following
properties are equivalent:

a) There exists T in X such that t(<p, 0)=<Ty>, (py for all <p,
b) There exists n^N such that \t(<p, $}\^\\An<p\\ \\An(p\\ for all <p,
c) For any bounded subset MdD, the form t is bounded on MxM.

Moreover, the sets

, <f>>\^\\An<p\\\\An<f>\\ for all <p, </>e=D\

form a fundamental system of bounded subsets of X.

In particular, the space X and the space of continuous sesquilinear forms,
considered in [6], are isomorphic as linear spaces.

In the sequel, we are concerned with locally convex spaces E fulfilling the
condition :

d) There, are continuous inclusions DdE and EdD+.

If E and F are such spaces, we define

C(E, F} = {T^X\ There exists S^X(E, F]

such that T<p=S(p for all

We abbreviate C(D+, D) by C. If T^C(D+, D+\ T^C(D+, H\ or T^C(D+, D),
then the continuous extension of T is denoted by T.

From now on, we regard L+(D) as a subspace of X. This is possible since
L+(D}C.X(D, D) by [22].

We wanted to remark that our definition of the involution on X coincides
for operators in L+(D) with the familiar definition of the involution in L+(D).
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We always equip the spaces C(E, F] and L+(D] with the topology induced
by X. On L+(D), this topology coincides with the uniform topology TD defined
in [22].

The following proposition was formulated in [23, 24].

Proposition 2.2. L+(D)=C(D, D}r\C(D+, £>+).

Proof. If T^C(D, D}r\C(D+, D+), then T has a continuous extension
f eEj7(D+, £>+). The adjoint operator f ' belongs to X(D, D) ( = X(D, D)) and
satisfies

for all <p,<p^D. This means T*Z)f ', which implies TeL+(jD).
Conversely, assume T<=L+(D). Then T and T+ :^T* f £ are in £(£>,

The adjoint (T+)' belongs to _£(£', DO (-J7(-D+, £+)) and satisfies

for all 9, </>eZ). This implies T^C(D+, D+), which completes the proof.

Concrete Frechet domains have been investigated, e.g., in [22, 25, 30, 32].
We refer to [1] for the theory of operators in a Hilbert space and to [16, 17]

for the theory of locally convex spaces.

§ 3. The Partial Multiplication

In this section, we define a partial multiplication on X which generalizes
the familiar multiplications defined on L+(D) and on C(H, H] ( = B(H}}. Further-
more, we give examples which indicate some of the difficulties connected with
the definition of such a partial multiplication.

Consider a class R of locally convex spaces E, F, ••• , each of which satisfies
condition d) of Section 2. We assume that the following property is satisfied:

For E, F<^$, the intersection Er\F equipped with the topology of the
locally convex kernel contains D as a dense linear subspace.

Next we define products with respect to the class S.

Definition 3.1. The product Tn°Tn-^ ••• °7\ of elements of X is said to
be defined with respect to the class $, if there are spaces E0, Elf ••• , En in ff
such that T j ^ C ( E j - l f E3\ If Sj^X(E3-lJ £;) is the unique extension of T,, the
product Tn°Tn-1° ••• °T^ is defined by

Proposition 3.2. The product Tn° ••• °7\ does not depend on the special
choice of the spaces E0, ••• , En in S.
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Proof. We proceed by induction on n. For n—l, the assertion is obvious.
Suppose that the assertion is true for n factors. Consider elements T1} • • • ,

Tn+1 of X and spaces E0, • • • , En+1, F0, • • • , Fn+1 belonging to ft such that

Let Sj^J?(Ej-!, Ej} and Rj^^C(Fj-lt Fj} denote the continuous extensions of T,-.
We have to show that

Sn+1(Sn ••• S2(S1?>) ~')=Rn+1(Rn - /?,(/?!?>) • • • ) ( 1 )
for all ^eD.

To do this, we note that the embeddings of Enr\Fn into En and into Fn

are continuous if Enr\Fn is endowed with the topology of the locally convex
kernel. Therefore the restrictions to Enr\Fn of Rn+l and Sn+1 belong to
£(Enr\Fn, D+). Since these restrictions coincide on the dense subset D, they
coincide everywhere on EnC\Fn. Now equation (1) follows from the fact that

by assumption. This completes the proof.

Remark. Definition 3.1 is closely related to the definition of products of
operators acting on partial inner product spaces, which was given in [3]. If
the space D+ has the structure of a partial inner product space in the sense of
[3] such that (Z)+)*— D, then there is defined a set {Vr} of assaying subspaces
of D+ (see [3]). In Definition 3.1 one can use the set

where each space Vr is equipped with its Mackey topology r(Vr, Vf).

