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The Asymptotic Behavior of a Variation
of Polarized Hodge Structure

By

Masaki KASHIWARA*

Introduction

0.1. The purpose of this paper is to give the asymptotic behavior
of variation of polarized Hodge structures in the several-dimensional
case. We do not discuss here why and how the notion of variation
of Hodge structures arises and it is developed by P. A. Griffiths, P.
Deligne, W. Schmid and others. What motivates us is to generalize
Zucker's result to the several-dimensional case. His result is as follows:
the cohomology groups of a variation of Hodge structure on the
compact curve with finite singular points have also a Hodge structure,,
He proceeds his proof as follows. As an analytic tool, he uses the
harmonic analysis (Hodge-Kodaira theory) and as a geometric tool
he uses W. Schmid's result that we discuss later. By using the
Kahler metric on the curve which behaves with the special property
at singular points and the Hermitian metric of the vector bundle which
arises from the polarization of Hodge structure, he succeeds to
express the cohomology groups of the variation as the L2-cohomology
groups. Since the L2-cohomology group is isomorphic to the space
of harmonic forms, by decomposing harmonic forms into (/?, q} -forms,
he obtains the Hodge decomposition of the cohomology group of
Hodge structure. However, in order to prove the first step—to express
the cohomology group by L2-cohomology group—he is obliged to use
the result of W. Schmid on the asymptotic behavior of variations of
Hodge structures at singularity.

In this paper, we generalize W. Schmid's result to the several-
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dimensional case and in the forthcoming paper, we discuss the genera-
lization of Zucker's result.

0. 2. Now we are going to recall Schmid's result. For an integer n,
a Hodge structure of weight n is a couple (Hz, F) consisting of a
finitely generated Z-module Hz and a finite decreasing filtration F of
HC = C®HZ such that Hc= 0 (Fpf}Fq). Here, F is the complex

Z n=p+q

conjugate of F. The Weil operator G is the automorphism given by

C\Hpq = ip~9 where Hp'q = FpftFq- A polarization S is a non-degenerate

bilinear form on HQ = Qjg)Hz such that S(FP
9 Fn+l~p) =Q and that

z
S(Cu,v) is a positive definite Hermitian form on Hc.

Let X be a complex manifold. A variation of Hodge structure of
weight n on X consists of data (Hz, F, 5) : Hz is a local system on
X and 6* is a non-degenerate bilinear form Si £/Q(X)//Q— >Qj? and F is
a finite filtration of holomorphic vector bundles such that at any point
x the stalk (Hz, F, 5) gives a polarized Hodge structure and, for any
holomorphic vector field v,vFpc:Fp~l.

Let D be the open unit disc of C and Z)* the pictured disc.
Let (Hz, F, 5) be a variation of Hodge structure and let M be the
monodromy of HQ. Then M is quasi-unipotent (i. e. its eigenvalues
are the root of unity).

Set N= — log Mm taking m>\ so that Mm is unipotent. Then N

is a nilpotent endomorphism of HQ. Let W(N) be the monodromy
weight filtration, i. e. the unique filtration such that NWk(N) dWk-2(N)
and Nk: gr^N)^gr^N\

Then the theorem of W. Schmid says

Theorem. For a flat section u £i Wk with u & Wk-i, we have

|M|J~(-log|*|)» when *->0.

Here \ \z is the norm given by the polarization of the Hodge structure at

In this paper, we give its generalization to several-dimensional case.
To simplify the explanation, we consider the two-dimensional case.
Let us consider a variation of Hodge structure on (^l5 £2) £= -D*
Let Mj(j=l,2') be the monodromy at Zj = Q and define Nj from
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just as N and M in the one-dimensional case. Let WQ, W\ and W2

be the monodromy weight filtrations of NI + N2, NI and 7V2, respectively0

We divide Z)*xD* into two parts

A! = fee/)* XZ>*; log |^| /log U2| >}
and

A2= Ue/)* x D* ; log |*2| /log |^| >}

Theorem. Let us decompose Hc = ®Upqwith Wok~® Upq and Wik =p^k
®Up>q and take a metric \ \ on Hc* Then for a flat section u=^upiq
g^fe

of Hc with upiq^Upiq, we have

(-log Ifcl )'-«(-log k 1)' Kl2 for
P.O.

The estimate on A2 is similar. For the more precise statement see

Theorem 2. 4. 2, 3. 4. 1 and 3. 40 2.

The author would like to express his gratitude to Professor T0

Kawai for helpful discussions.

After he finished this paper, the author received a preprint by

E. Cattani, A. Kaplan and W. Schmid which contains the same result
The proofs are different.

§ L Filtrations

1. 1. Let A be an abelian category. A finite (decreasing) filtration

F of an object M of A is by definition a decreasing sequence {Fp}

of subobjects of M such that FP = M for /><0 and FP = Q for /?>0e

If there is no fear of confusion, we omit the phrase "finite". We

write grp
F = Fp/Fp+l. As usual, by FP = F~P, we interchange freely

increasing filtrations and decreasing filtrations.

