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A Remark on the Micro-local Resolvent Estimates
for Two Body Schrodinger Operators

By

Hiroshi ISOZAKI* and Hitoshi KITADA**

Introduction

In this paper, we shall deal with the estimates for the resolvent of a
Schrodinger operator multiplied by some pseudo-differential operators.

We consider the Schrodinger operator H——A+V(x) in Lz(Rn] (n^2), where
A denotes the Laplacian in Rn. We assume that V(x} is a real-valued C°°-func-
tion on Rn and for a constant 0<£0<1

(0.1) 3;y(jc)=0(|^r ia |-8o) as

for all multi-index a, where 9£ = (3/3*i)ai ••• (d/dxn)
&n and |a| =a1

Jr ••• +an.
One can also allow certain local singularities for V, which, however, is omitted
here for the sake of simplicity. Let R(z}=(H—z}~1 for Imz^O and <*> =
(1+|* I8)1 '2 for x*=Rn. Let ||-|| denote the operator norm in L\Rn). Then, as
is well-known,

(0.2) IK*>-'/?M±«))<*>-1^C/VT,

for any s>l/2 and I>a0, aQ being an arbitrarily fixed positive constant (see
e.g. [1], Theorem 1.2). Our goal is to improve the estimate (0.2) by multiply-
ing some pseudo-differential operators (Ps.D.Op.'s).

Let us consider the Ps.D.Op.'s P± with symbols p ± ( x , f) having the follow-
ing properties :

(0.3) i
(0.4) for a constant e>0, p±(x, f)=0 if |* |<e or

(0.5) there exist constants — l</:e±<l such that

/>+(*, £)=0 if jc •!</£+,
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p-(x,&=Q if *•!>/;-, (*=x/\x ,1=6/1?!).

Our results of this paper are summarized in the following theorems.

Theorem I. Let P± be as above. Then for any s^O and d>l

where the constant C is independent of 2>aQ>0, a0 being an arbitrarily fixed con-
stant.

Theorem 2. Let P± be as above. If / /+>^_, we have for any s>0

where the constant C is independent of

Choose a C°°-function X(x) such that I(x)=l for \x <1, *(x)=0 for |*|>2
and set VJ(x)=7L(xljW(x\ Let #,= -4+7, and R,(z)=(H,-zYl. Then we have

Theorem 3. Let P± be as above. If /!+>/*_, we have for any s>0

where C is a constant independent of j and

These theorems have not only their own interests but also important ap-
plications to the study of S-matrices for Schrodinger operators.

We have already discussed similar theorems in [1] by the stationary method.
We localized the Schrodinger equation in the momentum space and reduced it to
a Hilbert space valued ordinary differential equation with Ps. D.Op. coefficients,
which we learned from Agmon's lecture at Kyoto University in 1977. In this
paper, we propose to discuss the same problem by the time-dependent method.
That is, we construct a parametrix for the unitary group e~itH and reduce the
estimates for the resolvent to those of the parametrix. For the unperturbed
operator H0=—d, this method clarifies the close connection between the resolvent
estimates and the propagation properties of the scattering states.

In Section 1, we explain the idea of the proof for HQ=—d. We prepare in
Section 2 a parametrix for e~UH and obtain its estimates. Theorems 1, 2, 3 will
be proved in Sections 3, 4 and 5, respectively. In Sections 6, 7, some technical
results for pseudo-differential operators (Ps. D. Op.'s) and Fourier integral operators
(F.I. Op.'s) are proved.

The notations we used here are almost standard. $(Rn] denotes the space
of smooth functions on Rn with bounded derivatives. C™(Rn) is the totality of
smooth functions with compact support. For x^Rn, <*>=(!+ |x|2)1/2 and x=
x/\x\. Da

x=(-iyald«. /(£) is the Fourier transform of /:
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d%, d% being the Lebesgue measure on Rn.
Finally, the authors would like to express their deep gratitude to Professor

J. Uchiyama for his kind advices and various instructions for this paper.

§ 1. Free Time Evolutions and Resolvent Estimates

As has been stated in the introduction, our micro-local resolvent estimates
are closely related with the propagation properties of scattering states. Let us
explain it in this section taking HQ=—A as an example, although it is not logic-
ally necessary.

Let RQ(z)=(HQ—zYl. Let P± be the Ps. D. Op.'s with symbols p ± ( x , f ) satisfy-
ing (0.3)— (0.5). We assume for the sake of simplicity that

(1.1) supp/>±(*, ?)C{f ; a<\%\<b} (0<a<£<oo).

