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Tohsuke URABE*

§0,

In this article we discuss normal quartic surfaces in P3 and reduced sextic

curves in P2. Especially we would like to treat the case where they have a simple

elliptic singularity EB, a cusp singularity r2>3j7, or a unimodular exceptional

singularity E12. (Cf. Arnold [1], Saito [19]). We show that when they have such

a singularity and other several singularities, the combination of singularities is

subject to a certain law explained from the viewpoint of Dynkin graphs. Indeed

we will verify the following theorems. Now in this article we assume that
every variety is defined over the complex number field C.

Definition 0.1. For a given set of several connected Dynkin graphs, the

following procedure is called an elementary transformation of it.

(1) Replace each component by the extended Dynkin graph of the corres-

ponding type.

(2) Choose in arbitrary manner at least one vertex from each component (of

the extended Dynkin graph) and then remove these vertices together with the

edges issuring from them. (Cf. Bourbaki [3], Dynkin [7])

Note that any Dynkin graph without multiple lines is associated to a rational

double point on a surface. (Cf. Artin [2])

Theorem 0.2. Assume that a normal quartic surface X in the projective

space P3 of dimension 3 has a simple elliptic singularity EB. Then the combination

of singularities on X is E8 plus one of the following.

(I) a combination of rational double points associated to a set of Dynkin graphs
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which is obtained from the Dynkin graph Bg by elementary transformations re-

peated twice such that the resulting set of Dynkin graphs has no vertex cor-
responding to a short root.
(II) a combination on rational double points associated to a set of Dynkin graphs

obtained from the Dynkin graph E8 by elementary transformations repeated

twice,
(III) another E8.

Conversely every combination appearing in the above (/), (//), (///) plus EB

can be realized on a normal quartic surface in P3 as singularities.

Remark. 1. The singularity obtained by contracting a smooth elliptic
curve with self-intersection number —1 on a smooth surface is the singularity
EB. It has the next normal form of the defining equation (Cf, Saito [19]):

x*+y(y+z2) (y+az2)=Q, a*0, 1.
2. In case (III) two elliptic curves appearing in the resolution of singularities
on X are isomorphic. This is Y. Umezu's result. (Cf. Umezu [22])
3. We can find the notion of the elementary transformation already in Dynkin
[7], However, his elementary transformation is slightly different from ours.
4. Consider the Dynkin graph BB.

The vertex a^ corresponds to a short root. Now we consider the following
case in particular. We erase a2, but keep a^ in the extended Dynkin graph

of 59,

ft

obtaining the graph

o o—•

(here a3, ••- , a9 and J3 may or may not have been erased.) This is an elementary
transformation. Next, we apply another elementary transformation. In the
extended Dynkin graph, the new vertex r joined to ^ must be regarded as a
short root.
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Thus both r and a^ have to be erased in the second step of this elementary

transformation.

Theorem 0,3. (resp. Theorem 0.4.) Consider a normal quartic surface in

P3 with a cusp singularity T2j3>7. (resp, an exceptional singularity E12) The

combination of singularities on X is T2>3>7 (resp. El2)plus one of the following.

(I) a combination of rational double points associated to a subgraph of the

Dynkin graph D9. (resp. a subgraph of the Dynkin graph Ag.)

(II) a combination of rational double points associated to a proper subgraph of

the extended Dynkin graph EB. (resp. a subgraph of the Dynkin graph E8.)

Conversely every combination in the above (/), (//) plus T2>3J (resp. E12) can

be realized on a normal quartic surface in P3 as singularities.

Remark. 1. Note that two different objects are called by the same name

E8. One is a surface singularity and the other is the extended Dynkin graph.
2. Let D be an irreducible rational curve on a smooth surface 5 whose sin-

gularity is an ordinary double point (resp. an ordinary cusp). We assume that

self-intersection number D2 is — 1. The normal isolated singularity obtained

by contracting D to a point is T2t3J (resp. E12) with the following normal form
of the local defining equation (Cf. Arnold [1]): x2+y3+z7+xyz=Q (resp.

y*+y>+z7+ayz*=Q9 a^C).
3e (I) is equivalent to saying "a set of graphs with no vertex corresponding to
a short root obtained from the Dynkin graph J?9 by one elementary trans-

formation", (resp. "a subgraph of the Dynkin graph B9 with no vertex cor-

responding to a short root") In Section 5 we see that the Dynkin graph B9 is
the essential one.

4. Of course we can state (II) in a different way using the word "elementary

transformation", too.

5» Indeed, we will see that the number of extensions 2, 1, 0 in Theorem 0.29

Theorem 0.3, Theorem 0.4 respectively is the rank of the fundamental group

TCI of the exceptional curve in the minimal resolution of the singularity E8,

^2,3,75 ^12 respectively.

Now recall that if two power series z2+f(xy y), z2+g(x, y) with /, ge

C{x, y} can be transformed in C3 to each other by an analytic coordinate
change around the origin, then/and g themselves can also be transformed in C2

to each other by an analytic coordinate change around the origin. Thus we

shall call the singularity defined by/(x, j)=0 by the same name as the one

defined by z2+/(jc, y)=0. Under this convention, we can use such phrase as
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"a plane curve singularity of type E&" etc.

Theorem Oe§0 (i) Let B be a reduced sextic curve in the projective space JP2

of dimension 2. Assume that B has a simple elliptic singularity EB. Then the
combination of singularities on B is E8 plus one of the following,

(A) a combination of rational double points associated to a set of Dynkin graphs
obtained from the Dynkin graph EB+A1 by elementary transformations repeated

twice.

(B) either another E8 or another EB plus one A^

Conversely every combination appearing in the above (A), (B) plus E8 can
be realized on a reduced sextic curve as singularities.
(ii) The set of reduced curves with any one of the following combination of sin-
guralities has two or more connected components in the space of all sextic curves
P(H\P\ 0P2(6))).

EB+A7 <2> E8+2A3 <3> EZ+AS+A, <4> E.+A.+2A,

E.+4A, <6> EB+A7+A1 <7> SB+2A3+A1 <8> EB+A,+2A1

E8+A3+3Al <10> E.+5A,

Theorem 0.6. (resp. Theorem 0.7.) Consider a reduced sextic plane curve
B with a cusp singularity T2}3>7. (resp. a unimodular exceptional singularity E12.)

Then the combination of singuralities on B is T2)3>7 (resp, E12) plus a combination
of rational double points associated to a proper subgraph of EB+A1 which is not

equal to E8. (resp. a subgraph of the Dynkin graph E%.)

Conversely such combinations are realized on reduced sextic curves.

The study of projective varieties and their singularities has long history
and it has been done from various view-points. From among them let us pick
up some results deeply connected with this article. In 1934 Du Val found out
that combination of singularities on cubic surfaces, plane quartic curves and
sextic curves on a singular quadric surface in F3 can be classified from the
view-point of so-called Coxeter groups and root systems of jE-type. (Du Val
[6]). His result was rediscovered by modern mathematicians from a different
point of view during 19705s. (Pinkham [17], Looijenga [12], Merindol [15],
Urabe [24]). In particular in a paper treating related topics Looijenga has
established a Torelli-type theorem for rational surfaces with effective anti-
canonical divisors by the mixed Hodge theory and integration of rational 2-
forms. His theorem is a powerful tool to study them. (Looijenga [12]). On
the other hand Shah classified singularities on quartic surfaces from the view-
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point of the geometric invariant theory. (Shah [21]). An example of non-
ambient-isotopic sextic curves was given in Zariski [27].

The results in this article will be mainly obtained by developing the above-
mentioned Looijenga's method further. Indeed, the fundamental idea in this
article is like the following. Firstly we reduce the case of sextic curves to
considering branched double coverings over JP2 branching along sextic curves
and we show that surfaces under our consideration are rational. Secondly we
apply Looijenga's method to construct the moduli space of them. Thirdly
we deduce the necessary and sufficient condition for any point on the moduli
space to correspond exactly to a quartic surface or a branched double covering
along a sextic curve. Lastly we examine closely the action of the Weyl group
to the moduli space. With the aid of the theory of Weyl chambers of affine
Weyl groups, we get our theorems.

The contents of this article is like the following. Section 1 is the preliminary
part. We explain that the study of a sextic curve B is reduced to the study of
branched double covering X of P2 branching along B and that such branched
coverings and quartic surfaces are rational surfaces with anti-canonical divisors
and ruled surfaces with positive irregularity. From Section 2 to Section 5 we
study rational surfaces. In Section 2 we explain a generalized version of
Looijenga's Torelli-type theorem. As a result we have an algebraic group
Horn (F, E) as a moduli space of a certain class of rational surfaces, where F is
a certain free ^-module with a bilinear form and E is either an elliptic curve with
a group law, a multiplicative group C*3 or an additive group C. In addition the
relation between our version, theory of integration and the mixed Hodge theory
is explained. Section 3 is devoted to studying properties of linear systems on
them. Section 4 is the Diophantine theoretic part. We determine the class
of the polarization in the Picard group. The action of the Weyl group on
Horn (F5 E) is studied in Section 5.

I would like to express my heartly thanks to my teachers and colleagues.
In particular we thank Mr. T. Fukui for pointing out an error in the first version
of this article.

Now we guess that our theorem is a small part of a big theorem dominating
all quartic surfaces and all sextic curves, of course. There are two reasons we
discuss only surfaces with j?8, T2>3 7, E12 here. One is that since most of them
are rational, they have a rather simple global structure. The other is that the
fundamental domain of the Coxeter group introduced in Section 2 is easier to
handle than that in other cases. Therefore the next problem should be the next
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step of our study. (Cf. Kato and Naruki [10], Umezu and Urabe [23])

Problem. Find out the general law explaining which singularities appear
on quartic surfaces and sextic curves.

For line bundles L, M and divisors A9 B on a smooth surface Z, the inter-
section number is denoted by L*M, L«A, or A*B in this article. Sometimes
we write L2, A2 instead of L*L, A -A. The complete linear system associated to
the line bundle L is denoted by \L\. The complete linear system | OZ(A) \
associated to a divisor A is denoted by | A \ for brevity. If M is a dual line
bundle of L, we denote | M \ by | — L \ .

§ 1. Preliminaries

In this section we explain that quartic surfaces and branched double

coverings of P2 branching along sextic curves are roughly classified into 3
types ; K3 surfaces,, rational surfaces and ruled surfaces with positive irregularity.

First of all, we consider sextic curves. Let B be a sextic curve in the 2
dimensional projective space P2, We introduce the branched double covering
X of P2 branching along B. Let F(z0, z1? z2) be the homogeneous defining
polynomial of B. We give weight 1,1, and 1 to variables z0, zl and z2 respec-
tively. Let z3 be another variable with weight 3. Then z\— F(zQ, z1? z2)=0

defines a surface X in the weighted projective space JP(1, 1, 1, 3) not passing
through the point (0, 0, 0, 1). Here recall that the quotient of C4— {(0, 0, 0, 0)}
by the following action of C*=C— {0} is P(l, 1, 1, 3). Action: t(zQ9 zl9 z2, z3)
=(tzo,tzl9tz29 f3z3) where te^C* and (z0,z],z2,z3)eC74-{(0,0,0,0)}. P(l,l,l,3)
has a unique singular point at (0, 0, 0, 1). The restriction to X of the projection
TU: P(l, 1, 1,3)— {(0, 0, 0, 1)}-^P2, (z0, zl5 z2, z3)->(z0, z1? z2) defines a finite mor-
phism of degree 2. We denote it by the same letter n : X—>P2. The following
lemma is easily checked. (Cf. Arnold [1])

Lemma 1.1. A point x^X is singular if and only ifn(x) is a singular point
of B. Moreover the isomorphism class of a surface singularity (X, x) and that

of a curve singularity (B, x(x)) determine each other uniquely. Thus singular
points on X and those on B has one-to-one correspondence,

Thus the study of B is reduced to that of X. Note that X is normal if B

is reduced, since normality is equivalent to that X has only isolated singular
points in our case. (Cf. Matsumura [12])

The next lemma is easy to verify.
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Lemma 1.2. Let X denote either a quartic surface in JP3 or a branched
double covering over P2 branching along a sextic curve B. Let Qx denote its
structure sheaf.
(1) The dualizing sheaf cox is a trivial invertible sheaf, i.e., o)x^Ox.

(2) H\0X}=®.

Note that Lemma 1.1 and Lemma 1.2 hold even if the sextic curve is not

reduced or the quartic surface is not normal. However, in the sequel we treat
only the case of reduced sextic curves and normal quartic surfaces. Let X be
as in Lemma 1.2. We assume moreover that X is normal.

Let p : Z-*X be the minimal resolution of singularities of normal X. We
have the Leray spectral sequence

Thus we have the next lemma since normality implies R°P*0Z=OX. Here
the geometric genus of a singular point x e X is defined by pg(X, x) =

dimc (R
lP*Oz)x- It is known that pg(X, x) is well-defined. (Wagreich [26]).