1. 2. Let T be an exact contravariant functor from A to another

abelian category. For a filtration F of an object M of A3 let us

denote by T(F) the filtration of T(Af) given by

(1.2. 1) T(Py=T(M/Fl~p\

so that we have

(1.2.2)

1. 3. Let Fl and F2 be two filtrations,,



856 MASAKI KASHIWARA

Lemma 1. 3. 1. For any k we have

l = r\ (F{+Ff)
k=p+q p+q=k+l

Proof. Set F*(resp. F'*) the left-hand side (resp. right-hand side).

We have VkdV'k. In fact, it is enough to show Ff n Ff C Ff ' + Ff ' for

k=p + q and k + \=p' + q'. If p^pf or q^q\ this is true0 Hence we

may assume p^p'—l and q^q'-l. Then k=p+q^ (p'-l) + (q' — 1)

= & — 1, which is a contradiction.

Now we shall show V'kdVk. In order to see this, it is enough

to prove

(1.3.1) F'*nFfcF* + Ff+1.

Now, we have

v/k n FI c (Ff-? + FI+I) n FI cFf-? n FI + FI+I c v*+ FI+I.
Q. E. D.

Definition 10 30 1. (Steenbrink-Zucker [S-Z]). We define Carnal-

gum F!*F2 of Fl and F2 by

(1.3.2) (F^F2)
k= E FfnFf= E (Ff + Fl).

k=p+q p+q=k+l

Remark 1. 3. 2. (i) This notion is self-dual, i. e. for an exact

contravariant functor T, T(F^F2") =T(Fl) *T(F2).

(ii) For three filtrations F1? F2 and F3, the relation, (F^F^) *F3 =

FI* (F2*F3) does not hold in general. Its sufficient condition is discussed

in §1.6.

1. 4. Two filtrations Fl and F2 of M are called n-opposed (see Deligne

[D]) if Af£±Ff@F| for p + q = n + l. This is equivalent to saying that

(Fi*F2)n = M and (Fx*F2)
 n+l = 0. The following is easy to prove (See

[S-Z]).

1. 5. Lemma 1. 5. 1. Let Fl5 F2 be two filtrations of an object M.

(i) ([S-Z]) (F1*F2)'(£rJ1)=JF?-*(grJ1)

(ii) Let G be another filtration of M. Then G = Fi*F2 if and only if

and F2(gr1o) is k-opposed for any k.
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L 6- As a generalization of the amalgum of two nitrations, we make

the following definition.

Definition 1. 6. 1. For a family of filtrations Fl3 . . . , Fn of an object

M, we define

Remark L 6. 2. / and S are the dual notions to each other, L e»
for an exact contravariant functor T, we have

(1.6. 1. 1) T(I(F19. . . , FJ) =S(T(FJ, ..., 7XFJ)

(1.6. 1. 2) T(S(Fl9 . . . , FJ) =/(T(F1), . . . , T(FJ) .

Since the proof of the following lemma is simple and similar to that

of Lemma 1. 3. 1, we omit its proof.

Lemma 1. 6» 2* L^^ Fb . . . , Fn be a family of filtrations. Then we

have

(i) /(F1 ? 8 . .?FJc^(F1 ? . . .5FJ.

(ii) I(Fl9 . . . , FH) c/(/(Fl5 . . . , Fz) , Fz+1? . . . , FJ

(in) S(F19 . . . , FJ ^5(5(F15 . . . , F0? Fl+1, . . . , Fn),

Definition 1. 6. 3. A family (Fl9 . . . , Fn} of filtrations is called

distributive if I(Fl9..., FM) =S(Fl9 . . . , Fn).

The naming comes from Remark 1. 7. 3. A single filtration and a

couple of filtrations are distributive (Lemma 1.3.1).

1. 7o We shall study the property of distributive families of filtrations.

The following is a key lemma.

Proposition 1. 7. 1. A family {F1? . . . 3 F J of filtrations of M is

distributive if and only if the following two conditions are satisfied.

(i) For any q, [F\ fl FJ, . . . , Fw_x fl F^} is a distributive family of

filtrations of F* and I(Fl n F«, . . . , F^ n F*) =I(Fl9...9 FM_X
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(ii) For any q, {(Fl + FQ/Fi9 . . . , (Fn-i + F$/F$ is a distributive
family of filtrations of M/F* and we have

l5 . . . , Fn_0 +FQ/F*.