Then we have for f^C™(Rn) and r, s^O

<x>-re-^op*<^

For the moment, we assume that r and s are non-negative integers such that
r^s. On the support of p+(y,g), we have j>-|^ju+> — 1. Therefore for Z^O,
\y+2£t\^C(\y\+t\g\), for a constant C>0. Let 5(f, y,f)=y£+t\£\*. Then

Making use of the relation

we have by integrating by parts r times

<*>-r*-"*°/?<*>Y(*)=^m J J

where am(x}^ $(Rn), bm(y, f ; 0 is a C°°-function such that

(1.2)

Let ^4OT and 5m(0 be the Ps. D. Op.'s with symbols am(x) and bm(x, f ;0, respec-
tively. Then one can rewrite the above equality as follows:

(1.3) <xy-re-ilH^Pt<xys=^Ame-i^Bm(tr.
m

From (1.2), one can easily see that \\Bm(f)\\^C(l+tr(T~" for ^0. Thus we
have for ^0

(1.4)
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By an interpolation, the above estimates easily extends to any r^s^O. To prove
(1.4) for f^O, we have only to replace P+ by P.. We have thus shown the
following

Lemma 1.1. For any d, s^O, there exists a constant C>0 such that

We now make use of the following formulae

e-it(H°-z'dt ( Imz<0),
J —oo

to see

Theorem 1.2. For s^O and

where the constant C is independent of ^>0.

Next let us consider

For f =5^0, define two cones ,r± by

On the support of p-(x, &p+(y, &, x^F- and y+2t^F+ for ^0. Therefore
if /*+>/*_, a simple trigonometry shows that

with a constant C>0. Let S(x, f, 3; ; 0=(x — 3;)? — f If |2. Then on the support of
P-(x, &P+(y, f)

We now integrate by parts N times using the relation eis——i\7$S\
to obtain

8 < x ^ * * a N ( x , £ , y \ t ) f ( y ) d y d £ 9



A REMARK ON THE MICRO-LOCAL ESTIMATES 893

where

(x>'P-e-itn»P$(x>* can be regarded as a Ps.D.Op. with symbol e ~ i t l ^ z a N ( x , £, 3; ; 0-
Thus taking 7V large enough, we have

Lemma 1.3. // £U>//_, we have for any N, s^O,

Passing to the Laplace transform, we obtain

Theorem 1.4. // ^+>^_, we have for any s>0

for a constant C>0 independent of /l>0.

The above Theorems 1.2 and 1.4 are particular cases of our results and
suggest how the propagation properties of e~ltH° affect to the resolvent estimates.
In order to generalize the above results to the perturbed operator H, we have
to introduce a parametrix at infinity for e~UH.

§2. A Parametrix at Infinity for e~itH

First we take note of the fact that one can obtain the same estimates as in
Section 1 using suitable F. I. Op.'s instead of Ps. D. Op.'s. More precisely, we con-
sider F.I.Op.'s A, B±(X) denned by

(2.1)

(2.2)

Assume that the phase function <j>(x, <?) is real-valued and smooth on RnxRn

and that

(2.3) \L

for some s>0 and all a, /3, and

(2.4) sup ( - * 6(x, f)W
*.£ \ OXiO^j '

where / is the n X n identity matrix.
As for the amplitude functions a(x, f), b^(x, f ; 2 ) , we assume that

(2.5)

(2.6)
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for any ^>a0>0, where a0 is an arbitrarily fixed constant,

(2.7) ft±(*,f;J)=0 if |f |<VT/2, J>a 0 ,

(2.8) flU,f)=ft±U,f;*=0 if |*|<1,

(2.9) there exist constants — 1<^±<1 such that

b+(x, £;;0=0 if *•£</!+,

fc.U,f;^)=0 if *•£>/£-.

Lemma 2.1. ^4, B±(%), defined above, are Lz-bounded. Moreover we have :
(1) F0r a?ry s, d^O,

for any X>a0 and ±^0.
(2) Suppose there exists a constant p such that — 1<^<^+<! and a(x, f)=0

if X'£>p. Then for any s,

/or X>a0 and t^Q.

The above lemma is proved by integration by parts in essentially the same
methods as given in Section 1. See [2], Lemma 3.3 for details.