Now, we give an example which shows that it is impossible to omit the
condition on $ concerning the density of D in Er\ F. The following proposition
collects some consequences of this example.

Proposition 3.3. Let Ddlz be the Schwartz space of rapidly decreasing
sequences. There exist locally convex spaces E and F satisfying condition d) of
Section 2 and operators T^C(D, E}r\C(D, F), T2<=C(E, D^}r\C(F} D+) such that
the following assertion is true:

The continuous extensions R^j:(E, D+) and Sej7(F, D+) of T2 satisfy

for some
Moreover, E and F can be specified to be Hilbert spaces or Frechet domains.

Proof. We denote the canonical orthonormal basis of D by (<pn). Then
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|x»|V*<oo for all ke=N\.
n=l

Defining

for <peD, we obtain essential self -adjoint operators A and 5 belonging to L+(D).
Let E and J7 denote the normed spaces D(A) and D(B\ respectively, equipped
with the norms

Obviously, E and F fulfil condition d) of Section 2.
We set

k °°
<I>k= S n-^n , /= 2 n-^n .

71 = 1 71 = 1

Since A(p2k+1=B(f>2k=Q, the sequences (<f>zk+i) and (02fe) are Cauchy sequences in
E and F} respectively. Hence, their common limit / belongs to EnF. Thus,
the operator T! defined by

is a rank one operator belonging to C(D, E}C\C(D, F).
We define an operator R on E by

S ^n9n = ^l

Since

R is well defined and belongs to £(E, D+).
Similarly, we obtain an operators Sej7(F, D+) by the definition

\ 71 = 1 / 71 = 1

It is easy to see that R<p=S<p for all <p e£>. Therefore R and S are
extensions of the same operator, say T2, which belongs to C(E, D+}r\C(F, D+).
Moreover, R(T1<p)=((p1, ^>^i and S(T1(p)=Q for all (p^D. In particular,
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Since f=T,n-1<pn^D(Ak)r\D(Bk} for each k^N, it is possible to modify
the above example by setting

E=r\D(An), F=
71 = 1 71=1

This completes the proof.

Remarks 1. The operators 7\ and T2 satisfy even the conditions

+, E}r\C(D+, F) , T2^C(E, D}^C(F, D] .

2. Using the notations of the preceeding proof, we obtain the following counter-
example to [4] Proposition 2.4 and [5] Proposition 3.1. Let T^£(H, H] be the
operator defined by Tg=</, g>/. The operators Az and B2 are left multipliers
of T in the sense of [4]. We show that their strong sum, i. e., the closure of
A2jrB2, is not a left multiplier of T. Suppose, on the contrary, that it is a
left multiplier of T. Then / belongs to the domain of the closure of A2+BZ.
This means that there is a sequence (^J in D such that

lim\\ijn-f\\ = 0, lim ||(,
- n, m->

Since
IMI

(r] n] is a Cauchy sequence in both spaces E and F. Consequently,

This gives a contradiction because Rr]n=Sr]n=T2r]n, Rf=<pi, and S/=0.

3. In [25], there is defined a multiplication of certain classes of pairs of
operators in -£(<5, <SX), where <5r is the space of tempered distribution and <5 is
the subspace of test functions. This definition corresponds (but is not equiva-
lent) to our Definition 3.1 in the case that $={<&, V, <5'} and V satisfies some
additional conditions. Note that <E> is isomorphic to the space S of rapidly
decreasing sequences. The spaces E and F constructed in the proof of Prop-
osition 3.3 are F-domains in the sense of [25]. Therefore the product in the
sense of [25] Definition 4.3 is not independend of the choice of V.

4. Using the notations of the proof of Proposition 3.3, we consider the func-
tionals gi^E', g2^F', and g^D+ defined by g1(h}=<Rh, ^>, g2(h}=<Sh, ^>,
and <9, g>=<T2^>, <p^. It is clear that g^ and g2 are extensions of g and that
g ^ f ) is different from ga(/).

Therefore it is not possible to define the structure of a partial inner product
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space on D+ in the sense of [3] such that the following condition is satisfied :
If for some A^L+(D) with A^Id and for some g^D+ the inequality

l<9, gy\^\\A(p\\ is satisfied for all (p^D, then the partial inner product </, g>
is defined for all f^D(A) and satisfies the inequality |</, gy\^\\Af\\.