Moreover pg(X, x)=Q if and only if xe X is either a smooth point or a rational
double point. (Artin [2])

Lemma 13. x(Oz)+ S pg(X,x)=x(Gz)=2
~. singular points

where x(F) is the Euler-Poincare characteristic of the sheaf F.

Note that the minimality of Z implies the next lemma, of which we omit
the proof.

Lemma 1.4. There exists an effective divisor D on Z with o
Moreover

Supp D= U P~\x) .
\ singular points with pg(X, x)>Q

Proposition 1.5. Let X be either a normal quartic surface in P3 or a branched
double covering over P2 branching along a reduced sextic curve B. Set

P= S Pg(X,x).
: singular points

<1> IfP=Q, then the minimal resolution Z of X is a K3 surface.

<(2)> IfP=l, then Z is a rational surface with an anti-canonical effective divisor D.
<(3y If P*^2, then Z is birationally equivalent to a ruled surface over a smooth
irreducible curve of genus P-l.

Proof. If P=0, o)z^Oz by Lemma 1.4. By the Leray spectral sequence
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and by Lemma 1.2 we have H\0Z) = 0 since Rlp*0z=®. Thus Z is a K3

surface.

Assume P= 1. By Lemma 1.4 one sees that o)®m ̂  Oz(—mD) for an

effective divisor D=£0. In particular the Kodaira dimension #(Z) of Z is — oo.

By the theory of classification of surfaces (Cf. Shafarevich [20]) one sees that

Z is birationally equivalent to P2 or a ruled surface over a curve with positive

genus. On the other hand we have i(0^)=2—P by Lemma 1.3. Since the

Euler-Poincare characteristic of the structure sheaf is a birational invariant,

Z is rational.

In the case where P^2, we have <3> by the same reason. Q.E.D.

Remark. In Umezu [22] Y. Umezu showed that if X is quartic and if

P 2^2, then P=2 or 4 and she gave the classification of quartic surfaces with P ^2.

As for branched coverings, if P^2, then P=2 or 3.

We chiefly discuss in this article case <2> in Proposition 1.5.
Let X be as in Proposition 1.5. Assume further that X has unique E8

singularity plus several rational double points and no other singularities. The

minimal resolution Z of Z is rational with a non-zero effective anti-canonical

divisor D. Moreover in this case D is an irreducible smooth elliptic curve with

self-intersection number D2= — 1. If X has T2>3)7 instead of £& then D is an

irreducible rational curve whose singularity is one ordinary double point with

self-intersection number D2= — 1. If X has E12 instead of E& then D is an

irreducible rational curve whose singularity is one ordinary cusp with D2= —1.

Proposition 1.5. Assume that Z is a smooth rational surface with an effective

irreducible anti-canonical divisor D. If Z is not a relatively minimal model,

then Z can be blown-down to P2.

Proof. The proof is the same as in Looijenga [12]5 Theorem (1.1). There-

fore we omit it here. Q.E.D.

Lemma L6o A non-zero irreducible anti-canonical effective divisor D on

a smooth rational surface Z is either';

(a) an irreducible smooth elliptic curve

(b) an irreducible rational curve whose singularity is one ordinary double

point,

or (c) an irreducible rational curve whose singularity is one ordinary cusp.

In particular examples just before Proposition 1.5 exhaust all the possibili-

ties.
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Proof. It is an easy consequence of the adjunction formula. Q.E.D.

§2B A Theorem of Type

In this section, we would like to explain a theorem of Torelli type for
rational surfaces with an effective anti-canonical divisor. Most of the essential
ideas of this theorem are due to Looijenga. However the situation we treat
here is slightly different from Looijenga's original one. (In Looijenga [12] it is
assumed that the anti-canonical divisor D is a cycle of rational curves. In this
article we assume that D is either (a), (b) or (c) in Lemma 1.6. Though (b) is
equivalent to a cycle of rational curves with length 1, the case (a) and (c) did not
be treated in [12].)

Because the proof of the theorem is the same as in [12], we omit it here,
Anyway we would like to begin this section by explaining several notions. —

Dynkin graphs, Weyl groups, roots, etc.

Let Z be a smooth rational surface with irreducible effective anti-canonical
divisor D. Moreover we assume in this section that the self-intersection number
of the dualizing sheaf o>| is less than or equal to 6. Set t=9— <y|. We have
t^3. Under this assumption, Z is not a minimal model. Thus by Proposi-
tion 1.8, we have a sequence

Of Of-i GO G-i
O 1\ 7- _ y _ l_± 7 r \ , . . . 7 * s 7 _ ̂  7 _ P>2
\£i. i £-J - -^ * £j — i * =*" ^2 ' *-J\ ^" - •"•

where each ai is a blowing-up of a point z^Z^. Note that the number of
blowing-ups is t=o)2

p2— o>|. We denote Dt=D, Di_1=oi(Di) (l<^i<^t). We
have z^D^jCZ^. We consider the Ficard group Pic(Z). Let e0 be the
class of the total inverse image on Z of a line in ZQ=P2. Let ei (7 2^1) be the
class of the total inverse image on Z of the exceptional curve o~il(z^). Elements
e0, e^ • • - , e^ePic (Z) define a free J^T-basis with the following mutual intersec-
tion numbers ;

el=+l, e} = -l(l^i-^0, erej = Q ( i= f= j ) .

We say that (2.1) is the blowing-down sequence along e0, el9 • • • , et, when each e{

is the above-mentioned class of effective divisors. Here we note that

"z = 02(-D) = -3e0+e1+-+et .

Let P=^e0+^e1H ----- \~Zet be a Z'-module with a bilinear form which is
isomorphic to Pic (Z) with the intersection form, where e0, • • - , et^P is a basis
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with

We set /c=— 3^0+^H ----- [-£*• Let F be the orthogonal complement of J^A; in
P. r={x<=P\x°K=Q}. The restriction of the bilinear form of P to r is

described by the following graph.

r4 r5 ^ r*

Here we denote n = eo~~ei~~e2~~e3» TJ = £J-I—SJ (2^£j^SO for simplicity.
Vertex o corresponding to 7-,- indicates a member of a basis of J7 with the self-

intersection —2. (It is easily checked that the above n* 72> 8"? r# defines a

basis of F and that r2i = — 2 if ^3.) Two vertices 0—6 are connected with
an edge—if noTj=^ and they are not connected if 7^.7^=0. In particular
r is isomorphic to the root lattice (Cf. Bourbaki [3]) of type A2+Ai9 A4, D59 E&

E7 or E6 according as t=3, 4? 5, 6, 73 8. If t ̂ 9, then r is not negative-definite.

Let r^P be an element with rz=— 2. Let sy:P-*P be a linear map

defined by ^(^)=^+(%°r)r for x^P. It is easily checked that ^ is an iso-
morphism of order 2 preserving the bilinear form. In addition if T"«A;=O, then

Sy(/c)=K. Sy is called the reflection associated to r- The group generated by
jy , • • - , jy, is called the Weyl group of P and it is denoted by W or FfP. (Note

*
that for we FF, W(A:)=A:.) We call any element in U Wn (c/1) a root

«=i
Indeed Sy defines the reflection with respect to the hyperplane orthogonal

to r i-e.5 {x^P®M\x°r = ®} in P®J8. (FF, {^, Jv
 8 ° ° , ̂ }) defines a

Coxeter system. (Cf. Looijenga [12], Bourbaki [3]). Now let r^f be a root.
t

Writing r= S ^^-rz- («z-e^), then we have either «f-^0 for any i or w^O for
1=1

any /. If /^^O for any /", we say that r is a positive root. Otherwise it is
called a negative root. Note that this notion depends on the choice of the

basis. Let R+(eQ, el9 °-, et) denote the set of positive roots.

For roots in Pic (Z) we can distinguish the following property. A root

r EE Pic (Z) is called a nodal root if the restriction of r to D is a trivial line bundle,

(This terminology is due to Looijenga.)

Lemma 20L Let r ePic(Z) be a nodal root. Then either r or —r is effective.
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Proof. Assume that r2=—2, r\D^OD and J?°(— r) = 0. By the Serre
duality we have H2(r(—DJ)=Qa Consider the exact sequence

One sees that h\r)=Q and fl1(r)->Jf1(r|I))^Cf is surjective. Thus
By the Riemann-Roch formula

h\r) = (

i.e., r is effective. Q.E.D.

Let S+ denote the set of effective nodal roots. S=S+ U (-S+) is the set of
nodal roots. Let Ws be the group generated by {sr \ r EE S} . Ws is a subgroup
of PFpic(z). We call Ws the Weyl group of Z associated to nodal roots.

The following theorem is due to Demazure when 3^t^9 and it is essentially
due to Looijenga when r^lO. (Demazure [5], Looijenga [12])

Theorem 2e20 Let Z be a rational surface with an effective irreducible anti-
canonical divisor D such that t=9—o)2

z^>3e Let eQ, elt • • • , e,ePic(Z) be a

basis such that there exists a blowing-down sequence along e0, elf • • • , et. Let W
be the Weyl group of Pic (Z) defined depending on e0, ev • • • , et and let w GE W,
Then there exists a blowing-down sequence along w(eQ), w(e^), • • • , w(et) if and

only if every effective nodal root is a positive root, i.e., S+ c R+(w(e0), w(e1)} • • - ,
w(etj). Moreover for any two basis eQ, elf °°-, ̂ ePic(Z) and e'^ e[, • • • , ef

t^
Pic(Z) such that there exist blowing-down sequences along both of them, there
exists an element w^W with e/

i = w(e^) for

Corollary 2,3, The set of roots R in Pic (Z) and the Weyl group W of Pic (Z)
do not depend on the choice of the blowing-down sequence (2.1).

Note that the positive cone {x^P®M \ x°x>0} in P®M has two connected
components since the signature of the bilinear form of P is (1, t).

Definition 2,4 Let t be an integer with t^3. Let E be a one-dimensional
algebraic group isomorphic to either a smooth elliptic curve? C*=C— {0}5 or
C, We call the following object Z=(Z, D, a, c) a marked rational surface over
E of degree 9 — t.
(1) The first item Z is a smooth rational surface with o)2

z=9 — t.

(2) The second item D is an effective irreducible anti-canonical divisor on Z
which has the following isomorphism c.
(3) The third one a: P-^Pic(Z) is a linear isomorphism satisfying the following
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conditions (i), (ii), (iii) and (iv), where P=ZsQ
J
rZel-\ ----- \-Zet is an abstract

free ^-module with a bilinear form defined by 6%= + !

( i ) a preserves the bilinear form, i.e., x« y=a(x)*a(y) for any x,

(ii) a(fc)=o)z where K=— 3^0+^-1 ----- \-et.

(iii) a(H)=R where II and R are the sets of roots in P and Pic(Z)

respectively.

(iv) a(A+) = C+ where A+ (resp. C+) is a connected component of the

positive cone in P®R (resp. Pic(Z)®/2) containing e0. (resp. e0)

(4) The fourth one t: Pic°(D)-*E is an isomorphism as algebraic groups,

where Pic°(D) is the connected component of Pic(D) containing the zero

element.

Definition 2.5. Two marked rational surface over E (Z, D, a, t) and

(Z', D'9 a', i') are isomorphic if there exists an isomorphism of varieties /:

Z~>Z' satisfying the following conditions (A), (B), and (C).

(A) /(£)=£'.

(B) The composition

« of f*
Pic (Z) ̂  P -> Pic (Z') -> Pic (Z)

can be written as a composition of finite reflections corresponding to nodal

roots on Z.
/•*

(C) The diagram Pic° (D') — * Pic° (D)

E is commutative.

Definition 2e6. Let gcPic(Z) be the orthogonal complement of Zcoz,

i.e., Q={x^Pic(Z)\x»a)z=Q}. Note that the image of Q by the restriction

map Pic(Z)-»Pic(D) is contained in Pic°(D). The following composition of
homomorphisms is called the characteristic homomorphism <pg of JZ=(Z, D, a,c).

a restriction A t
p _^ Q - ^ Pic°(D) -> £"

Here r is the orthogonal complement of ZK in P.

It is easy to check the next lemma.

Lemma 2,7, The characteristic homomorphism <p^ depends only on the

isomorphism class of (Z, D, a, c).
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Now we can state the main theorem in this section. It gives a powerful
tool to study rational surfaces. Even though the situation treated by Looijenga
is slightly different from ours, this theorem is due to Looijenga, we think,

Theorem 2.S, (A theorem of Torelli type.) The map induced by associating
a marked rational surface (Z3 D, a, c) to its characteristic homomorphism

{(Z, D, a, c): a marked rational surface over E of degree 9 — t} _^ TT (r E}
isomorphisms

is bijective.

