On Z_{q}-Equivariant Immersions for $q=2^{r}$

Dedicated to Professor Nobuo Shimada on his 60th birthday

By

Teiichi Kobayashi*

§ 1. Introduction

Let Z_{q} be the cyclic group of order q, where q is an integer >1. A C^{∞} differentiable map f of a $Z_{q^{-}}$-manifold in another $Z_{q^{-}}$-manifold is called a $Z_{q^{-}}$ equivariant immersion (or simply a Z_{q}-immersion) if f is an immersion and a Z_{q}-equivariant map.

Let m and k be non-negative integers. Euclidean $(m+2 k)$-space $R^{m+2 k}$ has a structure of a Z_{q}-manifold ($R^{m+2 k}, Z_{q}$) defined by the action: $Z_{q} \times R^{m+2 k} \rightarrow R^{m+2 k}$;

$$
\left(T,\left(t_{1}, \cdots, t_{m}, z_{m+1}, \cdots, z_{m+k}\right)\right) \longmapsto\left(t_{1}, \cdots, t_{m}, T z_{m+1}, \cdots, T z_{m+k}\right),
$$

where $T=\exp (2 \pi i / q)$ is the generator of $Z_{q}\left(\subset S^{1}\right), t_{1}, \cdots, t_{m}$ are real numbers $(\in R)$ and z_{m+1}, \cdots, z_{m+k} are complex numbers $\left(\in C=R^{2}\right)$. This Z_{q}-manifold is also written by $R^{m, 2 k}$.

The unit ($2 n+1$)-sphere $S^{2 n+1}$ in complex $(n+1)$-space C^{n+1} has a structure of a Z_{q}-manifold $\left(S^{2 n+1}, Z_{q}\right)$ defined by the action: $Z_{q} \times S^{2 n+1} \rightarrow S^{2 n+1}$;

$$
\left(T,\left(z_{0}, \cdots, z_{n}\right)\right) \longmapsto\left(T z_{0}, \cdots, T z_{n}\right)
$$

where z_{0}, \cdots, z_{n} are complex numbers with $\sum_{j=0}^{n}\left|z_{j}\right|^{2}=1$. This action is free and differentiable of class C^{∞}. The orbit differentiable manifold $S^{2 n+1} / Z_{q}$ is the $\bmod q$ standard lens space $L^{n}(q)$. As is easily seen, there is a $Z_{q^{q}}$-immersion of ($S^{2 n+1}, Z_{q}$) in $R^{m, 0}$ if and only if there is an immersion of $L^{n}(q)$ in R^{m}.
A. Jankowski obtained in [1] some non-existence theorems for Z_{2}-immersions. In [2] we considered $Z_{p r}$-immersions, where p is an odd prime. In this note we prove some non-existence theorems for $Z_{2 r}$-immersions.

§ 2. Statements of Results

Theorem 1. Let r be an integer >1, and n and k be integers with $0 \leqq k \leqq n$. Assume that there is an integer m satisfying the following conditions:

[^0](i) $0<k+m \leqq n / 2$,
(ii) $\binom{n+m}{k+m} \equiv(-1)^{k+m}(2 s+1)^{2} \bmod 2^{r}$ for some integer s,
(iii) $n+m+1 \not \equiv 0 \bmod 2^{n-m-k-1}$.

Then there does not exist a $Z_{2 r-i m m e r s i o n ~ o f ~}\left(S^{2 n+1}, Z_{2 r}\right)$ in $\left(R^{2 n+2 m+2 k+1}, Z_{2 r}\right)$ $=R^{2 n+2 m+1,2 k}$.

If $k=0$, we have a new result on the non-existence of an immersion of $L^{n}\left(2^{r}\right)$ in $R^{2 n+2 m+1}$.

Corollary 2. Let r be an integer >1. Assume that there is an integer m satisfying the following conditions:
(i) $0<m \leqq n / 2$,
(ii) $\binom{n+m}{m} \equiv(-1)^{m}(2 s+1)^{2} \bmod 2^{r}$ for some integer s,
(iii) $n+m+1 \not \equiv 0 \bmod 2^{n-m-1}$.

Then there does not exist an immersion of $L^{n}\left(2^{r}\right)$ in $R^{2 n+2 m+1}$.
For integers r, n and k such that ${ }^{\mathrm{t}} r>1$ and $0 \leqq k \leqq n$, define the integer $L(r, n, k)$ as follows :

$$
L(r, n, k)=\max \left\{j \in Z \mid 1 \leqq j \leqq n / 2,\binom{n-k+j}{j} \not \equiv 0 \bmod 2^{r+n-2 j+1-s}\right\},
$$

where $\varepsilon=0$ or 1 according to n being even or odd respectively. Then we have
Theorem 3. There does not exist a $Z_{2 r-i m m e r s i o n ~ o f ~}\left(S^{2 n+1}, Z_{2 r}\right)$ in $\left(R^{2 n+2 L}\right.$, $\left.Z_{2 r}\right)=R^{2 n+2 L-2 k, 2 k}$, where $L=L(r, n, k)$.