In particular the up- and downward directed set (Da) of Hilbert spaces,
which was defined in [9] (see also [23]) does not define a structure of a partial
inner product space such that the partial inner product </, g> exists for all

and

From now on, we restrict ourselves to the class $={D, H, D*}. We repeat
the definition of the partial multiplication in this case.

Definition 3.4e We say that the product Tn° ••• °Ti of elements of X is
defined if there are spaces E0, ••• , En belonging to {D, H, D+] such that
Tj^C(Ej-l, Ej). Let Sj^j:(Ej-l, Ej] denote the continuous extension of Tj.
Then the product Tn° ••• °7\ is defined by

TBo - -Ta-7>=SB(- (S2(S1?>)) • • • ) (peD) .

By Proposition 3.2, this definition is correct

The following two propositions are simple consequences of the definitions
and notations introduced above. We therefore omit the details of the proofs.
We use the notations (D+)+=D and H+=H.

Proposition 3.5. Let T1} ••• , Tn be operators such that the product Tn° ••• °7\
is defined. Let EQ, • • - , En be elements of {D, H, D^} such that T3^C(E^lt Ej).
Then

a) T
b) (
c) T

Proposition 3.60 T/zg product T2°T1 is defined if and only if at least one of
the following conditions is satisfied:

a) T^C(D, D) and
b) T^C(D9 H) and T2^C(H, D+\
c) T^X and T2£^C(D+, D+\

If a) is satisfied, then
T2oT1^=:T2(T19

for all <p^D. If a), b), or c) is satisfied, then

<T2°7>, ^>=
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for all <p, (fj^D.

Note that the partial product is associative in the sense that (R°S)°T=
R°(S°T}=R°S°T if the last product exists in the sense of Definition 3.4. We
shall see in a moment that the partial product is not associative in the stronger
sense that (R°S)°T=R°(S<>T} if both (R°S)°T and R°(S°T) exist. To prove
this, we need the following lemma.

Lemma 3.7, Let A be a densely defined closable unbounded linear operator
on H such that (A(p, ^>^||^||2 for all <p<^D(A). Then there exists a bounded
linear operator R defined on H such that R(H) is not dense in H and (RA<p, ̂ >>
*^\\<p\\z for all <p^D(A).

Proof, First note that upon replacing A by its Friedrichs extension, we
can assume that A is self -ad joint. We fix positive numbers en and e such that

Let 1:(e, oo)-»[l, 2] be the function which is defined on (ne, (w+l)e] by
^~1(n+l)e- Then there is an orthonormal basis of H consisting of eigen-

values of the self -ad joint operator B:=I(A)-A.
The operator R will be constructed such that

where (<pn) is a certain sequence of eigenvectors of B.
We put A0=Q and ^0— 0. By induction, we define a real sequence (an) and

an orthonormal sequence of eigenvectors (pj with B<pn=ln<pn such that the
following inequalities are satisfied :

( 2 )

1 ) . (3)

( 4 )
where

ak>k = ak—l, ak,k-ri=ak+i,k=Zk , and

akil=Q if \k-l\>l.
Note that

det(fl *, i)M=1-(an+1— l)det(a *, 0", ^i

depends only on the numbers alf ••• , an, JLlt — , ln. If these numbers are fixed
and if

then (4) is satisfied for sufficiently large numbers an+1.
Now, let Hj. be the closed linear hull of {pn}£=1. Set



THE COMPLETION OF MAXIMAL OP*-ALGEBRA 161

Then it follows that

This implies that (plt <f>ly <f>2, >•• is a basis of Hi which is equivalent to an ortho-
normal basis (see, e.g., [27] Proposition l.a.9). Define an operator Sj, on H± by

Then 5X is bounded and its range is not dense in H^.
It follows from the Sylvester criterion, from (2) and (4) and from the

equation

— 2 Q
k,l=l

that <Si5^, 9>^||9||2 for all 9 in the linear hull of {<pn}- This linear hull is
dense in D(B}r\Hl with respect to the graph norm <p-+\\B<p\\. Hence, <515^, ^>
^ll^l l2 for all <p^D(B)C\Hi.

Finally, we define /?:=(S1®S2)%(A), where S2 is the identity map of HQH^
Then /?(//) is not dense in H and

<RA<p, 9>=<(

for all <p^D(B}=D(A). This completes the proof.