Next we would like to explain why this theorem is called one of Torelli type.
It is explained by the Deligne's mixed Hodge theory. For simplicity we assume
that D is an irreducible smooth elliptic curve with D2= — 1. Consider an
exact sequence of mixed Hodge structures (Cf. Deligne [4])

l) -* H2(Z) -> H\Z-D)

Note that F2H\Z) = ® and F\Hl(D)(-l}) = H\coD). Thus we have that
dimcF

2H2(Z—D)=l. Now by definition PSP^Z—D) is represented by a
logarithmic 2-form ̂  on Z with the pole along D, which is unique up to constant
multiple. Since this situation is very similar to that of the second cohomology
group of K3 surfaces, we can consider the periods of ty. Here the periods are
nothing but the linear mapping

H2(Z~D) -+CiA-+jrf.

Note that there is a submodule Im(H1(D)-*>H2(Z—D)). Since Srwir==

27rV
/:=T/tRes('^)J we have that CIIm(H1(D)^H2(Z—D)-+C)£*D. Let Q be

the orthogonal complement of Za>z in Pic(Z). One sees easily that there exists
an exact sequence

0 -» H^D) -» H2(Z-D} -* Q -> 0 .

Thus we have an induced group homomorphism 2— >D. We can check that
this homomorphism is identified with the restriction of the mapping Pic(Z)— >
Pic(D). Therefore the characteristic homomorphism 9^ can be regarded as

the periods of Z— D. This is the reason why the above theorem is called one
of Torelli type.

§ 30 Properties of Line

This section is devoted to study properties of line bundles on a smooth
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rational surface Z with an effective irreducible anticanonical divisor D. We

owe ideas in this section to Saint-Donat [18] very much. However, in [18]

two assumptions that the canonical bundle is trivial and that the second coho-
mology group is an even lattice are frequently used since K3 surfaces are treated.

Though our situation in this article is very similar to that in [18], we can use

neither assumption. Therefore in this section, though it is slightly lengthy, we

carefully give proofs to analogous assertions to those in [18] one after one.

Recall that a line bundle L (resp. a divisor C) on Z is numerically effective

if for any curve A on Z, the intersection L«A (resp. C*A) is non-negative.

Definition 3010 A line bundle L on Z with the following properties are

called a polarization of Z.

(1) The self-intersection number L2 is positive.

(2) L is numerically effective.

(3) The restriction of L to D is a trivial line bundle, i.e., L\Dss*OD.

(4) For every exceptional curve of the first kind A, the intersection L°A is

strictly positive. (L • A > 0)

The number L2 is called the degree of L.

Lemma 3.2, (1) If Z has a polarization, then t=9 — Q)2
z^ 10.

(2) For any polarization L, h\L)= 1 and h°(L)=(L2/2)+2. Moreover the linear

system \L\ has no fixed points on D.

Proof. (1) If t^9, for every element MePic(Z) with M*o)z=Q, M2^0

holds. However L2>0 and L«o)z=Q for any polarization.
(2) By the Kawamata-Ramanujan vanishing theorem (Kawamata [11]), we

have H1(L(-DJ) = H2(L(-D)) = Q. Thus the mapping J?%L) ̂  #°(L | D) £*

H\OD)^C is surjective, and h\L)=hl(OD)=l, h2(L)=0. Surjectivity implies
that | L | has no fixed points on D. On the other hand by the Riemann-Roch
formula we have

TO = (L2-L^z)/2+X(Oz)+h\L)-h2(L) = (L2/2)+2 . Q.E.D.

If Z is a normal quartic surface in P3 and p: Z-»XcP3 is its minimal

resolution of singularities, then L=p*OP*(I) is a polarization of degree 4.

Similarly for a branched double covering branching along a sextic curve we can

define a polarization of degree 2. However note that conversely the polarization

L does not necessarily define a generically one-to-one morphism <pL: Z-*PN.

The linear system | L \ may have fixed components. Even if it has no fixed

components, it may have isolated fixed points. Even if it has no fixed points,
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it may define a morphism whose degree is greater than 1.
In this section we give a necessary and sufficient condition in order that L

does not define a generically one-to-one morphism in the case L2=2 or 4.

Proposition 3.3e Let M be a line bundle on Z satisfying
(a) #°(M)^0
(b) The linear system \ M \ has no fixed components. And
(c) the intersection M«D is zero.
(1) If the image of the rational map yM associated to M is a curve, then M2=0,
(2) One of the following (i), (ii) holds.
(i) M2>0, any generic member of \M\ is an irreducible curve with ari-
thmetic genus (M2/2)+l andh\M)=l.
(ii) M2=0 and there exists a smooth irreducible elliptic curve F and a positive
integer k with M^Oz(kF). Moreover hl(M)=k. Every member of \M\ can
be written in the form F1+F2-\ ----- {-Fk9 where Ft&\F\.

Proof. Firstly assume that the image P' of the rational map <pM: Z ---- >PN

associated to Mis a curve. Let v\ P->P' be the normalization of /""„ For a
suitable choice of a birational morphism r: Z->Z, there exists a morphism

: Z-»F with

r'
If the genus of r is positive, we have a non-zero global regular 1-form a on r.
Since <p*a defines a non-zero global regular 1-form on Z, we have H°(^^)^Q,
which contradicts that Z is rational. Thus r is a smooth rational curve. It
implies that for every point p, p' e r, divisors T($>~I(P)) and r^"1^?')) are
linearly equivalent. Choose a general point q^P and set F=T($~\q)). One
sees that M^Oz(kF) for some integer k. If dim|F|^2, then we have a
member F^\F\ such that for any point p^P, FI=^T(^~I(P)). Choose
points q=qly q2, -, qk^P such that r(^-Xgi))+r(^-1fe))+--+r(^-1fe))e|M|.
Since r(4>-\q$ = F~Fl9 we have G = Fl+T($-\q2)) + ~* + T(<p-l(qk)) e \M\
since \M\ is a complete linear system. However, by the choice of Fl and
the definition of $, we have G$|M|, a contradiction. Therefore we have
dim|F|=l.
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We have kD*F=D*M=Q and thus D°F=0. We can conclude that
D n F=$. Consider the exact sequence

0 -> OZ(-F-D) -*Oz-> OF®OD -> 0 .

It implies h\Oz(-F-D))=l. By the Serre duality, we have h\Oz(F))=l.
Moreover h2(Oz(FJ)=h\Oz(—F-D))=Qe It follows from the Riemann-Roch
formula

= F2/2+2

that F2=Q and M2=k2F2=G. In particular the linear system \F\ has no fixed
points and F is smooth by the Bertini theorem. By adjunction formula F is an
elliptic curve.

Next we would like to compute h\M). Let F19 F2, ••• , Fk^ \F\ be general
members. We can assume that Fl9 °~,Fk and D are mutually disjoint since
D»F=Q and F2=0. Using the exact sequence

0 -> Oz(-Fl ----- Fk-D) -> 0Z -> 0 0F,00P -* 0
8 = 1

and the Serre duality, one sees that hl(Oz(F1+'^+Fk))=h\M)=k.
Secondly assume that the image of <pM is not a curve. We have A2^0 since

\M\ has no fixed components. If A2=M2=Q, then \M\ has no fixed points
and the image of the morphism <pM is a curve. Thus ^42=M2>0. By the
Bertini theorem A is irreducible. We have pa(A)=A2/2+l by the adjunction
formula. It follows that A ftD=<I> from M*D=A*D=Q. Thus

0 -> OZ(-A-D) -»Oz-» 0A®0D -+ 0

is exact and one sees that h1(Oz(A))=l. Q.E.D,

Lemma 3 A Let C Z?e an effective divisor on Z with Supp Cr\D=$ and

h\0c)= 1 • Then we have h\Oz(C)}= I .

Proof, Consider the exact sequence

0 - OZ(-C-D) -*Oz-» OC®OD -> 0 .

We have h\Oz(—C—D))=l. By the Serre duality we have the conclusion,,

Q.E.D.

Lemma 3,5. Let A be a non-zero effective divisor on Z with

and Supp//n£^0. We have hl(Oz(d))^l and A2=-2h\Oz(A))<,-2.
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Proof. Consider the sequence

0 -> Qz(- A-D) -*QZ-* O.@OD -> 0 .

By assumption Supp A fl D = <f>, it is exact. We have hl(Oz(A)) =

since fP(Oz) = fP(0D)=l9 #(0Z)=0. Note that
h\Oz(A)}=h\Oz(-A—D})=®. By the Riemann-Roch theorem, we have

1 - h\Oz(A)) = z(Oz)+(A2+D^)/2+h\OM)-h\OM)

Q.E.D.

Corollary 3.60 Let 9 be an irreducible curve on Z with h\Oz(O)) = I

and ©«D=Q. We have O2=—2 and O is a smooth rational curve.

Proof. Since O and D are irreducible, B°D = Q implies

Obviously h\O®)=l. Thus by Lemma 3.4 and Lemma 3.5, we obtain 92=— 2,

Moreover by the adjunction formula, O is smooth and rational Q.E.D.

Proposition 3J» Let L be a polarization on Z. If \L\ has a fixed compo-

nent, then \L\ contains a divisor with the following for mi kF+F where F is an

irreducible smooth elliptic curve on Z with F2=Q and D°F=Q5 F is an irreducible

smooth rational curve with F2=—2, F °D=Q and F °F=l and k is an integer

with k^2. The divisor F is the fixed part of\L\.

Proof. The proof is slightly complicated. By Lemma 2.2 the linear

system \L\ is non-empty. Let C ei | L \ be a general member. Let A be the

fixed part of the linear system |L| = |C|. We set C=A+A where A is the

moving part. By Lemma 3.2 one sees Supp A {\D = <t> and J°D = 0. We

also have by Lemma 3.2, (2)

and thus A^pQ. One may assume that Supp ,4 n D=<fi. Note that A2^>® since

A is the moving part.

Case 1. A2>Q.

By Proposition 3.3 any general member of \A\ is an irreducible curve with

arithmetic genus (A2/2)+l and h\Oz(A))=l. One has

h\Oz(A)) = *(Oz)+(A2+D-A)l2+#(Gz(Ay) = (Az/2)+2

by the Riemann-Roch formula. On the other hand one has also

since h\Oz(A + A))=\ by Lemma 3.2, (2). It implies that A2 =
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since h°(Oz(A)) = h°(Oz(A+AJ). We have 2A-A+A2=Q, Now recall that C
is numerically effective. Thus

Q^C»A = (A+A)*A = -A* A .

However A»A^>0 since A is the moving part of |C|. In conclusion we have

If J=|=0, then A2=—2h1(Oz(A))<Q by Lemma 3.5. Therefore A=Q, i.e.,
| C | has no fixed components.
Case 2. A2=0.

By Proposition 3.3, there exists a smooth irreducible elliptic curve F and a
positive integer k with Oz(A)^Oz(kF) and jp-D = 0. Let Al9 A2, -"9AN be
connected components of A.

We divide the rest of the proof into several lemmas.

Lemma 3.8. For every i, F- Jz->0.

Proof. If for some /, F- 4=0, then by Lemma 3.5

which is a contradiction. Q.E.D.

Lemma 3.9.

Proof. If fe=l, then by the same reason as in case 1, we have A*A=
F*A=Q. However we have just proved that F'A=^iF'Ai>Q, which is a
contradiction. Thus k ̂ 2. Q.E.D.

Let rf. be an irreducible component of Ai with F°/\>0.

Lemma 3810« 7V=1.

Proof. Assume N^2. Choose general members F19 • • - , F^e |F| and set

P = Fl-\ ----- r-^+A- Q = P + T2. Obviously $uppPr\& = SuppgnD — 0
and h\OP)=h\OQ} = l. We have ^(Oz(P)) = ̂ (Q^Q))=l by Lemma 3.4.
By the Riemann-Roch formula we have

= CP2/2)+2 , tf(0z(0) = (22/2)+2 .

Since h\O z(P)}=h\O Z(Q)) by definition, it implies that

Here note that /1i=— 2 by Corollary 3.6. We have
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which is a contradiction. Thus AT=1. Q.E.D.

j
Set Jj = J — 5] 0y®/ where 0 / is a mutually different irreducible curve

y=i
and ^ is a positive integer. We assume that @1«>F>0. By Corollary 3.6 every
0/ is a smooth rational curve with 9]=— 2 and D»0~®.

Lemma 3.11. F»O1=l.

Proof. First note that h\Oz(kF))=l+k by Proposition 3.3 and by the
Riemann-Roch formula. Since h\Oz(P)) = h\Oz(kF)) for the divisor P in
the proof of Lemma 3.9, we have

2k+2 = (kF+Otf+4 = 2kF°01+2 ,

which implies the lemma. Q.E.D.

Lemma 3.12, F-0f-=0 if i = f = l .

Proof. Fix an integer / with / 4= 1. There exists a subset S of {1, 2, •••,/}
with leS, f$5, such that ds=^B: and ^s+^i are connected. Set P=

j<=S

kF-\-As and Q=kF+As-\-Si. By the Riemann-Roch formula, we have

h\Oz(P)} = (P2/2)+2 , h\Oz(Q)} = (22/2)+2 .