Proof. Since the implication (i) + (ii) =>"{Fl5 . . . , Fn] is distributive"
is easily proven, we shall show only the converse implication. Since
(i) and (ii) are the dual statements, we shall show only (i). Let 3F

be the family [Fi9 . . . , Fn_J . Then we have

n n
nF*)

Hence it is enough to show

This is clear for p^>0 or q^>Q. Therefore it is enough to prove
(Api9+i) + (Ap+iiq)i^>(Ap>q). Now, we have, since {^^ Fn] is distributive

n-l
,^j+k=p+q

By dividing the summation into three parts

and

we obtain

This implies

Then (Apiq+l) and (Ap+iiq) imply that the last two terms are con-
tained in I(^T\F^)P, and hence we obtain (Apiq). Q.E. D.

Proposition 1. 7. 2. Let {Fl5 . . . , Fn} be a distributive family of filia-

tions. Then we have
(i) {Fj, F1? . . . 3 Fn] is also distributive.
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(ii) [Fl*F»F»...9Fn}9 {Fl + F*F»...9FH} and {F^F2, F3, . . . , FJ
are also distributive. Here Fi~\-F2 (resp. FxHFg) is the filtration defined by
(Fl + F2)

p = F{+Fp (resp. (F1nFJ* = F{nF$).
(ui) For q and j we denote by FJ the filtration given by ( Ff ) k = M9 Ff , 0

for £ = 0,1, 2. Then [Fl9 . . . , Fm Ff} is distributive.
(iv) we have

(Ft +Fp n FI= (Ff n FD + (F? n FD .

Since the proof is more or less direct, we omit it.

Remark 1. 7. 3. [Fi, . . . , Fn} is a distributive family if and only if

the lattice (by + andf i ) generated by Ffs is distributive (i. e.

1. 8. Lemma 1. 8. 1. L^^ {Fb . . . , Fn] be a family of filiations of
M. We assume I(Fl9 . . . , FnY = M and S(Fl9 . . . , Fw)z+1 = 0. Then we
have

(i) Setting, for pl9 . . . , pn with l=EpJ9 Hh ..... *n = r\FP
i*, we have

(ii) Fl& ® HPl ..... Pn

<*pk

where the indices run over l=^]pj and p^(l'

Proof. Set Hh ..... P" = M/Z F?i+\ Then the image of <p\ ®HP^>M is
3 = 1

I(Fl9...9 FJ l and the kernel of 0: M-*@HP is S(Fl9...9 FJ /+1
8 Hence

we have ®HP^>M>->®HP. On the other hand, Hp-^Hpf is zero for

p=£p'. Therefore HP->HP is an isomorphism and we have @Hpc$M

c$@Hp. Now we have 0(Fj)C © Hp and hence F|C S ^. The
^•>? ^->«

other inclusion is evident and we have (ii) . Q. E8 De

Definition 1.8.2. If the assumption in Lemma 1,8.1 is verified we
say [Fl9 . . . , FJ is /-opposed.

Proposition 1. 8. 3. Let {Fb . . . , FJ be a distributive family of filtra-
tions of M. Set G = /(Fl3 . . . , FJ =S(F^ . . . , FJ8 Then we have
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(i) {Fj(gr^}j=i ..... n is k-opposed.

(ii) Setting Hh ..... P» = r\FP/ (gr%) with k = %pJ9 we haver\FP/+> Hh ..... \

Corollary 1. 80 3. Let {F1? . . . , Fn} be a distributive family of filiations
of a semi-simple object M. Then there is a direct sum decomposition

such that

Proof. We take Ih Pn such that Ih *nCRF^' and Ih *"->

Hl n is an isomorphism. Then the last proposition implies the
desired result.

Definition L8.4, We call [Ih ..... Pn] the splitting of {Fl9...,FH}.

1. 9o Now let M be a finite-dimensional vector space over U, and
l, . . . 9 W

n] a distributive family of increasing filtrations of M. For
a multi-index a= (al9 . . . , aj, we set Wa = r\Wj

a.. Let T be a set

and/a(0 a non-negative valued function on T. We assume

(1.9.1) For a and j8 such that fi^a (i.e. j8^«j for any j), there
exists a positive constant C such that /XO — Q/o(0-

Let | |f be a family of norms parametrized by £^T. We fix a norm
| | on M.

Lemma 1.9.1. Let M=@Ia be a decomposition such that Wa = ®Ip.
$^a

We assume

(1.9.2) For u^Ia, there exists a constant C such that \u\t^Cfa(f)
for any tEiT*

Then we have the following,

(1.9.3) There exists a constant C such that for any uEiM, if we write
then we

|ttal f°r

u=^ua with ^aEE/a, then we have
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Proof. Let us take a base [u3] of Ia. Then there exists C>0

such that \ U j \ t ^ C f a ( t } . Hence, for any u=^^iui m ^«? \u\t = C^

\^i\fa(f) = C" \u \ f a ( t ) . Hence there exists a constant C^>0 such that

for any a and any u^Im u\ t^Cfa(£) \ u\ . Thus if u=J^ua, we have

Corollary 1.9,2. The following condition on \ \t does not depend on

the choice of a splitting M=@Ia such that Wa = ®Ip.
B^a

(1,9. 5) there exists a constant C>0 such that for any u=J^ua with

ua^Ia, we have

(1.9.5.1) |«|^CS/a(0|ttal> any t^T.