In [2], we introduced a parametrix for e~UH in the form of a F.I.Op. which
gives an approximate behavior of e~UH in an appropriate region of the phase
space and proved the asymptotic completeness of modified wave operators for H.
In the following, we show that its Laplace transform is a nice parametrix for
the resolvent R(z)=(H—z)~l. Our method relies on that of geometrical optics.
We begin with the choice of a phase function.

Theorem 2.2. Let e>0 be a sufficiently small constant. Choose d>0 arbi-
trarily. Then there exists a real function (f>(x, %)^C°°(RnxRn) having the follow-
ing properties :

(1) There exists a constant R>Q such that for x\>R, \£\>d/2 and .f-|>
— l+s/2, <f>(x, f) solves the eikonal equation

(2) For any multi-indices a, /3

for any x} ^Rn, where e0 is the constant given in (0.1).
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For the proof, see [2], Theorem 2.5.
Next we turn to the transport equation. Let us take note of the following

identity

(2.10) e-^(

N
We set a= ^ am, where a0=l. Then the right-hand side of (2.10) takes the

m=0

following form

Define a region Q={(x, £); !£|>d/2, \x\>R, x • £ > — l+e/2}, where e, d, R are
the constants specified in Theorem 2.2 (1). We construct am(x, £) in such a
way that

(2.11) 2*70-Fflm+2'U0)flm-i+4flm-i=0, w=1>

for (x, &^Q. Then for (x,

(2.12) *-**(-j+y-ISIV S flm=-*'
m=o

The equation (2.11) is a first order partial differential equation and can be
solved by the method of characteristics. From Theorem 2.2, it follows that

as x — >co, (x, £)efi. Thus one can integrate (2.11) from the infinity of <?-
direction. Furthermore one can show inductively that

(2.13) \Da
xD^am(x,^\^Ca^^y-\Ky^^-^

for (jc, f)efl, m^l. We omit the proof of these facts in order not to make
this paper bulky, partly because it is almost routine. It would be worthwhile,
however, to note the short range case :

since in this case everything can be written down explicitly. In the case of the
short-range potential, we should take #•<? as 0(x, f). Then (2.10) can be writ-
ten as follows :

N
We set as above a— ^ am, a0=l. Then the right-hand side takes the follow-

771 = 0

ing form
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Thus we have only to solve

2i£'Pam=Vam-1-

which can be easily integrated from infinity :

am(x, £)=
2|£ I Jo

It is now easy to show by induction that am(x, ?) satisfies

-1-^-"^ if

for m^l, | f |></ /2 , *-|>-l+e/2.
We now use the well-known technique of constructing a C°°-function with

given asymptotic expansions (see, e.g. Kumanogo [4], p. 77). Choose X(x)^C°°(Rn)
such that %(*)=! for |x |>2, X(x)=Q for U <1. For a suitable choice of a
sequence R0<R1< •••->oo (R0=R} R being the constant specified in Theorem 2.2
(1)), the function a(x, f) defined by

is convergent and smooth on fi, and for M^l,

for (^, f)efl. Moreover, if we let

it satisfies for any AT and (x,

(2.14) I

Finally we choose ^o0(0, pi(t)^Ceo(R1) such that p0U)=l for ^><^, po(fi=Q for
and ^(0=1 for ?>— 1+e, /Oi(0=0 for f<— l+s/2, and let

(2.15) a ( x , f ) = a U , f ) / t )

Then one can easily show the following

Theorem 2.3. a(x, £), constructed above, has the following properties :

(1) I



A REMARK ON THE MICRO-LOCAL ESTIMATES 897

if |f >d, x•£> — ! + £, x >2R, R being the constant specified in Theorem 2.2
(1). < z U , £ ) = 0 if | f |<d /2 or *-|<-

(2) Let G(x, 6)=e- l^u ' f>(
— 1 + s, u;0 /lave /or (2713; JV>0

We are now in a position to construct a parametrix for e itH.

Definition 2.4. Let (f>(x, f), a(x, f) and G(x, f) be as in Theorems 2.2 and
2.3, respectively. Let b ± ( x , g ] Z ) satisfy (2.6H2.9). We define:

A. fW=

One should take notice of the following fact. Let S(x, f,
> £)-*!£ I2. Then

r5^

We also have

Thus the estimates for U+(t]X), G+(t]X) for ^0 are easily translated into those
for U - ( t ; f i , G - ( t ; Z ) for ^0.

A straightforward calculation shows that
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*-fcU±(t ; X)=HU±(t ; X)-G±(t ; X) .