We have P2=g2 since h\Oz(P))=h\Qz(QJ). It implies (fcF+^-^—P-e —
-91/2=1. By the choice of Js? we have Js°@,.>0. Thus F-0—0. Q.E.D.

Lemma 3.13. Assume that there is a subset S of {1, 2, •••,/} with

such that As= 2 ^y is connected and ̂ +JS°@1^2. r/ze« a1=l.

Proof, Set P = kF+As, Q = P + O1 and ^-=0z(e)|0]. Note that
dQgN=(kF-\-ds-\-@1)»61 = k+ds»©1— 2^0 by assumption. One sees easily

)=l« Consider the exact sequence

We have h\Oz(Q))^l since h\N)=Q. Consider the sequence

0 _> 0z(_g_D) ̂  Oz - GQ©Op - 0 .

It is exact since Supp Qr}D = <t>. Thus h\Oz(Q)) = h\Oz( - Q - />)) =

)^l. It follows that A1(Oz(G))=l- BY Riemann-Roch

= P2/2+2 , tf(Oz(0) - 22/2+2 .
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Assume that a^2. Then h\Oz(P)) = h\Oz(QJ). We have P2 = Q2 = P2 +
2P*B1-2. ThusP-0^1.

On the other hand by definition of P and by assumption P-91=(kF+As)-
91^2. We get a contradiction. Q.E.D.

Lemma 3.14 1/^=1, then F»A=l and A2 =-2.

Proof. Assume ^=1. We write A==91+Af. Since J'°F=0 by Lemma
3.12, we have F*A=F*9l=\. By Riemann-Roch we have h\Oz(kF))=l+k
and h\Oz(kF+A)} = (kF+A)2I2+2. Since these two numbers are equal, we
have (kF+A)2=2k-2. It implies A2=-2 since F2-0 and F»A=l. Q.E.D.

Lemma MS, Ifk^4, then A=Ol.

Proof. We assume k^4. Set S={1}. The assumption of Lemma 3.13
is satisfied. Thus we have ^=1 and A2=— 2 by Lemma 3.13 and Lemma
3.14. Set A'=A—Ol. The divisor A' does not contain ©^ Assume A' =
Then J'^X) since A is connected. It follows from the equality

-2 = A

that J«J'<0. However, since C is numerically effective and F°A' = Q by
Lemma 3.12, we have that 0^ C-4' = (kF+ A}«A' = A*A\ a contradiction.
Thus J'=0. Q.E.D.

Lemma 3.16. Ifk=3, then A=9l.

Proof. We assume k=3. Moreover assume A'=A—alOl^Q. There exists
a suffix/ =|=1 with 0-@! 4=0. SetS'={l,i}. Sincefc+Js-01=3+0f.-01— 2, the
assumption of Lemma 3.13 is satisfied. Thus we have ax=l and A2=— 2.
By the same reasoning as in Lemma 3.15, one obtains a contradiction. Thus

By the same reasoning as in Lemma 3.14 one sees 4 = (
a101)

2=6a1-2al since F-0^1 and B\=-2. We have a,= l or 2. If fll=2,

then C"01=(3F+2@1)
00i=-l? that is, C is not numerically effective. We

have consequently A=Ol. Q.E.D.

Lemma 3«,170 Ifk=29 then A=Ol.

Proof. We assume that k = 2. Moreover assume that ^ = 1. Set
A'=A—Ol. We have J'-^^O since A' does not contain 9lm By Lemma 3.12
we have also A*Af=(2F+A)*A'=C*A'^Q. On the other hand by Lemma 3.5
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-2. We have

It implies that A'-Bl=A-At=Q9 A2=—2. We have A'2=A*A'—Bl*A'=Q. But
J /2<0 if J'=j=0 by Lemma 3.5. Thus A'=0.

Next assume that a^2. Since O^L»Bl=(2F+alOl)»Bl-\- S aiOrOl=1+1
2—2^+5] afli*®! there is an index z with f= t= l , ©z-° ©!>(). If there are two

1*1
indices i, /, l= |=i= |=j=t=l with ©-©!>(), ©-©^O, setting 5=0, U> we have
«!=! by Lemma 3.13. Thus for some unique index i'2 ©,-2° ©!>(). By
renumbering if necessary we can assume 12=2, We have that ©2*©!=! since
0>(©1+©2)2=— 4+2©!«©2 by Lemma 3.5. We have the next inequality.

<3.1> ^-2^+2 = L-0^0 .

In particular a2^2. Now since O^LQO2=a1—2a2+^aiOi°O2, there is an
8>2

index z>2 with ©;°©2>0. Assume that for mutually different three indices

i r t>2, a=l , 2, 3, ©^-©2>0 holds. Set P1== 2F+©! + ©2+ i] ©^ and
OS = 1

Gi = A + 02- Since Oz(6i)U2^Oea and ©2^FX and since ff(Oz(PJ) =
h°(Oz(Qi)) it follows from the exact sequence

o - 0Z(A)
that /z1(0z(2i))=0. However by the exact sequence

0 _> Q2(-Ql-D) -*0-* O®0D -* 0

we have h\Oz(Qi)) = hl(Oz(—Qi—D))'^l, a contradiction. Thus renumbering
if necessary we can assume that one of the following two assertions holds for

(1)* 0*-0*-i=l and 0f.-0*_i=0 for i
(2), e*- ̂ -i-^+i°^-i-l and 0,.0A_1==0 for /
For a moment assume that case (1)3 takes place. Since

<3.2> L^02=a1-2a2+a3^Q

and by <3.1>, we have a^2. Repeating the similar argument as just the
above one sees that we can assume that (1)4 or (2)4 holds. If (1)4 takes place,
inequalities
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k=2, 3 and <3.1> imply that a4^2 and we can repeat the similar discussion

further. Since inequalities <3.fc> l<^k^K implies aK+1^2 and since the

number of irreducible components of A is finite, we can consequently assume

that (2)K+1 takes place for some K^2. Set S=0i+6>2H h®*, P2=2F+^+

®K+i+®K+2, and 22=^2+53- We can see easily that OZ(Q2) \sexO£, h\0s)= I
and h\O2}=Q. Now h\Oz(P2))= I by Lemma 3.4 and h\Oz(P2))=h\Oz(Q2))

since J is a sum of 2^+@K+1+@K+2 and some effective divisor. It follows

from the exact sequence

0 - 0Z(P2) - OZ(Q2) - Os -> 0

that h1(Oz(Q2))=0. On the other hand since the sequence

0 -> Oz (-Q2-D) -*Oz-> OQz@OD -* 0

is exact, we have h\Oz(Q2))=h1(Oz(—Q2-D))=h°(OQ2)^l, a contradiction.
Thus the case a^2 never takes place. Q.E.D.

The above lemma completes the proof of Proposition 3.7.

Proposition 3.18. Let C be an effective divisor on Z with CeD=0. Assume

that the linear system \ C\ has no fixed components and that C2=2 or 4. Then

| C | has no fixed points.

Proof. Assume that | C \ has no fixed components but it has isolated
fixed points.

By induction we define a sequence of blowing-ups,

A "E k "^k — 1 ^"2 ^"l

% = Z(*) -» Z(A_D —> > Z(2) -> Z(1) -> Z(0) = Z

an integer wy for l^j^k and a line bundle Lj on Z(y) for O^j^k as

follows. First of all set ZCo)=Z and L0=0Z(C). Next assume that Za), rf-, mt,

L{ have been constructed for O^f^ j— 1. If |Z/ ;-_i| has no fixed points, then

setting k=j—l and Z=Z(y_1), we terminate the procedure. If |£/_i | has

fixed points, then let r;-: Z(y)-»Z(;-_1) be the blowing-up of one of the fixed
points Zj e Z(y_1). Set my = min {mult2. (A) \A^\ Ly_x |}, where multz (A)

denotes the multiplicity of the curve A at z. We define Lj = (r*I>/_i) ®

Oz^—m^Tj^Zj)). We have Ly^O for every/since 1^-14=0 and|Ly| has no
fixed components. Since L2j = Lj_\—m2

j this procedure terminates in finite

steps.

Set L=Lk. If L2=Q, then the image of the rational map (pL\ Z >PN

associated to the line bundle L=OZ(C) has dimension^ 1. We have L2=C2=Q
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by Proposition 3.3, which contradicts the assumption. Thus L2>0.

Next we show that pa(A)^ I for any general member A of \L\.

Case 1. C2=2.
Note that hl(L)= 1 by Proposition 3.3. We have h\L)=hQ(t)=C2/2+2=3

by Riemann-Roch. We have a morphism <pi : Z-^JP2. On the other hand L2= 1
since Q<L2<2=C2. Thus any general member A of \L\ has a morphism of
degree 1 to a line in P2. Thus pa(A)=Q.
Case 2. C2=4.

We have a morphism <pi : Z->P3 since A°(I/) = A°(£) = 4 by Riemann-
Roch. Since Q<L2<L2=C2=4, one sees that <pi is a generically one to one
morphism whose image is an irreducible cubic surface or an irreducible
quadratic surface. Then any general member A of \L\ has a morphism of
degree 1 to either a plane irreducible cubic curve or a plane irreducible
quadratic curve. Thus pa(A) ^ 1 .

We know pa(A)^l in any case.
Now let El9 • • « , Ek be the total inverse image on Z of the curve TT^ZX),

— 9Tk\zk). We have

I = (T*L)(-mlEl-m2E2 ----- mkEk) , o>2 - (r*

where r=r1r2--Tft. Thus we have «(y£ = C'(yz+S'H,-==S'Hi- By the ad-
junction formula

Pa(A) = (

We obtain a contradiction. Thus | C \ has no fixed points. Q.E.D.

Lemma 3.19. Let L be a polarization on Z.
(1) If an irreducible curve A on Z satisfies L°A= 0, then either A coincides with
D or it is a smooth rational curve with A2 =—2 and Af\D=<j).

(2) Let 6 be the union of irreducible curves A with L»A=Q and GQ be a con-
nected component of 8. Let Al9 A2, • •• , Ak be all the irreducible curves contained
in <?0. Then the intersection matrix (A^A^^j^ is negative definite.
(3) Unless SQ=D, <5Q is the support of the exceptional curves in the minimal
resolution of a rational double point.

Proof. We can assume that ^44=^. Under this assumption we have
^4»D^O. By the Hodge index theorem we have also A2<Q. By the adjunction
formula Q^pa(A)=(A2—A*D)/2+l. We have either A2=-l and A«D=l or
A2= — 2 and A -Z)=0. In any case pa(A)=Q. It is well-known that if pa(A)=Q9
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then A is a smooth rational curve. If A2= — 1 and A*D=1, then A is an ex-
ceptional curve of the first kind. Since L is a polarization we have ^°L>0?

which contradicts the choice of A. Thus A2=— 2 and A*D=Q. The last
equality implies A n^=0. (2) is an easy consequence of the Hodge index
theorem. (3) follows from (1) and (2). (Cf. Artin [2]) Q.E.D.

By the well-known Grauert's theorem, (Cf. Grauert [8]), we can contract

all the connected components of G to isolated normal singular points. Let
p: Z-+X be the contraction morphism. Here X is a normal surface with a

unique singular point with positive geometric genus at w=p(D) and several
rational double points.

Proposition 3.200 Assume that a polarization L on Z defines a morphism

<p=<pL: Z-*PN. Then we have a finite morphism y: X->PN with <p=yopa

Proof. Set p(8) = S. Note that p\Z—8: Z~S->X—S is an isomor-

phism. Thus we can define a morphism p = <po(p\Z—8)~l° Since <p(8) is
a set of isolated points and X is normal, we can extend 9 to whole X.
Obviously the resulting morphism X-*PN is proper. Assume that there
exists a point z^PN such that y~l(z) has dimension 1. Let A be an irredu-
cible curve contained in $~\z). Let A be the strict inverse image of A by p,
We have L*A = Q. Thus AdS and p(A) = A is a point, which is a con-
tradiction. Thus <p is a finite morphism. Q.E.D.

Proposition 3o216 Assume that a polarization L on Z defines a morphism

<p = cpL\ Z —>P3 of degree 2 whose image is a quadratic surface. We have a

smooth irreducible elliptic curve F on Z with L'F=29 F fl D=<t> and F2=Q.

Proof. Case A. Assume the image of 9 is a smooth quadratic surface S-

Let p: S—>P* be the composition of an isomorphism ^-*P1xPl and the
projection to a factor P1xP1-»P1. Choose a general point zeJP1 and set
G=p*(z) and F=?*(G). F is irreducible. We have F fl D=<t> since p(D) and

p<p(D) are isolated points by assumption L\D£*0D. We have L°F=20P
z(l)* G=2

and F2=2G2=0. Obviously the linear system \F\ has no fixed components.

By Proposition 3.3, one sees that F is a smooth elliptic curve.
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Case B. Assume that the image of 9 is a quadratic surface So with a

unique singular point

Lemma 3.22. If <p(D)= {v} , then <p~\v}=D.