Remarks 1. It is easy to construct the operator ^ such that the orthogonal
complement of R(PI} has infinite dimension. It suffices to write the operator B
as an orthogonal direct sum

=

where every Bn is a self -ad joint unbounded operator, and to apply the preceed-
ing proof to each operator Bn

2. The author does not know whether or not R can be choosen to be a partial
isometry. But the preceeding proof shows that the following is true: Let s>0
be fixed. Then the operator R in Lemma 3.7 can be choosen such that there
exists a partial isometry U with \\U-R\\ <e.

Proposition 3.8o // L+(D) contains unbounded operators, then tliers exist
elements A, B, R, S, T in X such that the following assertions are satisfied:
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a) The expressions R°(S°T\ (R°S)°T, S°A, (R°S)°A, B°(R°S) are defined in
the sense of Definition 3.4.

b) (R°S)'T^R°(S°T).
c) The products R°(S°A) and B°R are not defined.

Proof. Let W^L+(D) be an unbounded operator. Then Lemma 3.7 applies
to the operator W+W+Id, where Id is the identity map of D. Therefore there
exists an operator S<=C(D, H) such that S(D) is not dense in H and <Sy>, 9)
^]]^]|2 for all <p^D. Let R<^C(H, H) be the restriction to D of the inverse of
Friedrichs extension of 5. It follows from Proposition 3.5 that S=S+<^C(H, D+).

Note that the range of the continuous extension S^^C(H, D+) is not contained
in H. Indeed, S(H}dH would imply S^~C(H, H) by the closed graph theorem.

Take g^H such that Sg&H. Fix an element / in #\{0} which is
orthogonal to S(D) and an arbitrary h in D+\//. Now, the operators A<^C(H, H\

and T^C(H, H} are defined by

Ay>=<g, <p>g,

The products R*S and S°T exist. We have

for all 9, <p^D. Hence, R°S=ld (the unit of L+(D}} and S°T=Q. Consequently,
all products mentioned in a) are defined. Moreover, (R°S)°T=T^Q=R°(S°T).

We show that R<£C(D, D)^JC(D+, D+}. Suppose, on the contrary, that
RtEC(D, D) or R^C(D+

f D+}. Then R=R+ implies R^C(D, D)C\C(D+, D+}=
L+(D). Hence, the product R°S°T exists. This is a contradiction to b), which
shows that R&C(D, D}\JC(D+, D+).

On the other hand, S°A&C(D, H) since the image of S°A contains Sg.
Clearly, B&C(H, D+}. Now, it follows from Proposition 3.6 that the products
R°(S°A) and B°R are not defined. This completes the proof.

Remarks 1. The multiplication R * S, defined in [5], is not associative.
Indeed, it follows from Proposition 3.6 that the operators R, S, T constructed
in the preceeding proof satisfy the following conditions :

a) S* is a left *-multiplier of T* (in the sense of [5]) and (S*) * (T*)=0.
b) R* is a left ^-multiplier of S* and (/?*) * (S*)=Id*.
c) R* is a left ^-multiplier of (S*) * (T*), (/?*) * (S*) is a left *-multiplier of T*

and (/?*) * ((S*) * (T*)) *((£*) * (S*)) * (T*).
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2. It follows from Corollary 6.4 below that (J7, L+(D}} is a quasi-algebra in the
sense of [24]. By definition, the product S-T exists in the quasi-algebra if and
only if S^L+(D) or T^L+(D\ In this case the product S-T coincides with
the product S°T in the sense of Definition 3.4. The proof of Proposition 3.8
shows that the quasi-algebra (£, L+(D}) is not associative if there exists an
operator S^Id in L+(D) which is not essential self -adjoint. Such an operator
exists, e.g., if D is the Schwartz spaces

3. In this remark, we wanted to mention a generalization of the results obtained
up to now to more general domains than Frechet spaces.

Assume that D is a semi-reflexive space with respect to the topology intro-
duced in section 2. Denote by DT the space D endowed with the Mackey
topology r(D, D'}.

Since £(Dr, D^) coincides with the space of all weakly continuous operators
from D into D+, it follows from [17] §40.1 that JC(Dr, D+) is isomorphic to the
space of all separately continuous bilinear forms defined on DxD. By [17]
§39.6 (2a) and (3), the space -£(DT, D+) is complete with respect to the topology
of uniform convergence on bounded sets if and only if D' is complete.

Moreover, the Propositions 2.2, 3.2, 3.5, 3.6, and 3.8 remain true if the
following modifications are undertaken :

—The space X is always replaced by X(DT, D+).
—The space D is replaced by Dr in condition d) of Section 2, in Definition 3.4,

in Proposition 3.5, and in Proposition 3. 6. a).
—In Proposition 3.5, the notations (D+)+=DT and (DT)+~D+ are used.