Therefore, since U±(Q;Z)=A±B±(Z)*,

(2.16) e-"HA±B+(Z)*=U+(t ; *)-*{' e-*{t-'>HG+(s ; fids .

Lemma 2.5. (1) For any s, <5^0, we have

for ^>G 0 >0 and fj^O.
(2) Let p+ and s be as in (2.9) and Theorem 2.3 (2). // /*+>-!+£, we

have for any s, N^Q

^-'G+tt ; X)<x>'\\ ^

for A>a0>Q, f^O, where CD*)"1 is a Ps.D.Op. with symbol ^X1.

Proof. (1) is a direct consequence of Lemma 2.1 (1). We prove (2). By
Theorem 6.2 in Section 6, for large JNX), (Dxy~lG+=A+PN, where PN is a
Ps.D.Op. with symbol pN(x>£} such that

where ^2 can be chosen large enough, and A is a F.I. Op.

Here c(x, f) satisfies

g)|^Ca /3m<;t>-TO , (for any m>Q, if *-!>-

f) lgC a j 8 (if jc-|<-l+e)

Choose a constant /z such that — !+£</*</£+ and C°°-f unctions /?!(?), /02(£) such
that /Oi(0+/oa(0=l for any t, io1(0=l if ^>/^+3(^+-/7)/4, p2(0=l for

!— s)/4. Split A into two parts: A=AiJrA2, where

Since the symbols of ^4i and PN are rapidly decreasing in x, we can apply
Lemma 2.1 (1) to see that

where m(A/")->oo as N-+OO. Applying Lemma 2.1 (2), we see that (x
B+(Z)*(xys also has the desired decay rate. D
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Passing to the Laplace transform in Lemma 2.5, we can show

Lemma 2.6. (1) For any s^O and d>l, we have for any ^>a 0 >0

(2) // /*+> — 1 + s, we /iave /0r a?ry s^

a?ry

§ 3. One Sided Localizations

Let A+ and G+ be as in Definition 2.4. Since (H- If | 2 )e* d U l f )aU, £) =
, f), one can easily show that

(3.1)

Multiplying both sides of (3.1) by R(z)=(H—zr1 and R0(z)=(H0—zr\ we have

(3.2)

which is the fundamental formula we use to derive the micro-local resolvent
estimates.

We also prepare an estimate for the resolvent.

Lemma 3,1, Let a0>0 be arbitrarily fixed. Then we have for any s>l/2

IK^>" s<^>^W±20)<z>- s | |<C, ^ > a 0 ,

where (Dxy is a Ps. D. Op. with symbol <f > and C is a constant independent of

Indeed, this easily follows from (0.2) and the a-priori estimate given in [1],
Theorem 1.4.

Lemma 3.2. Let P±(/0 be the Ps. D.Op. with symbol p±(x,%\X) satisfying
(2.6)-(2.9). Then for any s^O and <5>1, we have

(3.3)

(3.4)

where the constant C is independent of A>a0>Q, GO being an arbitrarily fixed
constant.

Proof. First we show that (3.4) follows from (3.3). In fact, by [1], Theorem
2.4, for any N^l, there exist Ps.D.Op.'s Pl^U) and PN(Z) such that P±W)*=
P<±

N>(Z)+PN(Z), the symbol of P^}U) satisfies (2.6)-(2.9) and the symbol of PN(Z)
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satisfies

(3.5) DSD&N(x,eiZ)\^Caft<x>-N-*a*.

Since R(X±iO)P±W*=R(X±iQ)PiN\X)^R(X±iQ)PN(}i)9 (3.4) immediately follows
from (3.3) and (0.2).

Now, we prove (3.3) for R(Jt+iQ)P+(Z). For p + ( x , £ \ X ) , we choose e, d>Q
small enough so that — 1+£<^+ and p+(x,g;X)=Q if \£\>d. For these £ and
d, we construct $(x, f) and a(x, f) as in Theorems 2.2 and 2.3. Then by
Theorem 7.4, for any TV^l, there exist a F.I. Op. B+(Z) with symbol b+(x, f ;/Q
satisfying (2. 6)-(2.9) and a Ps.D.Op. PN(Z) with symbol satisfying (3.5) such that

(3.6) P+(Z)=A+B+(Z)*+PN(Z).

Using (3.2) and (3.6), we have

(3.7)

The first term of the right-hand side of (3.7) is easily seen to satisfy (3.3) by
virtue of (0.2). To the second term, we apply Lemma 2.6, (1). To the third
term, we have only to apply Lemma 2.6, (2) and Lemma 3.1. D

In order to treat the low frequency term, we introduce the following class
of Ps.D.Op.'s.