Proof. Set {w}=p(D), w^X. Note that ^(w)={v} by assumption.
Let U be a sufficiently small neighbourhood of ve £/c]>]0. Let V be the con-
nected component of <p~\U) containing w. Let Sd V— {w} be the discriminant
of?>|F-{w}.

Case I . Assume that the closure of y(S) in U does not contain v. By choosing

a smaller 17, we can assume that y\V— {w} is unramified. Note that

TC^U— {v}) ^ Z/2Z since the ^-singularity (U, v) is the quotient of (C72
9 0)

by the action of Z/2Z defined by (x9y)-*(—x, —y). Thus ^(F— {w}) is

either a trivial group {e} or Z\1Z. If ^(F— {w})={e}9 then w^X is a
simple point by a Mumford's theorem. (Cf. Mumford [16]). If it is Z/2Z,
<p | F— {w} is an isomorphism. Since V and £/ are normal, it induces an iso-

morphism ^| F: V-+U. Thus w^X is a ^-singular point. However by the

construction we have pg(X, w)^l. Therefore one sees that our Case 1 never
takes place under our assumption.

Case 2. Next we assume that the closure of <p(S) in U contains v. Since <p is a

finite morphism of degree 2, the set {xs=U\$ffi~1(x)= 1} coincides with the

closure of ^(5) in U. Thus %p~l(v)=l. Here # denotes the number of

elements in the set. We have {w} = ^"1(v)- It implies ^(v) = p"1^).
Under the assumption of the lemma Dc.<p~\v). However since p~lp(D)=D

by the definition of p, we have <p~\v)=D. Q.E.D.

Lemma 3.23. Let G be a general member of the ruling Pl-family o

F be the strict inverse image of G by <p. We have dim|F| =1 and \F\ has no
fixed components.

Proof. We define a linear system A on Z by A={<p*P\P is a plane in
F3 with veP}. Let A be the fixed components of A. Obviously we have

Let PQ be a general plane in JP3 passing through v. We set
' where G and G' are members of the ruling P^-family of So-

Let F (resp. F') be the strict inverse image of G (resp. G') by <p. We have
F+F+JeA

Next we define a 1 -dimensional linear system 3 by

S = {9*p—F'—A\P is a plane in F3 with P=)G'} .
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We have \F\HB since Fe 3. Let A e | F\ be an arbitrary member.
J<= \L\ since F+F'+Je |L| . Thus there is a plane Pj in F3 with
d=q>*pl because \L\ is a complete linear system. Pl necessarily contains G'.

It implies that A e 5". Thus | F | =5, which concludes the proof. Q.E.D.

Lemma 3.24. <p(D) * { v} .

Proof. Assume that p(/>)={v}. We will deduce a contradiction.
Let Fbe the divisor as in Lemma 3.23. By the Riemann-Roch formula and

by Lemma 3.23, we have

2 = l+dim|F] = (F2+F*D)/2+l+h\Oz(F)) ,

Lemma 3.23 also implies F2^>0. Since <p~\v)=D by Lemma 3.22, we have
F° D > 0. Thus if h\Oz(F)) ^ 1 , this equality yields a contradiction.

Now note that h2(Oz(F—DJ)=h\Oz(—FJ)=Q by the Serre duality. It
implies that the map H1(OZ(F))-*H\OZ(F) \ D) ̂  H\QD} ^ C is surjective. Thus

} ̂  1 and <p(D) * {4 . Q.E.D.

Now we go back to the proof of Proposition 3.21, Case B. By Lemma
3.24, we can choose a general member G of the ruling JP^family of So with
G n <p(D)~<f>. Let F be the strict inverse image of G by <p. We have OZ(F) \ D^
0D. By Riemann-Roch 2=(F2/2)+ l+h\Oz(F)). Since h\Oz(FJ) ^ 1 , we ha ve

J*=0.
The equality L*F=2 is obvious by definition. It concludes the proof of

Proposition 3.21. Q.E.D.

Theorem 3.25,, Let L be a polarization of degree 4 on a rational surface Z
with an irreducible effective anti-canonical divisor D. The following conditions
are equivalent.
(1) The rational map <pL associated to L defines a birational morphism to a
quartic surface in P3.

(2) There exists no element MePic(Z) with M2=Q, M*L=2 and M \ D^OD.
Besides if one of the above equivalent conditions holds, then the induced

morphism <p: X-*P3 by <pL is an embedding,

Proof. First we show (2)=^>(1). Assume that \L\ has fixed components,
By Proposition 3.7 there exists a smooth irreducible elliptic curve F and a
smooth irreducible rational curve r with F2=0, F*D=0, F2=— 2, F «D=09

J^F^l and L^OZ(3F+F). The line bundle M=Oz(F+r) satisfies the
conditions in (2). Next assume that \L\ has no fixed components. By Pro-



QUARTIC SURFACES AND SEXTIC CURVES 1211

position 3,18 \L\ has no fixed points. Thus <pL is a morphism0 By Lemma
3.2 one sees <pL maps Z to P3. Since L2=49 the image of <pL is either a quadratic
surface or a quartic surface. Assume moreover that Im<pL is a quadratic
surface. By Proposition 3.21 we have a smooth elliptic curve F on Z with
F2=0, F»D=Q and L°F=2. The line bundle Jlf=0z(F) satisfies (2). Thus
(2) implies (1).

Next we show (1)=^(2). Assume that there is an element MePic(Z) with
M2=Q, M*L=2, M\D^OD and that <pL is a birational morphism to a quartic
surface in F3. We will deduce a contradiction. By Riemann-Roch we have
h\M) + h\M)^l. If h\M) = h\-M+Q)z}*®, we have (-M+G>Z)-L^O
since L is numerically effective. However we have (— M+Q)Z)°L=— 2+0=— 2,
a contradiction. Thus h\M)=0 and A°(Af)=|=0, i.e. Mis effective. Let A be

an effective divisor with M^OZ(^)- We set

A =

where /c? m, nl9 • • - , »A are integers with &^0, m^O, «,-^l (l<^i^k), Al3 ••- , ^
are mutually different irreducible curves with A^D, A{*D>Q for every i and
F is an effective divisor with SuppF n D=<t>. Let Q be the union of exceptional
curves of p : Z->X. Since D is a connected component of <£ and since Ai ° D > 0,

has dimension 1 for every /. Thus L-Af>0 for every i. Since

2 =

we have 4 cases.

<2)> fe^l and ^-=1 for every i.

(Note that fc=0 if and only if m=0.)
Now we need two lemmas.

k
Lemma 3.26. Consider an effective divisor A = mD+ ^ A{+F satisfying

$=i
the following conditions.
( i ) 7c^l 5m^l
( ii ) D - A i > 0 for every i and A±, "a,Ak are mutually different irreducible divisors.

(iii) SuppF n D=0 and F is an effective divisor.
(iv)



1212 TOHSUKE URABE

Then A is linearly equivalent to an effective divisor containing no D.

Proof. By induction we show that H1(Oz(^lAi))=Q. If 7=0, it is trivial.
Consider the exact sequence

0 - Oz( 2 A,) -* Oz( 2 At) -> Oz( 2 4)1 ^/+1 - 0

Since deg (?z(2^i)l^+1 = ^y+i+ 2 ^r^+i>^/+i —^•^+i^2^G4/+i)—2>1=1 1=1

we have H\0Z( 2 ^»)L.+1)==0- % the above sequence and by induction
j+i

hypothesis we have H\OZ( 2] ^f-))=0.
8=1

Next by induction we show that H\Oz(nD+ 2 ^,0) = 0 for 0^n<m.
i = l

We have just shown it when n=Q. Assume n^m—2. Set N=Oz((n+l)D+

S^,)|D- Since deg ^=deg Oz(- (m~ n-l)D)\D= -(m-n— 1)D2>05 we
»=i
have H\N)=Q. By the exact sequence of sheaves

0 - 0Z(«D+ 2 ^,) -> 0Z((«+1)D+ 13 ^-) -* ̂  - 0
8=1 1=1

we have inductively Hl(Oz((n+l)D+ 2 ^,-))=0-
i = l

Note that in particular H\Oz((m— 1)D+ 2 ^,-)) = 0. It implies that

H\OZ(A')}->H\OZ(A')\D)^H\QD)=C is surjective where A'^

Surjectivity implies that there exists an effective divisor A" linearly equivalent to
A' which contains no D. Since A~A"+F, we have the desired result. Q.E.D.

Lemma 3.27. Let A be an effective divisor with OZ(A)\D^OD and with

A2^0. We have h\Oz(A)}^2.

Proof. Note that h\Oz(A - D)) - h\0z(- A)) = 0. It implies that
H\OZ(A)) -»H\OZ(A) \ D)szH\0D)e* C is surjective. Thus h\Oz(A)) ^ 1 . By
Riemann-Roch, we have

h\Oz(A)) = (A2+A*D)/2+l+h\Oz(A))^2 . Q.E.D.

We continue the proof of Theorem 3.25.
Case <1>. In this case Supp ^4 fl £> = 0. Let A be the fixed components of
the linear system \A\. Set C=A— A. By Lemma 3.27, we have C=£0 and
C2^0. We first consider the case C2=Q. By Proposition 3.3 we have a smooth
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irreducible elliptic curve G with G?= 0, G fl D = 0 and an positive integer p
with Ce \pG\. We have J-L^O and G°L^Q since Lis numerically effective.
Since the condition G»L=Q implies (j2<0 by the Hodge index theorem, we have
moreover G*L>0. Now since 2=A°L=pG«L-rA*L, one sees that G°L=l
or 2. Secondly we consider the case C2>0. By Proposition 3.3 we can assume
that C is an irreducible curve with pa(C)=(C2/2)+l. Since the condition
C*L=0 implies C2<0, we have C°L>0. Thus it follows from the equality
C°L+J*Z,=:2 that C-L=1 or 2.

Anyway one sees that there exists an irreducible curve Cx on Z with
/?fl(Ci)^>l, dnD=$ and Q-L=1 or 2. Since <pi Z-*P* is generically one-to-
one, and since dim|Ci| ^1, we can assume that 9|Ci: C1->P3 is a birational
morphism. The image of 9 1 C] is a line or a curve of degree 2 in P3 since
C1«L=1 or 2. Because such curves have arithmetic genus 0, we have

^0, a contradiction.
<2>. This case is reduced to Case <1> by Lemma 3.26.

Case<?y. First we show H\OZ(IA1))=0 for 7=0, 1,2 by induction. Since
Z is rational, the case 7=0 is trivial. Assume 7^0 and consider the exact
sequence

o -> oxwo -> 0z(('+i)4) - 0z((/+iMO L -> o .
We have J3rl«?z((/+lM1)l^J)=0 because
^4f— A1*D=2pa(A1)— 2. By induction hypothesis we have
Secondly we show JEf1((?z(?zD+2/41))=:0 for Q^n<m by induction as well. The
case n=Q has been verified. Assume Q^n<m— I and consider the sequence

0 -> Oz(nD+2A1) -> Oz((n+l)D+2A1) -> OZ((^+1)D+2^1)|Z) -> 0 .

Note that D2=o)2
z=9— t<Q by Lemma 3.2, (1) and that QZ(A)\D^OD. Thus

we have deg0z((/i+ 1)/>+240 lD=deg0z(- fa
and Jfl

rl(0z((«+l)D+2^1)|p)=0. By the last equality and by the induction
hypothesis, we have H1(Oz((n+l)D+2A1))=0.

Now in particular H\Oz((m — l)D + 240) = 0- This implies that
H°(Oz(mD+2A1))-*H°(Oz(mD+2A1) \ D)^H\OD)^C is surjective. Thus there
exists a member A' ^ \mD+2Al\ which contains no D. We have an effective
divisor A'+F^ \A\ containing no D.
Case <4>. This is the last case. Since A\ < 0 and A1 • D > 0, A1 is an exceptional
curve of the first kind. Since there are on Z at most countably many divisors
with the form mD+2E where E is an exeptional curve of the first kind, if
mD+2Ai is not contained in the fixed components of 1 4 1 , then there is a divisor
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A'G\A\ with the form in cases <1>, <2> and <3>.
Assume that mD+2Al is a part of the fixed components of \A\. Since

A=mD+2A1+F, we have h\0z(F)}=h\OZ(A))^2 by Lemma 3.27. However
since for a numerically effective line bundle L, A-L=2, D-L=Q and Ai*L>Q,
we have F-L=0. It implies that every component of a divisor linearly equi-
valent to F is an exceptional curve of p: Z—^X. Thus h\Oz(F))=l, which is a
contradiction. Therefore this case <4> is reduced to other cases.