This can be shown by using the same proofs as for Frechet domains. In the
proof of Proposition 2.2, the operator f' belongs to £(Dr, D7) only. But this
suffices to show that T belongs to L+(D).

§4. Bounded Sets in D

In this section, we characterize the bounded subsets of D in terms of
bounded self -adjoint operators. This result is an important tool for the study of
the spaces X and L+(D}.

Theorem 4.1. // MdD 23 a bounded set, then there exists A in C such that
A-^Q and MdA(UH}.

Proof. Since M is bounded, there exists a sequence of positive numbers
(en) such that

On the domain
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Dt:=L<=D: S sj|^[|2<
L 71 = 1

we define a hermitian sesquilinear form t by

t(<p, </>}= 2 en<An(p, An0y.
n-l

Because of the inequality

2 en\\An(<p+<j>W^ 22eB(Mnp
n=l 71=1

Z>j is a linear space. Furthermore,

fC^p^fiJpr (5 )
for all (p^Dt,

We prove that £ is closed. For, let ((pk} be a sequence in Dt such that

lim t(<pk—(ph (pk—(pi)=Q .
k , £-»oo

Since
\\An(<pk — (plW^(ZnYlt(<pk— ( f i , <pk—<p{)

for all k, /, neJV, the sequence (^A) is a Cauchy sequence in D, Hence, there
exists <pQ^D such that the sequence (<pk) converges to <p0 in D.

We show that
lim t((pk—<pQ, <pk—(p0)=Q . ( 6 )
&-»oo

Given s>0, there exists ^0 in ^V such that

t(<pk—<pi, y>k—<pi)= 2 eBHn(9*— 9^i ) l l 2 <£
71 = 1

if & > & o and / > ^ 0 = Keeping & > & 0 fixed and letting /-»oo, we get

00

t(<pk-<p*, <pk—<pQ)= S en\\An((pk~

In particular, this implies yk~(p^Dt. Since (pk^Dt, <pQ^Dt. Moreover, (6) is
satisfied.

Hence, Dt is complete with respect to the norm <p-*(t(<p, 9))1/2. But this
means that t is closed.

Let HI denote the closure of Dt in H. By the representation theorem for
closed positive sesquilinear forms (see, e.g., [15] Chap. VI Theorem 2. 23),
there exists a positive self-adjoint operator S acting on Hlf with domain Dt,
such that

for all (
Define T=S-1®0 with respect to the orthogonal direct sum
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It follows from (5) that T is a bounded self-adjoint operator.
We check that Te .£(//, D}. Fix k^N. Since the range of T coincides

with DjCA AkT is defined on all of H. Because AkT is the adjoint of TAk,
AkT is closed and hence bounded. This implies T"e _£(//, D}.

Therefore R:=T \ D<=C(H, D). By Proposition 3.5, A:=R°R+^C. From
Proposition 3.6 we conclude that A=T2 and A^O.

We prove MdA(UH). It suffices to show that McD(S2) and S2(M)dUH.
For, take <p^M and <p^Dt. The inequalities

<p\\ \ \ y \ \ ,

imply <p^Dt. Now, it follows from

that S^eD(S*)=D(S) and ||S2<p||^l, which yields our assertion.

Remarks 1. If the Hilbert space // is separable, then the operator A in
Theorem 4.1 can be choosen such that A is an invertible self-adjoint operator,
or equivalently, that A is injective. But, this is not possible for general Frechet
domains in non-separable Hilbert spaces. A counterexample may be obtained
by modifying I. Amemiyas construction of a Frechet space without any total
bounded subset (see [2] or [16] § 29, 6). Indeed, replacing the index set R by

{0?n): i?n^l and ^n+i^n
2}

in this construction, we get a Frechet domain without any total bounded subset.

2. Theorem 4.1 and the following corollary generalize [14] Proposition 1.4 and
[23] Lemma 5.

Corollary 4.20 The system

\AUH: A^C and A^Q}

is a fundamental system of bounded subsets of D.

Proof. Since A^^C(H, D), AUH is bounded in D. Thus, the assertion
follows immediately from Theorem 4.1.

Corollary 4.3. The strong topology of D+ can be defined by the system of
seminorms

{ \ \ A - \ \ i A^C and A^Q}.