Definition 3.3. Let X> aQ>Q. A Ps. D. Op. Q(Z) belongs to <S0W) if its symbol
q ( x , f ; X) satisfies

where the constant Cap is independent of A>aQ>

q(x,£',n=Q if i e i >

Lemma 3.4. Let Q(Z)^SQ(Jt). Then for any s>l/2

where the constant C is independent of

Proof. Let P(Z)=Q(Z)R0(Z±iO), which is the Ps.D.Op. with symbol
q(x, £}X)(\£\z—X)~l. Then we have by the resolvent equation

(3.8)

Since Q(X)^<SQ(A), one can easily show that the symbol p ( x , f ; X) of P(Z) satisfies

(3.9)
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Cap being a constant independent of A>a0>Q. By the asymptotic expansion
([1], Theorem 2.3), for any N^l, there exist Ps.D.Op.'s PN(Z)^S0W and QN(Z)
such that P(^)F = <x>~£°P^(A)+QAr(^), where the symbol of PN(2) has the same
estimates as in (3.9) and the symbol of qN(x, f ; /Q of Q^(^) satisfies

In view of (3.8), we have

(3.10)

Therefore, if r>l/2, ?'^s, choosing N large enough, we have noting (0.2) and
(3.9)

Since PN(Z)^<S0(Z), one can use the above inequality to estimate the term
±*0) to obtain

for some P.vW^^oU). Repeating this procedure, we obtain the lemma. C

Theorem 1 in the introduction now easily follows from Lemmas 3.2 and 3.4,
if we split the symbol of P± suitably. More precisely, we split p±(x, ?) =
^±(^,f)^o(f/VT)+^±(x,f)^(f/VT), where
0o(0=l if l fKl/2, 0-(?)=l if l

§ 4. Two Sided Localizations

We shall prove Theorem 2. As the first step, we show the following

Lemma 4.1. Let P_ be the Ps. D.Op. with symbol satisfying (0.3)-(0.5).
Let P+(X) be the Ps.D.Op. with symbol p^.(x, f ; ^) satisfying (2.6)-(2.9). Assume
that ^+>/^_. Then we have for any s>0

Proof. As has been discussed in the proof of Lemma 3.2, for any Af^l, there
exist a F. I. Op. 5+U) with symbol b+(x, f ; ̂ ) satisfying (2.6)-(2.9) and a Ps. D. Op.
PN(Z) with symbol satisfying (3.5) such that P+(Z)=A+B+(Z)*+PN(Z). In view
of (3.7), we have

(4.1)

Taking N large enough, we see that the first term of the right-hand side of
(4.1) has the desired property by virtue of Theorem 1. Using Lemma 2.6 (2),
we see that the third term has the desired property if we note that
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for s^O, <5>1, which follows from Theorem 1 and [1], Theorem 1.4.
We consider the second term. By Theorem 6.2 in Section 6, for large 7V>0,

P-A+ is split into two parts: P.A+= Ai+QN, where QN is a Ps. D. Op. with
symbol qN(x, ?) such that

(\a

where k can be chosen large enough, and Al is an F.I. Op.

c(*,f)=0 if

Therefore, Aie~itH°B+(Z)* has the same decay property as in Lemma 2.1 (2).
Passing to the Laplace transform, we can show that AlR0(A+iQ)B+(X)* has the
desired property. Using Lemma 2.1 (1), one can treat QNRQ(A+ityB+(Z)*
similarly. D

Lemma 4.2. Let P. be the Ps.D.Op. with symbol satisfying (0.3)-(0.5). Let
Q+(X) be the Ps.D.Op. with symbol q + ( x , £ ; 2 } satisfying (2.6), (2.8), (2.9) and

(4.2) ?+(*,£ ;«=0 if

Assume that /*+>/*_. Then we have for any s>0

(4.3)

(4.4)

Proof. First we derive (4.4) from (4.3). By [1], Theorem 2.4, for any N^l,
there exist Ps. D.Op.'s QN(Z) and PN(Z) such that Q+(X)*=QN(Z)+PN(X), the
symbol of QN(X) satisfies (2.6), (2.8), (2.9), (4.2) and the symbol of PN(X) satisfies
(3.5). Since P./?W+zO)0+W)=P_J?W+/0)O^W)*+jP_^W+iO)P^W)*, (4.4) follows
from (4.3) and Theorem 1, if we choose Af large enough.