(1. 9. 5. 2) S/tt(0 |Ma| ^C \u \t for any tt=T.

Definition 1.9. 3. If the condition (1.9.5) is satisfied, we write

\u\t~~f a(V on u^Wa and t^T.

§ 2. Polarized Hodge Structure

20 1. Let HR be a finite-dimensional jR-vector space with a non-

degenerate bilinear form £(*, *) and let Hc be the complexification

C®RHR of HR. Let us fix a weight rceZ and assume

(2.1.1) S(u,v) = (-yS(v9u).

Let G = Q(S,Hc) and let GR = O(S,Hn) be its real form. Let us

denote by g and g« the Lie algebras of G and GR, respectively.
Let D be the classifying space of Hodge nitrations, that is,

(2. 1.2) D= {F; F is a finite filtration of Hc,
pp are th

Here _J_ denotes the orthogonal complement with respect to S. Then

D is a projective homogeneous space of GO A Hodge filtration F is

called a Hodge structure if F and its complex conjugate F is n-

opposed. Then Hc= ® Hp'q with Hp'q = FpHFq. We define the
n=p+q

Weil operator G^GR by C|HM = i?~?. We say that S is a polarization

of the Hodge structure (HR, F) if the Hermitian form S(Cu, u) is

positive definite. In this case, we define the norm |*|F by
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(2.1.3) \u\$ = S(Cu,ti).

We denote by D the set of FeZ) such that S gives a polarization of
F. Then D is a homogeneous space of GR and the isotropy subgroup
is compact.

2. 2. Let JV be a nilpotent element in QR.
Then there exists a unique finite filtration W of Z/c such that

(2.2.1) NWkdWk-2

(2.2.2) #*: gr7?tgr?k for A:^ 1.

This filtration W is denoted by W^(AO and called the monodromy weight

filtration of N.
We have easily

(2. 2. 3) W (N) ^ = W(AO _!_,.

For £^0, the kernel of Nk+1: £rf->£r!^_2 is denoted by Pk(lf) and called
the primitive part. Then we have

(2.2.4) «rr = ®/

2. 3. Let / be a mutually commuting set of nilpotent elements of g^.
We set

(2.3.1) CW = (XtNN; tN>0}.

Definition 2.3. 1. For 0ra Fez) «^rf / flj <26oz;^, we say that {/, F}
forms a nilpotent orbit if the following conditions are satisfied.

(2. 3. 2) NFpdFp-1 for any NtEl.

(2.3.3) There exists #0eC(/) -^ ^ eiNF(=D for

The following theorem is due to W. Schmid.

Theorem 2.3.2 ([S]). Let N be a nilpotent element in g/j
and assume that {N, F} forms a nilpotent orbit. Let W be the monodromy
weight filtration of N. Then we have the following properties.

(2. 3. 4) (F, W) is a mixed Hodge structure of weight n, i. e.

(F(grD9 FCgrf)) is (n + k) -opposed.

(2. 3. 5) The bilinear form S(u, Nkv) on gr% gives a polarization of the

Hodge structure on the primitive part Pk(N).
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We have the partial converse of this theorem. Let FeZ), N a
nilpotent element of QR and let W be the monodromy weight filtra-
tion of N and Pk the primitive part.

Lemma 2. 3. 3([C-K]). Assume the following conditions.

(2. 3. 6) (F, W) is a mixed Hodge structure of weight n.

(2.3.7) (F,W) is 12-split, that is, if we set Ip'q = FpnFqnWp+q-m

then Fp = @Ip-q and Wk= © /*•*.
q p+q^k+n

(2. 3. 8) S(u, Nkv) gives a polarization of the primitive part Pk.

Then eimF^D for t>0.

The following theorem is due to Cattani-Kaplan8

Theorem 2.3. 4 ([C-K]). Let I be a mutually commuting set of
nilpotent elements of QR, FELD and assume that {/, F] forms a nilpotent
orbit. Then we have

(2. 3. 9) For any /C/5 there exists a filtration W(J} such that W(f)
is the monodromy filtration of any N^G(J).

(2. 3. 10) There exists g^G with the following properties

(2. 3. 10. 1) g commutes with I.

(2. 3. 10. 2) g \grW(I} =id for any k.

(2.3.10.3) // we set FQ=gF, then {F0, W(l)} is R-split and
eiNF0(=D for any

2» 4. Admitting these results in § 2. 33 we shall start our arguments
by the following lemma.

Lemma 2.4.1. Let FEiD and let I be a commuting finite set of
nilpotent elements in QR, Assume that {/, F} forms a nilpotent orbit,
Then, for any decreasing sequence 7 = /0Z)/iZ). . .ZD/w of subsets I,{F,

, ... 3 W(Im)} is a distributive family.