Here in all cases we have got a contradiction. Thus (1) implies (2).
It remains to show that 9 is an embedding.
Let Y be the image of 9. By assumption Y is a quartic surface. Assume

that Fhas the one-dimensional singular locus S. Let H be a general hyperplane
in P3. The intersection Yf]H has singularities at SftH* The arithmetic
genus of FD H is (4— 1) (4—2)/2=3. Now let CcZ be the strict inverse image
of Ynff- 9\c' C-^Yf}H is a birational morphism. We have pa(C)^
pa(YCi H)=3 and the equality holds if and only if 91 c is an isomorphism. On
the other hand since any general member of \L\ is irreducible by Proposition
3.3, we have Ce \L\. Moreover C is smooth by the Bertini theorem. Thus
<p\c is not an isomorphism and we have/>fl(C)<3. However by the adjunction
formula pa(C)=(L2—D* L)/2+1 = 3, which is a contradiction. One sees that the
singular locus of Y is 0-dimensional.

Note that every local ring of Y is Cohen-Macaulay of dimension <^2 since
Yis a hypersurface. The singular locus of Fhas codimension^2. Thus by the
Serre's criterion of normality (Cf. Matsumura [14]), the local ring OY,y is normal
for every y& Y. The morphism X-*Y is a birational finite one to a normal
variety and therefore it is an isomorphism. Q.E.D.

Theorem 3.28. Let L be a polarization of degree 2 on a rational surface Z

with an irreducible effective anti-canonical divisor D. The following conditions

are equivalent.
(1) The rational map <pL associated to L defines a surjective morphism of degree
2 to P2.
(2) The linear system \ L \ has no fixed components.
(3) There exists no element MePic(Z) with M2=Q, Af-L=l and M\D^OD.

Besides if one of the above equivalent conditions holds, then with the induced

morphism (p: X->P2 by <pL, X has the structure of the branched double covering

of P2 branching along a reduced sextic curve B.

Proof. First we show (3)==>(2). Assume that | L \ has fixed components.
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Then |L| contains a divisor kF+F where A: is a positive integer, F is an
irreducible smooth elliptic curve with F2=0, F°D=0, F is an irreducible smooth
rational curve with F2=—2, F*D=Q, F°F=®9 by Proposition 3.7. Since

(kF+F)2=2, we have k=2. Set M=QZ(F+F). This M satisfies the
conditions in (3). Thus (3) does not hold.

The implication (2)==>(1) follows from Proposition 3.18.

Next we show (1)=^>(3). Assume that there exists MePic(Z) with M2=Q,
M*L=l and M\D^OD. We will deduce a contradiction under the assumption
that <pL is a morphism. By the same reason as in the proof of Theorem 3.25

one sees that the linear system | M \ is not empty. Let A e | M \ and set

A =

where k, m9 nl9 ••- , nk are integers with &^0, m^O and n^l (l^j^k), Fis an
effective divisor with Supp Ffl^=0, and Al9 "°9 Ak are mutually different

irreducible curves with A { 4= D and A t - D > 0 f or 1 ^ / ̂  k. Now we have

0 for every / by the same reason as in Theorem 3.25. Since

only one of the following two cases takes place.

fc=l, /?!=!, L.^!=l and F-L=0.
Note that condition A:=0 is equivalent to that m=Q because 0=mD2+S niAi - D9

i=l

Af-D^O and D2^0. The case <2> is reduced to <1> by Lemma 3.26. Thus
we can assume that A=F, namely Supp A{\D=<S>. Let A be the fixed com-
ponent of \A | and C-= A— A. By Lemma 3.27 C=|=0 and C2^0 since it is the
moving part. For the moment we assume C2=0. By Proposition 3.3 there is
a smooth elliptic curve G with G fl D=<f> and a positive integer p with Ce | pG \ .
If G*L=Q., then G2<0 by the Hodge index theorem. By the adjunction formula
pa(O)=(G2— G'D)/2+l=(G2/2)+1^0, which is a contradiction since G is an

elliptic curve. Thus (j«L>0. We have p=l, G°L=l and A»L=Q since
1 =M«L=pG*L+A*L. Thus <p \ G : G->P2 is a generically one-to-one morphism
and its image is a line in P2. We have pa(G)^Q, a contradiction again. Next
we treat the case C2>0. By Proposition 3.3, we can assume that C is an ir-
reducible curve with pa(C)=(C2/2)-rl^2, By the same reason as just the
above, one has C - L= I . Thus <p \ c : C-*P2 is a generically one-to-one morphism
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to a line. We have pa(C)^Q, a contradiction.
Thus conditions (1), (2) and (3) are equivalent.

Now we show the latter half of the theorem. By the Kawamata-

Ramanujam vanishing theorem one sees easily that h\mL)=l and h2(mL)=Q

for any positive integer m. By Riemann-Roch we have hQ(mL)=m2+2. Let

i/l5 u2, w3 be a basis of H\L). Let Sm be the subspace of H\mL) generated by
monomials of w/s of degree m. Since <pL is a surjective morphism to P2

9 there

is no non-zero homogeneous polynomial P(£/1? U2, U3) with P(ul9 u2, w3)=0.

Thus dimcSm=(m+2) (m+l)/2. One sees that H°(L)=Sl9 H\2L)=S2 and

that there is a non-zero element w^H°(3L) such that H°(3L) is a direct sum of

Cw and S3. Let 0: Z-»P (1, 1, 1, 3) be the morphism to the weighted pro-

jective space defined by z-^w^z), u2(z), ws(z), w(z)). Let F be its image. Note

that since w/s do not vanish simultaneously on Z3 the image Y does not contain

the point (0, 0, 0, 1). Thus the composition n0 with the projection P (1, 1, 1, 3)

-{(0, 0, 0, 1)}-»P(1, 1, l)=P2 has the meaning and x®=<pL by definition.
Moreover we can show that 0: Z->P(15 1, 1, 3) factors through p: Z->X by

the same reason as in Proposition 3.20. Let 0: X->FcF(l5 1, 1, 3) be the

induced morphism.

Lemma 3.29. If P(uly u2, u3)+wQ(ul, u2, u3)=Q for homogeneous poly-

nomials P(U19 U2, U3\ Q(U19 U2, U3) with deg P-deg g+3, then P=Q=Q.

Proof. First assume that P and Q has a common non-constant divisor

jR. Set P1=P/R and Qi=Q/R. , They are homogeneous polynomials with
i+3. Moreover under the assumption of the lemma we have Pl (ul9

^ U2> W3)=0 since ^(wi? W25 ^3)^0. Thus one sees that one can
assume that P and Q has no non-constant common divisor and that one of P and

Q is non-zero. Then the polynomial P(Ul9 U2, U3)+WQ(Ul9 U2, U3) is ir-
reducible and non-zero. Besides its zero-locus Yf={(a1,a2,a3yb)^P(l, 1, 1, 3)

\P(al9 a2, a3)+bQ(a1, a2, a3)=Q} is irreducible. We have Y=Y' since Fc Y'

by definition. However if degg>0, we have (0, 0, 0, I)&Y=Yr, which is

a contradiction. If deg Q=Q, 24=0, then w^S3, a contradiction. Q.E.D.

By the above lemma and by dimensional reasons one sees that H°(4L)=

S4+wSl9 H°(5L)=S5+wS2 and H°(6L)=SQ+wS3. (Here + denotes a direct

sum.) Now since w2^H°(6L), there are homogeneous polynomial P of degree

6 and Q of degree 3 such that

w2+wQ(u1 u29 uJ+P(ul9 u2, u3) = 0 .
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By replacing w by w—Q(ul9 u2, w3)/2, we can assume moreover that 2=0. Here
by construction Y agrees with the hyper surf ace in P(19 1, 1, 3) denned by
W2—P(Ul9 U2, U3)=Q, which is nothing but the branched double covering
branching along the sextic curve B\ P(U^ £/2, U3)=Q.

It remains to show that @: X-* Y is an isomorphism. Note that every
local ring of Fis Cohen-Macaulay since 7is a hypersurface of a smooth manifold
P(l, 1, 1, 3)-{(0, 0, 0, 1)}. Thus it suffices to show that the singular locus S
of Fis 0-dimensional by the same reason as in the proof of Theorem 3.25. It
is equivalent to that B is reduced by Lemma 1.1. Now let H be a general line
inP2. The inverse image n~\H) by n\ 7->P2 has singularities at 7c~l(H)r\S.
The arithmetic genus of n'\H) is (n*(H?+G>Y*n*(H))l2+l=2. Let CcZ
be the strict inverse image of n~l(H) by 0. < Z > | C : C—>7c~\H) is a birational
morphism. We have pa(C}^pa(n~l(H))=2 and the equality holds if and only
if 01 c is an isomorphism. However Ce | L | and C is smooth. Thus pa(C)fg 1
if dim S^l. On the other hand we have pa(Q=(L2—L°D)/2+l = 2 and thus

dim S=Q. Q.E.D.

Before concluding this section we would like to give one more proposition
and a lemma. The next lemma is due to Looijenga. We omit the proof here.
(Cf. Looijenga [12])

Lemma 3.30. (Looijenga) Let A be an irreducible curve on Z with Af\D=cl)

and A2=— 2. Then Oz(A)^Pic(Z) is an effective nodal root.

Remark. Since the conditions az=—2 and a°o)z=0 for aePic(Z) do not
imply that a is a root, this lemma is not a trivial one.

Proposition 3=31. Let ScPic(Z) be the set of nodal roots orthogonal to
the polarization L. Then S is a root system. Moreover singularities on X are
a unique point with positive geometric genus at w=p(D)^X plus combination of
rational double points consisted ofpk of Appoints, ql of Drpoints, and rm of Em-

points (fc^l, /^4, 777=6, 7, 8) if and only if § is isomorphic to the direct sum of
pk of irreducible root systems of type Akfor every k, ql of ones of type Dtfor every

/ and rm of ones of type Em for m=6, 7, 8. Here pi Z-*X is the contraction
defined just after Lemma 3.19.

Proof. Let R be the set of all roots in Pic(Z). It is obvious by definition
that (S+S)r}RdS and S=—S. Since the orthogonal complement of L in
Pic(Z) is negative-definite, the former half of the proposition follows from the
definition of the root system. (Cf. Bourbaki [3])
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Let us proceed to the latter half. Let 6 be the union of exceptional curves
of p: Z—>X Let 8' be the union of D and the support of effective nodal
roots orthogonal to L. In view of Lemma 2.1, it suffices to show that 8=6'.

Let A be an irreducible curve on Z such that p(A) is a point. If A=D,

then Adff' by definition. Assume A^pD. By Lemma 3,19, we have A2=—2

and An®=<f>. By Lemma 3.30, we have A d f f ' . Thus 8d8'* Conversely
let A be an irreducible component of £'. If A=D9 then Ad£ by Lemma
3.19. Assume A^= D. There exists an effective divisor S n{A{ (^<n^Z, Ai

is an irreducible curve) containing A as a component such that OZCS %^-)^
Pic (Z) is a nodal root orthogonal to L. We may assume A=Ai. It follows that
At*L=Q for every / from ^]niAi-L=Q since L is numerically effective. By
Lemma 3.19 we have A=AlcS. Thus €=€'. Q.E.D.

Now according to Theorem 3.25 and Theorem 3.28 we can decide whether
Z represents a reduced sextic curve or a normal quartic surface by studying
the morphism Pic(Z)->Pic(D). Proposition 3.31 shows that the morphism
Pic(Z)-»Pic(D) contains information about singularities on the objects we are
considering. Therefore if we had a criterion written with group-theoretic
words about Pic(Z)-^Pic(D) by which we could decide LePic(Z) were a polari-
zation or not, then classification of all singularities of objects under consideration
would be accomplished.

In the next section, we show that this is the case when t=9—o)2
z = lQ9

§4, Determination of the Polarization Class (when £=10)

In Sections 1, 2 and 3, we assumed only that t=9—a)2
z^3. In Section 4

restriction appeared; existence of polarization implies f ̂ >10. However in this
section and the next one, we restrict ourselves to the case /=10. There are
two reasons to do so. First if t=lQ, we can easily determine all elements AeP
with /l°/e=0 and 12=2 or 4 compared with the case f ̂ 11. Secondly we have
a group-theoretic criterion by which we can decide LePic(Z) with L°o)z=Q
and L2=2 or 4 is a polarization or not.

In this section we always assume that t=lO (i.e. ey|= — 1) even if we do
not mention it.

Proposition 4.1. Assume that o)2
z = — l. (i.e. t= 10). An element L e Pic(Z)

with L\D^OD and L2 > 0 is a polarization if and only if L e Vs fl C+ where C+ is
the connected component of the positive cone C={x^Pic(Z)®R\x2>0} containing
ample line bundles and



QUARTIC SURFACES AND SEXTIC CURVES 1219

Vs = {xe Pic(Z)®.R|;x>G>z=0, x°r^ 0/0r any effective nodal

Proof, "Only if" part Is trivial since L is numerically effective. To show
"if" part, we have to check conditions in Definition 3.1. The conditions (1)
and (3) are obvious by assumption. We show (2), i.e., L is numerically effective.
It suffices to show that for every irreducible curve A, the inequality L*A^Q
holds.