We turn to the proof of (4.3). Let P+(X) be the Ps.D.Op. with symbol
q+(x, £ j^dli2-^)-1. Then, as is easily seen, J?0W+zO)^W)*=^W)*. The
resolvent equation implies that

(4.5) P_/?W+/0)0+W)*=P_PTW)*-P_/?W+/0)yP+W)*.

Again using [1], Theorem 2.3, for any N^l, there exist Ps. D. Op/s P(+)U) and
PN(Z) such that P+V=(xy-£°Pw(/l)-i-PN(fi} where the symbol of P(+)W) satisfies
(2.6), (2.8), (2.9), (4.2) and the symbol of PN(Z) satisfies (3.5). Then, (4.5) can
be written as
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(4.6) P_#(>^0)Q+(;o*:=P_P+(;o*-P^

Using [1], Theorems 2.3 and 2.4 and the condition /*+>/£_, one can show that
for any s>0

(4.7)

In view of Theorem 1, we have for any s>0, taking N large enough,

(4.8) H<x> sP_^W+fO)P JvU)*<%> s | | ^C/VT, 1> a0>0 .

Therefore, from (4.6)~(4.8), we have for any s>0 and r^R\

(4.9) ||<jc>'P_fl(;i+rt))Q+(;0*<^

Since P(+)U) satisfies (2.6), (2.8), (2.9) and (4.2), one can use (4.9) itself to
estimate the right-hand side of (4.9). Thus we can replace r— s0 in (4.9) by
r— 2s0. Repeating this procedure, we finally obtain

lico'p-#w+*o)c+w*<^^
where we have used Theorem 1. D

Remark 4.3. Let P± be Ps.D.Op.'s with symbols satisfying (0.3)~(0.5). Let
B be the Ps.D.Op. with symbol <p(x, f) such that \D*Dty(x, f)| ^Ca/i<;e>- |al and
<f>(x> ?)=0 if |f |>2s/3, where e is the constant specified in (0.4). Assume that
aQ>s2. Then by the same arguments as above, one can show that for any s>0

These estimates will be used in § 5.

Now, in order to prove Theorem 2 in the introduction, we have only to
split the symbol of P± suitably and apply Lemmas 4.1 and 4.2.

§ 5. Micro-local Approximation of Resolvents

In this section, we shall prove Theorem 3. Choose C°°-functions <£(£), 0(f)
such that 0(f)+0(£)=l, (*(£)=! for |£|>2e/3, ^(£)=1 for |f |<e/3. Let A, B
be Ps.D.Op.'s with symbols 0(f), 0(f), respectively. Then, letting Vj=V—Vj,

(5.1)

^

The second term of the right-hand side is estimated as follows :
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The first factor is bounded by C/VT by Theorem 1. The second factor is
bounded by C/~£°. The third factor is bounded by C/VT by virtue of Remark
4.3, where the constant C is independent of /. Therefore, we have

(5.2) l^YP^R^+i^V^BR^+i^P^xY^Cr^1,

Next we consider the first term of the right-hand side of (5.1). Choose C°°-
functions p±(t] such that p+(t)+p-(t)=l, p+(t)=l for ^>^_+2(^+-^_)/3, p-(t)=l
for f< /£_+( / i+— ji_)/3. Let AJ± be Ps.D.Op.'s with symbols
Then

(5.3)

The first term of the right-hand side of (5.3) is estimated as follows:

^
The second factor is bounded by C/VT by Theorem 1, the constant C being
independent of /. Theorem 2 implies that the first factor is bounded by Cj's°/V I ,
where we have used an estimate for the commutator of Vj and the Ps. D.Op.
with symbol $(x)p+(£- £)$(£).

The second term of the right-hand side of (5.3) is estimates as follows :

where we have used Theorems 1 and 2. Thus we have

(5.4) ||<^>sP_/?W+20)FJ-A^U4-fO)P+<^>sII^Cy-£o^-1.

Theorem 3 directly follows from (5.1), (5.2) and (5.4).

§6. Products of Fourier Integral Operators
and Pseudo-differential Operators

In this section, we derive a formula for the product of F. I.Op.'s and
Ps.D. Op.'s. Our treatment is slightly different from the standard one (see e.g.
[5]).

First we introduce a class of symbols.