Proof, We shall prove this by the induction on m. Therefore,
we may assume that

(2.4. 1) { W ( I j } } j ^ is a distributive family.
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By (2.3.10), there exists g^G commuting with / and satisfying
the conditions (2.3.10.2)^(2.3.10.3). Since gW(Ik) =W(Ik), we
may replace F with gF, which is 12-split. Hence we may assume
from the beginning that (F, W(F)) is /J-split. Set Ip-q = FpnFqn
Wp+q-H(I). Then we have Hc = @P'q and jP = 0/H

Let us define Y1? Y2 <E End (//c) by

(2.4.2) Yi\lP,q=P and Y2|/M = ?.

Then since Nl^dP-1'9'1 for Nel, we have [Yl5 #] = -N,
[Y2, N] == ~ N for N&I. Hence YI and Y2 preserves the filtrations F and

PK(/fc). By setting /£•« = W(/j) fl/M, we have W(/fe) =0/J'«.
P.Q

Now by the assumption [W(I/)}j^i is a distributive family, and
hence {!$'*} &i is a distributive family of filtrations on Ip-q. This
immediately implies the desired result. Q. E. D.

Theorem 2» 4. 2. Let K be a compact subset of D and let 1= [N^ . . . ,
NI] be a commuting set of nilpotent elements in g/j. We set Ij={Ni\

We assume the following conditions.

(2. 4. 3. 1) // F<=K and N<=I then NFPC.FP~1

(2.4.3.2) For F^K and N^G(I) we have eiNF^D

(2. 4. 3. 3) For any p, k and /C/5 dim F>fW*(/) does not depend on

Then for any e^>0 we have

(2. 4. 4) |« j ft

I I

on u^r\Wp.(Ij} and N=£tjNj with ^>e
3=1 J j=l

tj/t,.{>6 for 2£j£l.

For this notation, see Definition 1. 9. 3.

Corollary 2, 4. 3. Under the same notation, we have

(2. 4. 5) \eiNu\ j^-tfteAi/2. - .(ti/ti-j*1

i i
on u^r\Wp.(Ij) and N=ZtjN3- with ^>£, tj/t^^e for

3=1 J j=l
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Proof. We shall prove this by the induction on /. Set W=W(I).

Let us take a semi-simple element Y in QR such that

(2. 4. 5) [Y, TV] = -27V for N^I

(2.4.6) Y\grW=k^id

For example, take Yi + Y2~n in the proof of preceding lemma. If

Vk denotes the eigen-space of Y with eigenvalue A, then Wk = ® Vs.
j^k

Now, (2. 4. 5) implies

(2.4.7) ^=j-r/W/2

for JVGECCO and j>0.
z

Now, let N=^tjNj with f,->e be an element of G(/). We set
j=i

Nf=^tiNj/t1. Then we have N^^ + N"). Therefore (2.4.7)
i-2

implies

(2. 4. 8) eiNF=KY/2e{Nl+N'}tl/2F

Lemma 2. 4. 4. For any e>0, /^ K' be the closure of {eNlsY/2F\

s>e}. Then (2.4.3.1)^(2.4.3.3) for (Kf, J2) are satisfied.

Admitting this lemma for a while, we shall continue the proof of the
theorem. By the hypothesis of the induction, we can apply the

/
theorem for 72 and Kf. Therefore we have for N' =2 (tj/t-^Nj with

on i i e^ . ( / ,0 and
j = 2 J

(2. 4. 9)

with FEE#, ^>, then(2. 4.8) implies eiNF=t^Y/2eiN/Ff
0

Hence, tY/2E:GR gives

(2.4.10) \u\eiNF= \ti/2u\eiN,F/.

Now, W(Ij) is invariant by Y. Hence we have W(Ij) =®(W(Ij) H^).
k

Since [W(Ij)}2^j is distributive, [W(Ij) HVk}^2 is also a distributive
family of filtrations of Vk. Hence we can write

(2.4.11) vk = @Uktp
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where p= (/>2, . . . , / > / ) <=Zl~l and

(2. 4. 12) Wq(Ij) = ®Ukp for j^2.

Then (2. 4. 9) means that, fixing a norm | | of Hc,

(2. 4. 13) |u| X>~p§
 (*2/^2- ' ' (*'/*'-i) *' K* I2

where u=J^ukip with ukip

Since tY_/2u=Etk
l
/2uk>p, (2.4.10) implies

\u\ >F

This is nothing but the meaning of (2. 4. 4) . Q, E. D.

2. 5. Proof of Lemma 2. 4. 4. We shall prove first

Sublemma 2. 5. 1. (i) t~YF(t>0, F^K) can be continued to a
continuous function from {(£, F); ^0, F^K] into D.

(ii) // we set F0 = rYF\t=Q, then FQ(grw) =F(grw) and (F0, W) is R-
split.