Proof. By Corollary 4.2, the strong topology on D+ can be defined by the
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system of seminorms
||/L=sup{|</, Ag>\

where A^C and A^O. Clearly,

Il/L=sup{|</,

=sup{|C4/,

Corollary 4.4o For A^C, let \\-\\A denote the seminorm defined on X by
\\T\\ A=\\AoT°A\\. Then the topology of X can be defined by the system of
seminorms

{ML: A^C and A^}.

Proof. For A^C, we take M=AUH. Using Proposition 3.6, we get

qM(T)=sup{\<TAf, Agy\ : f,

=sup{|<7M0>, A<f>>\ : <p,

Thus, Corollary 4.4 is a consequence of Corollary 4.2.

The knowledge of the bounded sets of D enables us to give a more explicit
description of the so-called quasi-uniform topologies rp, TD' , and rg defined on
C(D9 D), C(D+, D+), and on L+(D), respectively. We refer to [23] for the
definition and properties of these topologies. Recall that D is assumed to be a
Frechet domain.

Corollary 4B5e We denote

\\T\\n. A=\\An*T*A\\ , \\T\\A.n=\\A*T*An\\ ,

Then the quasi-uniform topologies TD, TD' , and rg can be defined by the systems
of seminorms

{ l l ' L . A i n^N, A^C and A^Q],

i l l - L , n : n^N, A^C and A^Q},

{\\-n,n: n^N, A^C and ,4^0}.
respectively.

At the end of this section, we prove the existence of certain orthonormal
projections in C.

Proposition 4.6. Let XdR be a Borel measurable set the closure of which

does not contain zero. Suppose A^C and A^. Let A = \MPi be the spectral
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representation of A. Define

Then P

Proof. We denote

Then the continuous extension Pej7(D+, D) can be defined by
/v 1^1 <%/

Pf=ABAf.

§ 5. Factorization of Operators

In this section, we obtain special factorizations for several kinds of operators.
In particular, these factorizations are useful for the study of the order structure
of J7fc.

Proposition 5.1. // T^n, then there exists R in C(H, H] such that \\R\\^l
and T=An°R°An. Under the additional assumption T^O, it is possible to choose
/?^0, as well.

Proof. By the definition of 33 „, we have

\<T<p,<f>>\^\\An(p\\\\An<f>\\

for all <p, <p^D. Thus, the sesquilinear form t(<p, <]}}'.— (T<p, 0 is densely defined
and continuous on the Hilbert space D(An) equipped with the new scalar product
(<p, <p):=(A<p, A<f>y. By the representation theorem for continuous sesquilinear
forms, there exists an operator S on D(3 J satisfying

for all <p, (/}^D and

for all /, g^D(An). This implies

\\AnSf \\*=(Sf, S/)2^(

for all f^D(An}. Consequently, we can define an operator /?j with domain
An(D) such that ]|^i||^l and Ri(An<p)=An(S<p) for all <p^D. This operator can
be extended to an operator R^C(H, H) with ||#||̂ 1. According to Proposition
3.6,

for <p, (Jj^D. This proves the first assertion.
Now we assume that T^O. In this case we define R in a different way.
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The operator S defined above satisfies

Let Si denote the non-negative square root of S in the Hilbert space D(An},
Then

\\A*S J\\*=(SJ, S1/)=(S/f fm\Anf\\*

for all f^D(An}. Consequently, there exists an operator R2 with domain An(D)
such that ||/?2]|^1 and /?2(>lBy))=3n(S1y)) for all y^D. Let R3^C(H, H) be an
extension of J?2 with the same norm. Taking R°.=R3

+°R3, we see that
, H\ \\R\\ ̂ 1, and R^O. For <p, <p^D, we have

by Proposition 3.6. This completes the proof.

Remark. Actually the proof of Proposition 5.1 shows that the following
proposition is true :

Let A be an arbitrary closable operator on H with domain of definition
D(A) such that M p H ^ H ^ H for all <p^D(A) and let t be a bilinear form on
13(A)XD(A) such that 1%, <p}\ ̂ >\\A<p\\ \\Acp\\ for all 9, <p^D(A}. (Here 73(3)
denotes the complex conjugate space of D(A)). Then there exists an operator
RsEj:(H, H) with \\R\\^1 such that %, $)=<RA<p, A<py for all y, <f>t=D(A). If
additionally ^(^>, 99)^0 for all (p^D(A), then it is possible to choose

Corollary 5.2. // TeJ7 and T^O, ̂ /zen ^/zerg g^'sfs S in C(D, H} satisfying
T=S+°S.