Definition 6.1. Let a, m^R1. S(a, m) is the set of C°°(Rn xRn}-f unctions
p ( x , f) such that
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(6.1) \D«D&(x,&\^Ca^xy-^^™.

Let 6(x, £) be a real C°°(RnxRn)'f unction such that

Mx,&=xe+Y(x,&,
(6.2) \

[\DSD%Y(X,& ^c^*)1-""-", (o< £ o <D.
For fl(*, £)eS(ffi, mi) and £(;*;, f)eS(<j2 , ?7Z2), we define a F.I. Op. ^4 and a
Ps. D. Op. P by

(6.3)

(6.4)

Note that ,4 is L2-bounded if a^O and ra^O ([2], Lemma 3.3).

Theorem 6.2. L0£ a(x, f)^5((Ti, ??Zi) and p(x, s)^S(ff2, m2). T/?en for any
integers N, k^l, there exist a F.I. Op. Al and a Ps. D.Op. PN such that

(6.5) PA=A,+PN,

where

(6.6)

(6.7) P^/(x)

and/ fli(^, f) consists of a finite sum of the following terms:

(6.8) (8jp(x, &)-(DfrY(x, f)

/?^r(z, f) satisfies

(6.9) 2

. Let K^:, f)=e*y(a : '€)a(A:, f). Then y4 can be regarded as a Ps.D.Op.
with symbol b(x, f). Applying the well-known formula of the asymptotic expan-
sion of the symbol of the product of Ps. D.Op.'s (see Kumanogo [4], p. 75), we
see that the symbol of PA (regarded as a Ps.D.Op.) is given by

qM(x, £)=
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Define a^x, £)=e~iY(x'^qM(x> £). Then the Ps.D.Op. with symbol qM(x,& can
be written as (6.6). One can also see that a^(x9 <?) consists of the sum of the
terms like (6.8). rM(x, £) is estimated as follows. Choose M large enough.
Then if I f ! — M , we have by our assumptions

s \
1,3.S*

With this in mind, one can argue as in [4], pp. 69~72 to see that rM(x, £)
satisfies (6.9). D

§ 7o Reduction of Fourier Integral Operators
to Pseudo-differential Operators

In this section, we shall derive a formula for transforming the product of
F.I.Op.'s into a Ps.D.Op. We begin with the following lemma.

Lemma 7.1 (Left simplified symbol). Let P be a Ps.D.Op. such that

Define p(x, £) 63;

Then P is a Ps.D.Op. u^/z symbol p(x, £). Furthermore, for any

#U,f )= 2 - -Sf^f lU, f, j)U

The proof is routine, hence is omitted (see Kumanogo [4], pp. 73, 76).
Let us rewrite A+B+(X)* into a Ps.D.Op., where A+ and B+(X)* have been

introduced in Definition 2.4. By definition

(7.1) A+B+(X)*f(x)

(7.2) SU,e f ^ )=#

Let %0(^)eC?(fin) be such that X0(*)=l for U|<1, X0(jc)=0 for |x >2. We
set 3U*)=l-*o(*). Choose I^^C^R1) such that ^+(0+3C.(0=1, 3C+(0=0 if
^<-l/2, JL(f)=0 if f>l/2. We split A^B+(X)* into three parts: ^+B+W)*=

, where
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By the mean value theorem,

JO

Let us consider the map : £->Z(#, f , 3;). In view of Theorem 2.2 (3), we have

(7.3) Z(x, |, y}-

On the support of a(x, £)b+(y, £}W.+(x'$

(7.4) \Da
xD^D7

v(Z(x9 e, ^-fil^C

In fact, in this case f - j > > — 1/2. Therefore |ta+(l— 0:vl^C(f | j c | + ( l — f ) l : y | )
for O^f^l, with a constant C>0. Thus we have using Theorem 2.2 (2),

which proves (7.4). (7.3) and (7.4) imply that the map f-»ZU, f , 3;) defines a
differomorphism on Rn and that its inverse W satisfies

(7.5) \

on the support of a(x, W(x, f, 30)M:v, ?P"(x, f, ;y); ^)X.(f - j'^coC^). Letting J ( x , f, 3;)
(,tj f, 3;)), we have

We now make use of Lemma 7.1 to see that Qi(X) is a Ps.D.Op. with symbol
q(x, f ;/i) having the following asymptotic expansion

(7.6) q ( x , £ ] X ) = E ^dlDa
yc(x,%, y;Z)\y=x+qN(x,£',ti,

\a\<N OL \
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In particular, the first term of the asymptotic expansion is c(x, f, x; A). In view
of (7.5), we have by the Taylor expansion

N
c(x, £, x; /O— S cm(x, f; ^),

m=o

where c0U, ?;>0=a(*, £)&+(*, ?;>0 and each c m (* , f ; ^ ) consists of derivatives
of a(x, £), b+(x, £; ^). One can also see that

Let d, £>0 be the constants specified in Theorem 2.3 (1). Assume that

(7.7) b+(x,£-,Z)=Q if |£ |<d or *•!</*+, /f+>-l+e.