Recall that the positive cone C has just two connected components. One
is C+. The other is C_ = — C+,

If A2>0, the restriction to the orthogonal complement (RAY~ of A in
Pic(Z)®!2 of the intersection form is negative definite since the intersection
form on Pic(Z) has signature (1, 10). Thus (RA)-1- r\ C = {0} . (" denotes
the closure.) It implies that C+ lies in a half space bounded by the hyperplane
(MA)-1-. Since both L and any ample line bundle belong to C+9 we have
L°A>®. Moreover by a similar argument we have L°A>Q for any curve A

with A2=Q. Here note that we did not use that A is irreducible until now.
Assume that ./42<0. By the adjunction formula, one sees that there are only
three cases.
(i) A=D.

(ii) A2=—2 and A fl />=*.
(iii) A2=-l and X •£)=!.

If A=D, then L°D=® by assumption L\D^0D. In case (ii), QZ(A) is
an effective nodal root by Lemma 3.30. Thus it follows from the assumption
L^VS that A»L=0Z(A)°L^Q. In order to manipulate case (iii), we need
the assumption D2= — 1. Set C— A+D. We have C2= — 1+2— 1— 0. Thus
by the above argument we have L»(AJ

rD)=L°A>®. We obtain not only
numerical effectiveness but also condition (4) in Definition 3.1. Q.E.D0

Next we determine elements A^P=ZeQ+Ze1+-"+Ze1Q with A2=2 or 4
and Z°tc=Q up to the action of the Weyl group W. Here K=— 3e0+£iH ----- h^io-
Let r be the orthogonal complement of ZK in P. We denote

0=
U+=

It is easy to see that U+ are connected components of I7and U=U+(J £L.
Moreover we denote
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v= {jcer®fi|;c-rf.^0 for

where n=£Q— ̂ i— e2—
 £& Ti = si,l—ei for 2^1^10. The following lemma is

due to Looijenga. (Cf. Looijenga [12])

4.2. U+

The rest of this section is devoted to verify the following.

Proposition 4.3. Assume t=W. Any element X^P with }?=4 and A*K=
is conjugate to one of the following elements with respect to the action of W,

±(9e0— 3^— 3e2— 3e3— 3e4— 3e5— 3e6—3£7— 3e8— 2e9— e10)

±(le0— 3s1— 2s2~- 2e3— 2e4— 2e5— 2e6— 2e7— 2e8— 2s9— 2e10) .

Proposition 44 Assume t=W. Any element X^P with X2=2 and /l-/c=0
is conjugate to one of the following elements with respect to the action of W.

±(6e0— 2e1— 2e2— 2e3— 2e4— 2e5— 2e6— 2e1— 2eB— £9— e10) .

Proof of Proposition 4.3.
If /I belongs to U_9 then obviously — X belongs to U+, (— X)2=4 and (— A)*K

=0. Besides every element in U+ is conjugate to an element in V by Lemma
4.3. Thus we have only to show that the following system of equalities and
inequalities holds for integers x, yi9 - ° ° ? J10 if and only if (x, jl5 °"-5 y^=(99 3,

-,3,2, 1) or (7, 3, 2,- -,2).

10
X2 _ yi V2_i_4
•* — / i y t\^

10
1-v X^ i,jx == 2.J y i(4.1)

We need several steps.
STEP 1.

Lemma 4.5. Tjf (4. 1) Aoto, rtc/i x^l and y{ > 0 /or 1^/^

Proof. By the Schwartz inequality we have for l^go^lO (3x—y#)2=

-)2^9(%2-^-4). Thus 50;.-— x)2--x2+l$^Q. One sees that x 4=0
<=t* 10 20
and that ja5>0 or <0 according as x>0 or <0. Assume :c<0. We have

9 10

710<0. It implies that 3%^3(j1+J2+>73)^S>'y>S ^/=3jc, a contradiction.
y=i y=i
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Therefore x > 0 and y& > 0 f or 1 ^ a <; 1 0. Moreover by the Schwartz Inequality

we have 9x2=C£ y$^ 10(5] yl)= 10(%2-4). Thus x^7. Q.E.D.

Lemma 4.6. // (4.1) holds and if x^lQ9 then (x, yl9 — , y1Q)=(99 3,
3, 2, 1) or (7, 3, 2, .-,2).

Proof, We can assume 7^x^ 10 by Lemma 4.5. First assume x=7.
By the Schwartz inequality we have (21— ji)2^9(45— yl). It implies 5yl—2ly1

+ 18^0 and thus 0<y^3. If yl=3, then j2H ----- KVi0=18 andj>i+-' '+j'io=
36. Since 182=9 x 36, the equality in the Schwartz inequality (2 J>i)2^9(S 7?)

1^2 f'^2

holds. Thus y2=.-.=y1Q=2. We have the solution (7, 3, 2, • • - , 2). If ji^2,
then 21=j1+j2H ----- |-Jio^20? which is a contradiction. Secondly assume x=
8. We can show similarly that there is no solution in this case. Thirdly
assume x=9. By the Schwartz inequality we have 5yl— 27^+18^0. Thus
0<tt^4. Assume ̂  = 4. We have (23-y2)

2 = (y3+-+y1Q)2^ S jf-8(61
«^3

— yl), which implies J2^3. If y2^2, then 23=2^-^18, a contradiction.
i^2

Thus j2=3. Since Ji+j2 +y3^x=9 we have moreover y3^2. We have 20=
5] J>,-^16, a contradiction again. Thus 0<j!^30 Now we assume that k of
,'£3

{jis J2? "•» Jio} are 3, / of them are 2 and m of them are 1. We have &+/+
/w=10, 3fc+2/+/w=27 and 9k+4l+m=17. One sees easily that &=8, /=!
and 7w=l. We have the solution (9, 33 3, • • - , 2, 1). Lastly assume x=lQ.
Similarly we see that there is no solution in this case. Q.E.D.

STEP 2.
Next we set

x =

Equalities and inequalities (4.1) are equivalent to the next ones.

(4.2)

2— 4 .

Lemma 4.70 Tfe, dlf • • - , 510 are 0 or ±1, f/zen r/te solution of (4.2) LS
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Proof. By <4> we have d^=\. First assume e=0. If d1=l, then by
<1>3 <2> we have only two cases; (a) d2=Q, d3=-~=dg= — l, (b) d2=d3= — =

d9= — l. In both cases <5> does not hold. If ^=0, then by <2>, <5> d2= • • • =
d&=0, d9= — l. Substituting them to <6>5 we have z=3. Thus <3> is also
satisfied. We have the desired solution. If dl= — l9 by <2> d2=~°=89= — 1.
They do not satisfy <5>. Secondly assume e= + l. If #i^0? then by <2>,
<5> 1^51+52+--+510=3, which is a contradiction. Thus ^=1. By <1>,
<2> we have only three cases, (c) dz=l, d3=~-=d9= — l, (d) d2=d3=Q, d49 S5,
— , d9<*Q, (e) d2= 0, d3= — =d9= — l. In any case <5> does not hold. Thirdly
assume e= — 1. If d1=l9 then d2=d3= — 1 by <1>. By <2> we have moreover
d4= —=69= — l. In this case <5> does not hold. If d1=09 then there are
only two cases by <1>? <2>, (f) d2=Q,33='..=d9=-l,(g) d2=d3=-=dg=-l.

Anyway <5> does not hold. If d1= — ly then we have d2= — =d9= — l by <2>
and <5> does not hold. Q.E.D.

Lemma 4.8, Assume one of s, dl9 •••, dlQ is ±2, at most one of them is

±1 and the rest are 0. Then (4.2) has no solution.

Proof. First assume e = ±2. By <4> we have fl10=l. By assumption
we have d1= — =d9=0. Then <5> does not hold. Secondly assume e=±l.
By <4> we have d1Q=2. By assumption one sees 51=---=59=0. Then <5>

does not hold. Thirdly assume ^=0. We have 3 cases: (a) d1=-"=d8=Q,

*9=-2, ^u=l (b) ̂ =-..=^=0, d9=-l, d1Q=2 (c) ̂ =...=tf8=d9=0, *10=2.
In any case <5> is not satisfied. Q.E.D.

By the next lemma we can complete the proof of Proposition 4.3.

Lemma 49. If an integral solution 0/(4.1) satisfies *^11, then there exist
integers z, e, dl9 — , dw satisfying x=3z+e, y{=z+d-

10
equalities and inequalities (4.2) and

Since inequality £2+S 5f ̂ 5 implies that one of the assumptions in Lemmas
4.7 and 4.8 is satisfied., it follows from Lemmas 4.7, 4.8 and 4.9 that (4.1) has
no solution with #^11. Thus by Lemma 4.6 we have Proposition 4.3.

Q.E.D.

STEP 3.

Now we have to show Lemma 4.9. Here we introduce an Euclidean

metric ( , ) on P®M by fo, e,.)=l (0^/^10) and (*,., es)=0 for /=(=/ By this
metric we can define the distance dist(^45 B) of two subsets ^4, BdP(g)R. Let
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P{ denote the orthogonal complement of the set {K, n> ^ •"» T\^ — {Ti} in
P0J2 with respect to the intersection form, i.e., Pi={x^P®R\x-fc=Q, X»TJ=

Ofor 1^7^10,7=N}. Set Te={xGP®R\x*ic=Q9x*x=c9x*ri'£Qfoil^i^
W}dr®R,Hg={x<=P®R\x°£0^g} and dHg={x^P®R\X'eQ=g}9 where
c, g are positive real numbers. We would like to show that T4 fl #11 lies too near
to P10 to have lattice points on it. We need further several lemmas.

The following one treats a general situation.

Lemma 4.10. Let F be a three-dimensional real vector space equipped with
an intersection form ( , y of signature (1, 2) and with a positively definite inner

product ( , ). Let L be a line in F passing through the origin. For a positive
real number a we set Q={x^F\(x, x)=a}. Let EdF be a two-dimensional
linear sub space of F with Er\Q3p<j>. Then E(~}Q has two connected component
each of which is diffeomorphic to R. Let <p : R->E fl Q be a diffeomorphism to
one connected component. Then for any closed interval [b, c]dR and for every

^[b, c],
dist (<p(X), L)^max{dist (9(6), L), dist (p(c), L)}.

Proof. Since the restriction of the intersection form < , > to E has sig-
nature (1, 1), .En Q is a hyperbolic curve. Therefore E(~}Q is diffeomorphic

Figure 4.1.
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to two copies of R. We divide the rest of the proof into two cases.
Case I. LdE.

For every non-negative real number e^R, set De= {x^E\dist (x, L)^e}.
De is a closed connected set bounded by two lines parallel to L. Note that De fl
9 ([b, c]) is always connected. Set dQ=dist (<p(X), L) and assume dQ> max {dist
(<p(b), L), dist GP(C), I/)}. There exists a sufficiently small positive real number

e>0 such that />rfo-,3p(6), 9(0- since Af0-«ri9<|*, CJ) is connected> Af0-«n

9([*>c])=P([*»c]). It implies ^(/l)eD^0_s. We have ^=dist(p(X)9L)^dQ—e, a
contradiction.

2. Lctfi.

Similarly we set for non-negative real number e e R, De= {x e £|dist (x, L) ̂
In this case De is the interior and the boundary of an oval. Since De fl

, c]) is always connected, we get the desired inequality by the same reason
as in Case 1. Q.E.D.

Figure 4.2.

We now return to our case. For every subset /c {1, 23 3, "•, 10}, we set
P/=(n fif-) n (-B^)-1- where Jc is the complement of 7, Ff- is the orthogonal

iei«

complement of n in P®R, and (U/c)-1- is the orthogonal complement of K.
Note that P{i}=Pi. Next we define linear functions u, vl5 • • • , v10: P(g)R-*H

by w(X)=3>£0 and vz-(^:)=^:°rz- for 1^/^10. By direct calculation we obtain;

Lemma 4ells Pt n T4 is a unique point for \<^i<*9 and we have u(xt)<ll
for {Xi} =Pi n T49 l^i^9. P10 n T4 is empty. (Indeed max {z/

The next lemma is the key part of this section.

Lemma 4,1.2, For every subset 7c{l, 2, ••• , 10} with $1^3 and for every
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f n T4 n HU, there exist a subset Jdl with $J=$I—l and a point y^Pj fl

T4 n Hu with distO, P10)^disl(*, P10).