(iii) eiNF0^D for any

Proof. Since dimCF^n^) is a constant function in
forms a vector sub-bundle of grj on K. Let F{ C FA be the inverse
image of Fp(gr^) by the isomorphism F^grf. Then Ff depends
continuously on F. Hence, locally in F, there exists an isomorphism
depending continuously on F

(2.5. 1) <p*: ®FP^FP

such that

and

({}p
k(u)=u-(pp(u)^Wk-l for

Therefore

Since 0{(M)^M^*-i, tk~l~Y<fip
k(u) is a polynomial in £, and hence
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u)) is a polynomial in £, whose value at £ = 0 is u. Therefore
we have (i) and Fl = ®Fp

k. Since (F(grY), F(gr%)} is a Hodge struc-
k

ture of weight n + k, we have Vk= © Fp
kr\Fl. Therefore (F0, WO

is jR-split. Then (iii) is an immediate consequence of Theorem 2. 3. 2

and Lemma 2. 3. 3. Q. E. D.

Now we resume the proof of Lemma 2.4.4. The condition
(2.4.3.1) for (K',I2) is evident. We shall prove (2.4.3.2) and
(2.4.3.3) for (K'9 /2).

If F'£=K', then there are two cases by the preceding sublemma.

(2.5.2) F' = eltl/2F for

(2.5.3) F' = eiNlFQ with FQ=s'7F\SssQ for an F<EEK.

In the first case, for JV'eC(/2), eiN/ F' = t\/2el(Nl+N/^ F belongs to D by

the assumption (2. 3. 3. 2) for (K, /). In the second case eiN'F' = e l

FQ belongs to D by Sublemma 2. 5. 1 (iii). For/C/2? we shall calculate
dim F'* n Wk (/) . In the first case, dim F'p fl Wk (/) - dim Fp R PFfe (/) .
In the second case, we shall show dim (F/p fl Wk (/))= dim F^ fl ̂  (/),
which completes the proof of Lemma 2. 4. 4. Now, we shall use the
fact that {F, W(f)9 W] and {F0, l^(/)9 W} are distributive (Lemma
2.4. 1). We have

= S dim (Fp (fff) n ^ (/) (grJT) )

2. 6. Proof of Corollary 2. 4. 3.
/

For u^r\Wp.(Ij)9 we have

"1- • • N>'u

because AW (/,) C W» (/,) and ^ ^ (/,-) C W7^ (/,-) for is/,. Then



868 MASAKI KASHIWARA

Lemma 1.9.1 implies that there exists C>0 such that

C \u eiNp. Similarly we have \e~iNu \eiNp^C \u\ eiNp. These two imply

§ 3. Variations of Polarized Hodge Structure

3. 1. Let X be a complex manifold. A variation of Hodge structure
of weight n on X is a couple (Hz, F) of a locally constant JZy-module
Hz of finite rank and a finite filtration {Fk} keZ of 0 x®Hz by vector

subbundles, satisfying

(3.1.1) At each point x^X, (HZiX, F ( x ) ) is a Hodge structure
of weight n.

(3. 1. 2) vFpdFp'1 for any holomorphic vector field v.

A variation of Hodge structure is called polarized when a bilinear
homomorphism S: Hz(g)Hz^>Qx is given in such a way that

(3.1.3) ( H Z i X , F ( x ) , S x ) is a polarized Hodge structure at any

3. 2. Now, let X be a complex manifold and Y a closed analytic
subset. Let (HZ9 F, S) be a variation of Hodge structure of weight n
on X\Y. For x^X\Y, let us denote by C(#) the Weil operator of the
Hodge structure (HZiX, F(x), Sx). Then

(3.2.1) <M|z», =

defines the Hermitian metric on the vector bundle 7/c, which depends
really analytically on x^X\Y.

We shall discuss the behavior \\u\\x when x goes to Y.

3. 3,, Before studying the asymptotic behavior of variation of Hodge
structure, we shall discuss the canonical extension of integrable con-
nections. Let X be a complex manifold and Y a closed analytic
subset and & a S^\7-module coherent over 0 X\Y- Let j: X\YC^ be
the open embedding. We shall define the coherent 0z-submodule

ofj*(F) as follows.
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3. 3. 1 Assume first Y to be a normally crossing hypersurface. Then
EX\Y(^ is the unique locally free 0 ^-submodule of j* 0 x which has
the following property.

(3.3. 1. 1) For any holomorphic vector field v tangent to Y9 we
have

(3. 3. 1.2) At any non singular point y of Y and any vector field
v tangent to Y such that v |/y//y- = id, any eigenvalue of
v\E^Y(^)/IYE^Y(^) is contained in {^; 0

(3.3.1.3) E$v(&) \X\Y = ^

Then, «^"»->£|\y(^") is an exact functor. Moreover we have

(3.3.2) Ei,r(&)C.Ew(&)

(3.3.3) £lxr(^)-(£f\y(^"v))v. Here V-J&* <?(*,

3. 3. 2 In general, let /: X'-*X be a proper morphism such that
Y'=f~lY is a normally crossing hypersurface and that X'\Y'-+X\Y
is an isomorphism. We define

(3. 3. 2. 1) E^Y(^) =ME$,

This does not depend on the choice of fe

3. 4. Now, let X be a complex manifold, Y a closed analytic subset
of X and (//z, F, 5) a variation of polarized Hodge structure.