Then, since fl(x, £)=l+0(|*|~e°) on the support of &+(*, £;^), we have

c0(x, f; J)=M*,e;

where £+(*, f ; A) has the properties (2.6)-(2.9) and (7.7) with the same constant
p+ as for &+(*, f ;^).

We have thus shown that QiU) can be written as a sum of Ps.D.Op.'s:
P+(Z)+(xy-£°PJ!_(ti+PN(Z), where the symbol of P+(Z) is b+(x, f ; ^), the symbol
of P+U) fulfills (2.6)-(2.9) and (7.7) with the same constant p+ as for b+(x, f; A),
and the symbol pN(x, f ; A) of P^U) satisfies

Next we consider Q2(>1). In this case

for a constant Ca/s?. We rewrite Q2(Z) as

, £ , y ) ;

On the support of Cz(x, $, y ; Z ) , x — y\^C(\x\ + \ y \ ) , since x-y<l/2. Taking
into account of (l+\x—y\*r1(l—d£ei(x-v>*=ei<x-y>*, we have by integration by
parts

N(x, £,y,ti\ ^CaftYN<xyN<yy
N , for any A^^l .

Hence by Lemma 7.1, Q2U) turns out to be a Ps. D. Op. with symbol rapidly
decreasing in x. QS(X) can be treated similarly, because its symbol is compactly
supported for y.

In summary, we have proved the following
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Theorem 7.2. Let A+, B+(X) be as in Definition 2.4. Suppose that b+(x, £ ; X)
satisfies (7.7). Let P+(X) be the Ps. D. Op. with symbol b+(x, f ;^). Then for any
N^l, there exist Ps. D. Op.'s P+(X), PN(%) having the following properties:

(1) A+B+(X)*=P+(X)+<xy-*°P+(V+PN(X).
(2) The symbol of P+(X) fulfills (2.6)-(2.9) and (7.7) with the same constant

/e+ as for P+(X).
(3) The symbol of PN(X)=pN(x, f ; X) satisfies

Here we note that

with P+(X), PN(X) having the same properties as P+(X), PN(X), respectively,
which follows from the asymptotic expansion of the symbol of the commutator
[<jt>~£°, P+(X)] (see [1], Theorem 2.3). Thus the above theorem is reformulated
as follows.

Theorem 7.3. Let A+, B+(X) and P+(X) be as in Theorem 7.2. Then for any
N^l, there exist Ps. D. Op.'s P+(X), PN(X) having the following properties:

(1) ^+B+W)*=p+M)+P+W)<^>-o+^W).
(2) The symbol of P+(X) satisfies (2.6)^(2.9) and (7.7) with the same constant

fjt+ as for P+(X).
(3) The symbol of PN(X)=pN(x, f ; A) satisfies

Theorem 7. SIcan be rephrased as follows: For a given Ps. D. Op. P+(X),
one can find a F.I. Op. B+(Z) and Ps.D.Op/s P+(X) and PN(X) such that P+(X)
=A+B+(Z)*-P+(ZKx>-£Q-PN(Z). Let B+(x, f ;X) be the symbol of P+(X). If we
take B+(x, £;$ instead of b+(x, <f ; X) in the above procedure, we can obtain the
same type of asymptotic expansion for the F. I. Op.

Thus P+(X) can be written again as a sum of a F. I. Op. and Ps. D. Pp.'s. Re-
peating this procedure, we obtain

Theorem 7.4. Let A+ be as in Definition 2.4. Let P+(X) be the Ps. D. Op.
with symbol p+(x, g;X) satisfying (2.6)-(2.9) and (7.7). Then for any N^l there
exist a F. I. Op. B+(X) with symbol b+(x,£;X) satisfying (2.6)~(2.9) and (7.7), and
a Ps. D. Op. Pif(X) having the following properties:

(1) P+W)=^+B+«)*+PwW).
(2) The symbol of PN(X)=pN(x, f; X) satisfies
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