Corollary 4. There does not exist an immersion of $L^{n}\left(2^{r}\right)$ in $R^{2 n+2 L}$ where $L=L(r, n, 0)$.

This corollary is known (cf. [3, Corollary 1.5] or [4, Chapter 6, Proposition 4.16]).

Corollary 2 is very restricted. But, in some cases, this gives better results than Corollary 4. For example, $L^{21}(4)$ (resp. $L^{36}(4)$) is not immersible in R^{62} (resp. R^{108}) by Corollary 4, but $L^{21}(4)$ (resp. $L^{36}(4)$) is not immersible in R^{63} (resp. R^{109}) by Corollary 2.

§ 3. Preliminaries

In this section we recall some known results according to [2, Lemmas 2.12.3 and Proposition 2.4].

For a Z_{q}-space $\left(X, Z_{q}\right)$, let $\theta\left(X, Z_{q}\right)$ denote a Z_{q}-vector bundle ($X \times R^{2}, X, \pi, R^{2}$) defined as follows:
(1) $\pi: X \times R^{2} \rightarrow X$ is the projection onto the first factor.
(2) Z_{q} acts on $X \times R^{2}$ diagonally ; $T(x, z)=(T x, T z)$, where $x \in X, z \in R^{2}$ and $T=\exp (2 \pi i / q)$.

Lemma 3.1. If X and Y are Z_{q}-spaces and $f: X \rightarrow Y$ is a $Z_{q}-m a p$, then $f * \theta\left(Y, Z_{q}\right)=\theta\left(X, Z_{q}\right)$.

A G-vector bundle $E \rightarrow X$ determines a vector bundle $E / G \rightarrow X / G$ and this correspondence induces a homomorphism $\rho: K O_{G}(X) \rightarrow K O(X / G)$.

Let $r \eta$ be the real restriction of the canonical complex line bundle η over $L^{n}(q)$. Then we see

Lemma 3.2. $\rho\left(\theta\left(S^{2 n+1}, Z_{q}\right)\right)=r \eta$.
Define the action of Z_{q} on the total space of the Whitney sum $m \oplus k \theta$ ($R^{m+2 k}, Z_{q}$) of the m-dimensional trivial bundle m over $R^{m 2 k}$ and $k \theta\left(R^{m+2 k}, Z_{q}\right)$ by

$$
\begin{aligned}
& T\left(\left(u, t_{1}\right), \cdots,\left(u, t_{m}\right),\left(u, z_{m+1}\right), \cdots,\left(u, z_{m+k}\right)\right) \\
& =\left(\left(T u, t_{1}\right), \cdots,\left(T u, t_{m}\right),\left(T u, T z_{m+1}\right), \cdots,\left(T u, T z_{m+k}\right)\right),
\end{aligned}
$$

where $u \in R^{m, 2 k}, t_{\imath} \in R(i=1, \cdots, m), z_{m+j} \in R^{2}(j=1, \cdots, k)$ and T is the generator of Z_{q}. Then we have

Lemma 3.3. There is a Z_{q}-bundle isomorphisin of the tangent Z_{q}-bundle $\tau\left(R^{m, 2 k}\right)$ onto the Z_{q}-bundle $m \oplus k \theta\left(R^{m+2 k}, Z_{q}\right)$.

Using γ-operations, we obtain
Proposition 3.4. Let n and k be integers with $0 \leqq k \leqq n$, and put

$$
L=\max \left\{j \left\lvert\,\binom{ n-k+j}{j}(r \eta-2)^{3} \neq 0\right.\right\} .
$$

Then there does not exist a Z_{q}-immersion of $\left(S^{2 n+1}, Z_{q}\right)$ in $\left(R^{2 n+2 L}, Z_{q}\right)=R^{2 n+2 L-2 k, 2 k}$.

§4. Proofs of Theorems 1 and 3

Two spaces X and Y are said to be $\bmod q S$-related, if there are non-negative integers m and n and a map $f: S^{m} X \rightarrow S^{n} Y$ which induces isomorphisms of all homology groups with Z_{q}-coefficients, where $S^{k} Z$ denotes the k-fold suspension of a space Z. The following is proved in the line of the proof of Proposition 3.1 of [2].

Proposition 4.1. Let r be a positive integer, and l and n be integers with $0<l \leqq n / 2$. Assume that there is a positive integer t satisfying the following conditions:
(i) $(l+t) r \eta$ has linearly independent $2 t$ cross-sections, where $r \eta$ is the real restriction of the canonical complex line bundle η over $L^{n}\left(2^{r}\right)$.
(ii) $\binom{l+t}{l} \equiv(2 s+1)^{2} \bmod 2^{r}$ for some integer s.

Then the stunted lens spaces $L^{n}\left(2^{r}\right) / L^{l-1}\left(2^{r}\right)$ aud $L^{n+t}\left(2^{r}\right) / L^{l-1+t}\left(2^{r}\right)$ are $\bmod 2^{r}$ S-related.