Proof, We represent T as An°R°An with #^0 and R^C(H, H}. Then
we define S in C(D, H} by

Corollary 5.3. 77z£ //n^ar AM// of the positive cone of Xh coincides with -C.

For 5, T^J:h, let [S, T] denote the order interval

[S, T~] = { R ( E j ; h : S^R^T}.

Corollary 5.4. For n^N, the following inclusions are satisfied.

s.n^.cc-^2, ^B«]c2»B, (7)

»BC[-^B
8, ^2]+/[-^2, ^B

8]. (8)

Consequently, the absolutely convex hulls of the order intervals of X^ form a
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fundamental system of bounded subsets of X.

Proof. According to Proposition 5.1, each operator T^^8n can be repre-
sented as T=An°R°An whereas ||/?||^1. Now (8) is a consequence of the
formula

If we assume in addition T^£hj we get

In this case, T belongs to [— An
2, An

z~], which proves the first inclusion of (7).
We now verify the second one. Put Te[— An

2, A^~\. This means that

for all (p^D. Taking <p, ^eD\{0}, setting c\ = \\An<})\\v*\\An<p\\-11*, and using
the polarization formula, we get

\<T<p, $y\= 2i-

= 2\\An<p\\ \\Anf\\ •

This proves Te293n.
By Proposition 2.1, (7) and (8) imply that the absolutely convex hulls of the

order intervals [— An
z, An

2^\ form a fundamental system of bounded subsets of
J7. The assertion now follows from the fact that each order interval [S, T] is
contained in [— An

z, An2'] for some n

Remark. On JT, the associated bornological topology coincides with the
order topology, or equivalently, the ^-topology considered in [6]. It was shown
in [32] that this topology is different from the uniform topology, in general.

Next, we give factorizations for operators in C(D, H] and C(H, D+).

Proposition 5.5* For each T in C(D, H) satisfying T+°T^An
2, there exists

R in C(H, H] such that T=R°An and \\R\\^l.

Proof. By Proposition 3.5, the product T+°T exists if T^C(D, H\ We
have

for all (p^D. We define an operator R! with domain An(D) by setting Ri(An(p)
= T<p. Obviously, ll^ill^l. Let R<=C(H, H} be an extension of R^ with the
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same norm. Then the proposition follows from

Corollary 5.6. For each T^C(Hf D+) satisfying T°T+^An
2, there exists R

in C(H, H) such that T=An°R and \\R\\ ^1.

Proof. Since T+ satisfies the assumptions of Proposition 5.5, we find
S^C(H, H) such that T+=S°An and ||S||̂ 1. Let R=S+. By Proposition 3.5,
T=An°S+= An°R, which proves the corollary.

Remark. It is obvious from the proofs that Proposition 5.5 and Corollary
5.6 are valid for every semi-reflexive domain D, if the operator An is replaced
by an arbitrary operator A^L+(D) such that (A<p, </>y^\\(p\\2 for all

We conclude this section by factorizing operators belonging to C, C(H,
or C(D+, H).

Proposition 5.7. For each S^C, there exist operators A^C and R^C(H, H)
such that S=A°R°A and A^O. Under the additional assumption S^O, it is
possible to choose R^Q, as well.

Proof. According to [13] Proposition 6.2.1, there exist a neighbourhood of
zero U in D+ and a bounded subset M of D such that S(U)dM and S+(E7)cM.
By the Corollaries 4.2 and 4.3, we find A in C with ^4^0 such that

I rgl} and McA(UH).

Let A=y.dPji be the spectral representation. We define a self -ad joint operator
by

T: =

We show that the mapping ^->T(S(T^)) with domain A(//)0KerJ4 is a
densely defined bounded operator on H. For, let ^e(^4(/f)0Ker A)C\UH. Then
we get

Let R^C(H, H} be the restriction to D of the closure of the mapping

(p-*TST<p (<p e 3(H)0Ker A) .

Since both S(D+) and S+(D+) are contained in A(H), we get
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<ARA<p, (py=(

for all <p, (p^D. This implies S=A°R°A by Proposition 3.6.
It is an obvious consequence of the definition of R that l l^ l l^ l and that

R^Q if S^O. This completes the proof.

Proposition 5.8. For each S^C(D+, H] there exist operators R^C(H, H)
and A^C such that S=R°A and A^Q.

Proof. According to Corollary 4.3, there exists A in C such that ^4^0 and
;g || 4/11 for all f^D+. Therefore, the formula

R1(Af)=Sf

defines an operator R± with domain A(D^. It is clear that H^ iH^ l . Let
R^C(H, H) be an extension of R± with \\R\\^L Then R(A(p)=R1(A(p)=S(p for
all <p<^D, which completes the proof.