We assume

(3.4. 1) F is a normal crossing hypersurface.

Let Y=\jYj be the decomposition to irreducible components. For

a finite subset a of / set Ya —
jeo

Let MJ be the monodromy of Hz around Yy. Hence Afy defines the
automorphism of £/z on a neighborhood of Yy. Then by [S], My is

quasi-unipotent. Taking a positive integer m-3 such that My7 is uni-

potent, set Nj = - log M™j. For a finite subset a let l/F(a) be the
nij

monodromy weight filtration of 2 Nj.
j<=a

Then there exists an open neighborhood Ua of Ya such that W(CL)

is the filtration of HQ\V \y.
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Let us take x0£X and a= {j; xQ£Yj] = {ji, . . . Ji}. Let fs be the
defining function of Yh and y»= — log\fj \. Set av= {j^ fjt>u}.

Theorem 3. 4. 1. There exists M>0 such that for any relatively compact
subanalytic set U in X\Y and for any £^>0, we have, for a flat section u

on Hc\u->

on uEr\ Wp.(aj), #££/, y»>M (0 = 1, . . . , I) and yjy »-{>$• for v = 2,

Theorem 3. 4. 2. (£+ ( 0 <g) WCaO ) , . . . , £+ ( 0 ® W(a,) ) } w a distrib-
utive family of filiations of E+ ( <9 (x)//c) . Let us take a splitting

Pi ..... Pl

with E+((P (^)Wp(av)) = ®UP ..... p and a C°° Hermitian norm |*| on
PV-&

E+(G x®Hc)- Then on a neighborhood of XQ we have

on Are fc^/7y_i>£ for j = 2, . . . , /} ,

M=2^ PZ w a section of the vector bundle £+(0(x)//) and

UPI

§ 4. Proof of Theorem 3.4.1 and 3.4.2

4. lo As the question is local, we may assume

(4. 1. 1) X=Al.

Here A is the unit disc fc^C; k]<Cl}-

/A 1 O\ Y= \7£=-Xm 7 7 (\\

Considering a branched covering by z-3 ™j if necessary, we may assume
from the beginning

(4.1.3) The monodromy M-3 is unipotent.

Let p: X\Y=C+->X\Y be a universal covering given by (rb. .. ,T/)H->
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fei, • • • , £ / ) with Zj = e2ltlz'. We shall trivialize p~lHz, Then at each

point x(^X\Y, the Hodge filtration F(p(x)) on a fixed vector space

Hc is given so that this defines a holomorphic map

(4.1.4) 0: X\X-»D

to the appropriate classification space D of polarized Hodge structure
(see § 2) . Let D^)D be the classification space of Hodge filtration. We
use the notations G, GR, and QR as in §2. Then NJ^QR and F(r)

= 0 27rt Tj j$(r} gives the holomorphic map ¥: X\Y-*D, which are
invariant by TF— >r-|-m (m^Z1)- Hence it decomposes

(4.1.5) X\y — F-» D

X\Y

By the nilpotent orbit theorem ([S])? we have

(4. 1.6) W is continued to a holomorphic map W:

Set F0 = y(0) and define

Then Lemmas 8. 25 and 8. 27 in [S] say that there exists g(r)
such that

(4. 1. 7) g(00(r) =0 is a fixed point of D,

and there exist /3, C, M>0 such that

(4. 1.8) dM(£(r)00(r), a)^C(2 Im^CS "0 for

Here dM is a metric invariant by the action of a compact form M of
G.

In particular if § is small enough we have

(4.1.9) 0o

for T with (SImr /) '(2«~1WmtO<fl and Im r,>Af. Since D isy
pseudo-convex to the horizontal direction (See [G-W], Lemma 4. 2, 1),
(r£C7+; 00 (r) £^D} is also pseudo-convex. Moreover this contains

E={T- (SImT,)^(Se"27IImrO<^ Im r,>M}.

Remark that

(4. 1. 10) A connected tube domain which is pseudo-convex is convex.
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Since the convex hull of a connected component of E contains
[T; Im r^>A/'} for Af>0, we finally obtain

(4. 1. 11) &(*)££ for Im ry>Af/.

Proposition 4. 1. 1. |u| <p0(t)~ \u |0(r) for Im

If this proposition is proven, then Theorem 3. 4. 1 and Theorem
3. 4. 2 are immediate consequence of Theorem 2. 4. 2 and Corollary
2. 4. 3.