Combining this proposition with Proposition 3.2 in [2], we have
Proposition 4.2. Let r be an integer >1. Then, under the assumption of Proposition 4.1, $t \equiv 0 \bmod 2^{n-l-1}$.

Proof of Theorem 1. Put $q=2^{r}, r>1$. Suppose that there exists a $Z_{q^{-}}$ immersion $f:\left(S^{2 n+1}, Z_{q}\right) \rightarrow R^{2 n+2 m+1,2 k}$. Let ν be the normal Z_{q}-bundle of f. Then we have

$$
\tau\left(S^{2 n+1}, Z_{q}\right) \oplus \nu=f * \tau\left(R^{2 n+2 m+1,2 k}\right) .
$$

Since $\rho\left(\tau\left(S^{2 n+1}, Z_{q}\right)\right)=\tau\left(L^{n}(q)\right)\left(=\right.$ the usual tangent bundle of $\left.L^{n}(q)\right)$, we have, by Lemmas 3.1-3.3,

$$
\begin{aligned}
\tau\left(L^{n}(q)\right) \oplus \rho \nu & =\rho f *\left((2 n+2 m+1) \oplus k \theta\left(R^{2 n+2 m+1+2 k}, Z_{q}\right)\right) \\
& =(2 n+2 m+1) \oplus k \rho \theta\left(S^{2 n+1}, Z_{q}\right)=(2 n+2 m+1) \oplus k r \eta .
\end{aligned}
$$

It is well-known that $\tau\left(L^{n}(q)\right) \oplus 1=(n+1) r \eta$. Thus

$$
(n+1-k) r \eta+\rho \nu=2 n+2 m+2 .
$$

Let $A=u \cdot 2^{r+n-1}$, where u is some positive integer. Then $A(r \eta-2)=0$, because $r \eta-2\left(\in \widetilde{K O}\left(L^{n}(q)\right)\right)$ is of order $2^{r+n-1-\varepsilon}$, where $\varepsilon=0$ or 1 according to n being even or odd respectively (cf. [3, Theorem 1.4]). Hence, if we take u such that $2 A-2 n-2+2 k>2 n+1$, we have

$$
(A-n-1+k) r \eta=(2 A-2 n-2 n-2) \oplus \rho \nu .
$$

Put $l=k+m$ and $t=A-n-m-1$. Then the above equality implies that $(l+t) r \eta$ has linearly independent $2 t$ cross-sections. Since we may choose u so that $\binom{A-n-1+k}{k+m} \equiv\binom{-n-1+k}{k+m} \bmod 2^{r}$, we have, by (ii),

$$
\binom{l+t}{l}=\binom{A-n-1+k}{k+m} \equiv\binom{-n-1+k}{k+m}=(-1)^{k+m}\binom{n+m}{k+m} \equiv(2 s+1)^{2} \bmod 2^{r}
$$

We therefore see, by Proposition 4.2 , that $t \equiv 0 \bmod 2^{n-m-k-1}$, and hence $n+m+1$ $\equiv 0 \bmod 2^{n-m-k-1}$. But this contradicts (iii). q.e.d.

There are errors in [2]. As is seen in the proof of Theorem 1, we must correct them as follows:

Line 14 in p. 344 should be replaced by
(ii) $\binom{n+m}{n-k} \equiv(-1)^{k+m}(a p+b)^{2} \bmod p^{r}$ for some integers a and b with $(b, p)=1$

Line 14 in p. 347 should be replaced by
(ii) $\binom{l+t}{l} \equiv(a p+b)^{2} \bmod p^{r}$ for some integers a and b with $(b, p)=1$.

Proof of Theorem 3. For $1 \leqq j \leqq n / 2$, the order of $(r \eta-2)^{j}\left(\in \widetilde{K O}\left(L^{n}\left(2^{r}\right)\right)\right)$ is equal to $2^{r+n-2 j+1-\varepsilon}$, where $\varepsilon=0$ or 1 according to n being even or odd respectively (cf. [3, Theorem 1.4]). Thus the result follows from Proposition 3.4.
q. e. d.

References

[1] Jankowski, A., Note on Z_{2}-equivariant immersions, Ann. Soc. Math. Polonae, Comment. Math. Prace Mat. 17 (1973), 81-85.
[2] Kobayashi, T., Some Z_{q}-equivariant immersions, Hiroshima Math. J. 6 (1976), 343351.
[3] Kobayashi, T. and Sugawara, M., Note on $K O$-rings of lens spaces mod 2^{r}, Hiroshima Math. J. 8 (1978), 85-90.
[4] Mahammed, N., Piccinini, R. and Suter, U., Some applications of topological Ktheory, North-Holland Math. Studies Vol. 45, North-Holland, Amsterdam, 1980.

[^0]: Communicated by N. Shimada, January 11, 1985.

 * Department of Mathematics, Faculty of Science, Kochi University, Kochi 780, Japan.