Corollary 5.9. For each S^C(H, D), there exist operators A^C and
, H) such that S=A°R and A^Q.

The proof is similar to the proof of Corollary 5.6. We therefore omit the details.

§ 6. The Density Theorem

The main result of this section is the following density theorem which
implies that C is dense in X and that X is the completion of L+(D).

Theorem 6.1. Consider an arbitrary continuous seminorm q on X and a
bounded subset %$CLJC. There exists P in C such that P is an orthogonal projection
on H and

for all

Proof. Because of Proposition 2.1 and Corollary 4.4, we can assume that

%=%n and q(T)^\\A*T»A\\, where A^C and ,4^0. Let A = (uPx be the

spectral representation of the self -ad joint operator A Set c=||
and £=(3c)~3. The operator

belongs to C by Proposition 4.6. Define Q:=Id— P.
For /, g e UH, we have
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\\AnQAf\\^An*AQf, QAf>^\\An*A\\

For TeS3n, this implies

-PM/, g>\ = \<TQZ

, QAg>\^\\AnQA\\ \\AnA\\

Therefore \\A"(T-P*T°P)<>A\\^1, which completes the proof.

Let Q denote the set

\ P is an orthogonal projection on H}.

Corollary 6.2. The convex cone generated by £E> is dense in the positive cone
of j:h. The linear hull of SB is dense in X.

Proof. According to Theorem 6.1, the positive cone of Xhr\C is dense in
the positive cone of Xh. Fix A<=C with ^4^0. Let

A = UP,
J ( o , c )

be the spectral representation of A. Define

for n, k^N, k<n. By Proposition 4.6, Pn>k I D is in £P. Since A is the norm
limit of the operators

and the operator norm topology is stronger then the topology of JC, A is in the
closure of the cone generated by ^. This gives the first assertion. The second
assertion is now a consequence of Corollary 5.3.

Corollary 6.3o The set $nr\C is dense in 23n.

Proof, By Proposition 5.1, each TeS5n has a representation T=An°R°An,
where R^C(H, H} and ||/?||gl. By Theorem 6.1, R belongs to the closure of

Since the map £^S-*An*S*An^JC is continuous, T belongs to the closure of

{An*P*R*P*An

which proves the corollary.
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Let us note that a special case of the following corollary was already
formulated in [24].

Corollary 6.4. The completion of L+(D) is X.

Proof. L+(D) is dense in X because its subset C is already dense in X by
Corollary 6.2. On the other hand, it is well-known that X is complete (see,
e.g., [17] §39, 6).

Remarks. 1. The author does not know wether or not L+(D] is always
dense in X with respect to the order topology of X. However, C is not always
dense in X with respect to the order topology of X. To give an example, we
use a construction taken from [32].

Let {(/)kL : k, l^N} be an orthonormal basis of H. Let An be the self-adjoint
operator on H defined by

An( £ xkl<pkl}=2^l-^J:(n±l2^xkL(pkl+^xkl9kl}a
\k,l = l / l = l\k = l k = n T '

Let

D:=r\D(An) and An:=An\D.
n=l

Then D is a Frechet domain and the sequence (An) fulfils the conditions a), b),
and c) of Section 2.

For each real sequence (an), we define

M((an)): = {(k,l)eNxN: k>alt l>ak+1}»

Let 11 be an ultrafilter on NxN which contains all sets M((aJ).
Let TeS3re. By Proposition 5.1, T has a representation An°R°An with

H^l . Consequently,

\<T<pkl, <pki>\

if k>n. Therefore the limit with respect to the ultrafilter

exists and defines a positive linear functional on X. Moreover, CD is bounded
on bounded subsets of X.

We show that CdKera). For TeC8, let (an) be a sequence such that
an>\\An*T\\ for all n^N. Since

\<T<pki, ?>* z >l=2 ( - a * + 1 + 2 - a

^2 (-2A '-2Z) |U4,+1o

for all (k, /)eM((an)), it follows that w(T)=0.
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But Kercy is certainly not dense in X with respect to the order topology
because a) is continuous in this topology.

2. The author does not know wether or not L+(D) is uniformly dense in X for
non-metrizable complete domains of Op*-algebras. The example in [18, 19] gives
a complete non-metrizable domain D for which X(D, D+} is not complete. This
was already conjectured in [24].
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