4. 2. In order to prove Proposition 4. 1. 1, we shall introduce d (x9 x')9

the function on DxD.
For #£EA let C(#) denotes the Weil operator of the Hodge struc-

ture at x. For x,x'£:D set

(4.2. 1) 3(*,*0 -trCW'COO

we have

(4. 2. 2) <C (*)-*€!(*') « !»>, = <« !»>*'•

Hence for a suitable base, COO^CC*') is a positive-definite symmetric
matrix so that its eigenvalues are positive. Since COO^COO is
conjugate to its inverse, if /I is an eigenvalue of C(x)~1G(x/)9 then
A~l is also its eigenvalue with the same multiplicity. Hence we have

(4.2.3) <5 (*,*')> dim #c.

If the equality holds, then C(x)~lC(x') is unipotent. Hence we have

(4. 2. 4) 5(x, x') =dim Hc implies G (%) =C(x').

The relation (4. 2. 2) implies

(4.2.5)

Lemma 4. 2. 1. (i) Let Z be a complex manifold. Let <p and (pr be
horizontal holomorphic maps from Z to D. Then d(<p(z),<p'(z)) is pluri-
subharmonic.

(ii) For any C>0, xQ^D9 {#££); d(x9 ^0) <C} is a compact set.

Admitting this lemma for a while, we shall prove Proposition
4. 1. 1. By (4. 1. 8), for 0<£<C<5<15 we have

(4. 2. 6) a(g(r) &(r), a) <dim Hc + d

for rE£=t^GC r
+

/; ( S Im r^) ^( E «"a*ImrO O, Imr^Af}. This implies
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(4.2.7) 5(00(r),<2>(r))<dim/fc + 5 for

By Lemma 4.2. 1 (i), {r; 5(<p0(r)> ^MX^} is pseudo-convex. Hence

(4. 1.10) implies

(4.2.8) 3(ft(r), 0(r))<dim//c + <5 for Im r;.>M'0

Now, it is enough to apply (4. 2. 5) .

4.3. Pro0/ of Lemma 4. 2. 1. (i) We may assume that Z is an

open set of C. We fix a reference point x0 of ^. Set <p(z)=g(z)xQ

with a C~-function £(*) EG*. Set Qp-~p =

and ^F(*0)*CF(*0)*"'}. Then a = ©8*"* and B*'"^!!"*'*- That 9 is

holomorphic is equivalent to

(4.3.1) r'&Eea'--'.
/>^o

Here ^ is the derivative of g with respect to & That <p is horizontal

is equivalent to

(4.3.2) ^^©B*-'.

Hence A=g-15.E8°i°©8"1>1- Set h = h, + h^ with AoGg0 '0 and A^Ga"1'1-
Then h=g~lg^ = h0 + hi with Ai = ^_iGg1>~1. Then integrability condition

implies

(4.3.3) h,-h = \h,K\.

Hence we obtain

(4.3.4) AL,= [A!, Ao]

A_ la = [A_i, ho],

We have G = C (9? (-?;)) =gC*g~1 where C0 = C(x0). Hence

(4.3.5) a^C^Cofe-1-

Now, we have

(4.3.6) [A05 C0]=0

(4. 3. 7) Ai

Hence we obtain

(4.3.8) Cz

The easy calculation shows

(4. 3. 9) C«=2ff(M-i + A-A)
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We define C' = C(p'(*)), /, h\ h'Q, h(9 /z'_i similarly. Then u=8(p(z),

P'CO) = (-)MtrCC', and we have, setting <p=g~lg',

(4. 3. 10) uzM = 2(-)ntr((hl

+ (AJAlx + AliAi)

If we denote by * the adjoint with respect to the Hermitian form
S(CQu,v)9 then we have trA4*>0 for A £ End CfiTc). If we define M

by S(*Au9v)=S(u,Av)9 then ^* = C0*3C0"
1. Hence we obtain

(4.3.11)

By setting

and using *Y=— Y for Y£g, we obtain

tr^Co^Co-1 - ( - ) *tr (h±lh^C,<p
+ ̂ CopAliCflp'1 + /z-xCo^Co?-1) > 0

This shows wzz->0.

4.4. Proof of Lemma (ii). In order to prove this, let {xn} be a
sequence in D such that [d(xn, Xo)}n is bounded and that xn converges
to a point #ooGZ). It is enough to show #00 (ED. Then, <( |X tends

to a positive definite Hermitian form < !>«,.
Let Hc = ®Hpnq be the Hodge decomposition at #B. We may

assume Hp
n
>(l^Hp^q. Since f/£iff's are orthogonal to each other with

respect to < |>v {Hf;9} is orthogonal to < IX. Hence ©H*?-+HC is

injective. Comparing the dimension, we have Hc = @Hp^q. Therefore
this is the Hodge decomposition at x^ and ^(CC^oo)^, v) =(u |&X« Thus
^ belongs to D,
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