Proof. First note that unless /={10} or 7=0, the restriction of the
intersection form of P®R to the space spanned by r*3 *e{l, 2, • • - , 10}— I is

negatively definite. Thus the intersection form has signature (1, k—l) on Pf

unless 7= {10} or I=<t> where k=$L Assume fc^3. One sees easily that P7 fl
T4 f| #i0=N0. Assume that there exists j'e7 with vf-(jc)=0 for ^eP7 n T4 fl ^u-
Then ^eP7_{z-} fl T4 n 7/"n and setting J=I— {i},y=x we get the lemma. Thus
in what follows we assume that vf.(^r)^=0 for every j"e7. Since %eT45 we have

vz-(x)>0 for /e7. We denote Q={z<E:P®R\z°z=4}. Prr\Q is a quadratic
hypersurface spanning /*7. P7 n Q has two connected components. Let (P7 fl

00 be the connected component of P7f1(? containing x. Set c0=min{M(3;)|

ve(PH 2U • We have co>0 and c0< 11 by Lemma 4.11. If -c0<g<c0? then
Pf n 2 n dHg=$. If g= ± ̂  then P7 n 2 n dHg is one point. If | g | > c0, then
PI fl 6 n 9Hg is a smooth (fc— 2)-dimensional manifold. In particular P7 n Q fl
dHu(x) is a smooth (/c— 2)-dimensional manifold. Let 5" be the tangent space

of Pj n 2 P. dHuM at .x. If OeS', then Oe5"caffK(jc) and 0=w(0)=M(x)^ll.
It is a contradiction. Thus 0$S". Let K={zeP7| v(-(z)^0 for ze/}. Fis a

convex cone in Pr and ^ belongs to the interior of V. Since dim*S"^l, Sf

Figure 4.3.



1226 TOHSUKE URABE

A A

intersects some wall of F, i.e., 5r /n(F'nP/-u0})=l=0 for some /Oe7. Note that

there exists yQ^Sf fl (Vft ^/-u0}) with jv J>0>0- Otherwise Sf D (FTi ^/-{,-0})c

P10 and moreover the tangent space 5' of P7 n Q fl ̂ Hu^ at x intersects P10,
which is impossible. Thus such yQ always exists. Let M' be the line passing
through x and yQ, If OeM', then xeM'cP/^j and we have viQ(x)=Q, a
contradiction. Let M be the linear span of x, yQ and 0. Note that dimM=2.
Since x^M and x»x=4, the restriction of the intersection form to M has
signature (1, 1). We have the figure 4.3.

Next we would like to show (Mf) Q)0dHu^9 i.e., u(y)*zu(x) for every je
(Af n 2)o? where (Mf! 2)o is tne connected component of Mfl 2 containing #.
If MddHtt(x), we have nothing to prove. Thus we assume Met 9HU^. M fl
dHuw is a line containing x and j0, that is, Mfl dHu(x}=Mr. Recall that M'
is the tangent line of M fl 2 at * by definition. Since M fl 2 is a hyperbolic
curve, (MR 2)o lies on one side of M'. We have either u(y)^u(x) for every
je(Mf| 2)o or 0<MjO^SMX) for every je(Mf) 2)o- Since obviously u(y) is
unbounded on (Mfl2)o> we have (-^H 2)oc^«(*)- Now MR -?/-{,-) is a line
in M passing through the origin for every /e/ since P7_{f-}=Ker v f-n^P/$^.
One sees that M n T4 coincides with the closure of the connected component of
M n 2 — U M n PI- a] containing x. Since j0 e P/_ (f-0j and ̂ 0 • yQ > 0, M n PI- aj

intersects with (M n 2)o- K implies that M n T^ is a connected closed proper
subset of (M n 2)o- Tnus we have 7= ^(M n W n ( U M n P/_ {,-}) =1= ̂ , where

iSJ

4) is the boundary of Mn^4 . Pick j^F. There exists 4<El with
j! e d(M n r4) n P7- {fl} . Set /=/- ft} . Then yi e P7 n T4 and ̂  e (M n 2)o c
Hu(x)dHn. Moreover by Lemma 4.10? dist(jl3 P10)^dist(x, P10). Q.E.D.

Lemma 413. For every subset 7c {1, 2, 3, •• - , 10} w/rA #7=2 and 10$7, we
P7 n flu n !T4=0. (see figure 4.4)

Proof. Set 7= {/,./}. Since /=|=10, 7=1=10, we have Pf— {0}, Py— {0}c
l jej>0}. Thus if T4nP/ is not empty, it is a compact connected arc

contained in a hyperbolic curve. However, for a point y in Pf- n T4 and Py n
TV u(y) < 1 1 by Lemma 4.11. Thus for every y e T4 n P/, «(y) < 1 1 . It implies
T4 n P/ n flii=#- (See figure 4.4). Q.E.D.

Lemma 414. For a subset 1= {k, 10} with I ̂ fc^9, the function P7 n ^4 fl
, P10) attains its maximal value on the set Pf n T4 n 0^.

Proo/. Since AoC^GEP^^O} andP,-{0} c{3;eP/|;;03;>0}, P7R
T4 is an arc as in the following figure 4.5. Since u(y2) < 1 1 for yz e Pk n 7"4J ̂ 2
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Figure 4.4.

<y,y»o

Figure 4.5.
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the origin lie on the same side with respect to dHn. It implies that there are
not two connected components of T4 f~l PI D Hu but there is only one. In view of
the fact that P10 fl T^ is the asymptotic line of T4 n P/ n Hll9 one sees that the
distance to P10 attains the maximal value at T4 n PI fl d#n by Lemma 4.10.

Q.E.D.

Lemma 4.15. The set T4 f| P{k,io] fl dHu consists of a unique point {yk} for

l<^k<^9. Besides we have distQ^, P10)< 1 for 1 <£ k ±g 9.

The former half is trivial. By direct calculation we have

max dist (yk, P10)=dist(>95 P1Q)=^lQ/9 < 1 . Q.E.D.

Corollary 4.16. For every point xe T4 n Hll9 dist(x, P10)< 1-

Proof of Lemma 4.9. First note that the set {z(3e0— S ef-)|*eZ} ex-
*=i

hausts the lattice points (points whose coordinates are all integers) on P10.
The minimum distance of lattice points on P10 is VlS- Thus for every point
x^P10 there exists a lattice point weP10 with dist(X w)^\/l8/2.

Let j;0er4n^u be an arbitrary lattice point. Let x0eP10 be the point
on P10 which attains the distance between j0 and P10, i.e., dist(j0, P10)=dist(j;OJ

:̂0). The line passing through x0 and y0 is perpendicular to P10. Let w0eP10

be the lattice point with dist(^0? w0)^\/T8/2. By the Pythagorean theorem
and by Corollary 4.16 dist(j0, w0)

2< 18/4+ 1 = 5.5. Since dist(v05 w0)
2 is an

integer, we have dist(j;0, w0)
2^53 which is the desired result. Q.E.D.

By the same method we can also verify Proposition 4.4. Indeed it is easy
to check the following lemmas.

Lemma 4.17. The system of equalities and inequalities

(4.3)

10
= 2

1 = 1
10

1 = 1

= ./io

is satisfied by integers x, yl9 • • - , y1Q with x^ 10 if and only if (x, yl9 • • • , y10)=(6,

9 9 ... 9 1 1^
*•> *"> •) *"> A5 LJ-

Lemma 49180 (1) For every point j>e!T2n#ii, dist(j, P10)<1. (2) If an
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integral solution of (4.3) satisfies x^\\, then there exist integers z, e, dls ••-,

310 satisfying

<2>

(4.4) 81+82+-+810=3e

= 6ez+e2-2
10

such that *-3z+e, ;>,•=*+$,• (l^i^9), j>i0=Si0.

Lemma 4.19. Tjf e, dlt • • • , fl10 are 0 or ±1, f/zew r/ze solution of (4.4) £s

2r=2, e=0, 51= — =^8=0, 09=-l, 510=1.

Lemma 4o200 Assume that one of e, 6l9 •••, dio is ±2, at most one of them

is ±1, and the rest are 0. Then (4.4) /zas «o solution.

Here we complete the proof of Proposition 4.3 and Proposition 4.4.

§5o The Action of the Weyl

In this section we give the proof to the main part of our main theorems.

Let XcjP3 be a normal quartic surface [resp. Let TT: X->P2 be a branched

double covering over JP2 branching along a reduced sextic curve B.} with a

singularity j?8, T2t3t7 or E12 at x0 e X. We assume that other singularities on X

than x0^X are rational double points. Let p: Z->X be the minimal resolution

of singularities. Let D=p~\x0). Then for a suitably chosen a and c, S>=(Z,

D, a, t) is a marked rational surface of degree — 1. (Cf. Lemma 1.4, Proposition

1.5, Definition 2.4.) Moreover by exchanging a by aw with a suitable we WP,

we can assume that either a(A1)=L or a(^2)=L holds, where ^i=7e0—3^—2e2—

2eJO, ^2=9^0—3^ 3e8—2^9—e10 and L=p*OP
3 (1). (Cf. Proposition

4.3.) [resp. we can assume that a(X^=p*7i*Qpz (l)=L holds where ^3=6e0—2e1

—2e2 2eB—e9—e1Q. (Cf. Proposition 4.4)]. Since the restriction of L to D

is trivial, the characteristic homomorphism <p^: F-+E satisfies 9^(^.)=0 and

belongs to the subset Hom(r/2Uf-, E) of Hom(r, E) where i=l or 2 according

as af(^)=L or a(A2)=L. [resp. the characteristic homomorphism <p%: F->E

satisfies <p%(A3)=Q and belongs to the subset Hom(F/J^3, E) of Hom(r,
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(Cf. Definition 2.6). Furthermore the kernel Ker 9^ contains no element

with jLt2=Q and v*~2. (i=l, 2) (Cf. Theorem 3.25.) [resp. the kernel Ker y^

contains no element ju(=F with jL?=Q and v*3= 1. (Cf. Theorem 3.28.)]
Conversely for a fixed j=l or 2 choose an element ^eHom(JT, J£) such

that

(1) ^)=0and
(2) Ker 9? contains no element /* with #2=0 and #«^-=2.
[resp. Conversely choose an element 9? e Hom(-F, E) such that

(1) 9(^=0 and
(2) Ker 9 contains no element # with #2=0 and #-^3=lJ Then by theorem

2.8 there exists a marked rational surface 55=(Z, D, a, c) with <?=<?%.

Exchanging a by wa where we R^ is an element of the Weyl group associated
to nodal roots, we can assume that a(Zi)^Vsr\C+ [resp. a(^) e Fs fl C+] and
<p=<pg, since Fs f| C+ is a fundamental domain of Ws. By Proposition 4.1 and

since it follows from the above condition that L\D^0D for L=a(^.)ePic(Z)
[resp. Z,=a(<J3)ePic(Z)], the line bundle L is a polarization of Z. Moreover
by the above condition (2) and by Theorem 3.25, L defines a morphism <pL: Z->
XdP3 to a normal quartic surface [resp. Moreover by the above condition (2)

and by Theorem 3.28, L defines a morphism 0: Z->XdP(l, 1, 1, 3) to a
branched double covering over P2 branching along a reduced sextic curve B]
with singularity 1T8, T2f3f7, or £"12 according as E is an elliptic curve, C* or Cf.

Note that by Proposition 3.31, singularities on X are described by ZTfl

Ker^s n C ,̂-)"1" O'=l> 2> 3) where J7 is the set of roots in P and (Zltf~ is the
orthogonal complement of <Jf- in r=(Z/c)J-.

Thus classification of singularities of surfaces under consideration is reduced
to studying the abelian group Hom(r/ZAi9 E). (i=l, 2, 3)

Let A denote the orthogonal complement of Zl{ in F. We define a
homomorphism

by w(a) (f)=a.£ for aer and <f e/i. It is easy to see that its kernel is A^=
Z&i and it is surjective since F is a unimodular lattice. Thus it induces an
isomorphism u: F/Z^-^-^A*. In what follows we sometimes consider -^e

Hom(yl*, E) instead of ^eHom(r, E) with 9(/lz-)=0. Since w is bijective they
are equivalent. Note that the composition A-^F-^F/ZXi-^+A* is injective

since Af\Z^t={Q}. We regard A as a subset of /I* by this injective mapping.
Conversely A* is regarded as a subset of >i(g)Q. We can define a bilinear form
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on A* with values in rational numbers by extending that on A. For any element
, the reflection se with respect to the hyperplane orthogonal to 6 is

defined by se(x)=x— ^x° 6 for x^A®Q. It is an automorphism of order 2
(0*0)

preserving the linear form. (In what follows an affine automorphism of order 2
of an affine space whose set of fixed points has codimension 1 is called a
reflection.)

Now we would like to give a remark. Let A be an arbitrary abelian
group. When a group G acts on A we define an action of G on Hom( A, A) by
(gF) (S)==F(g-1(f)) for g<EG? F^Hom(A, A), and £<=A. With this definition
the inclusion A<-*A* is an equivalent homomorphism if the action preserves
the bilinear form.

Next we consider the case concerning Xl=leQ—3el—2e2 ----- 2e10. Set

S^Zri+Zrz+Zri+Zrs+Zrs+Zn+Zri+Zrs+Zriv (r2 does not appear.)
It is easy to see that the orthogonal complement of Z^ in F is 3l (i.e., A=Sl)
and that S1 is the root lattice of type D9.

r3 r4 r5 n r7 rs r9

r\

Let W3i be the group generated by s^, Sty • • • , SyiQ. It is the Weyl group of type

D9. W* acts on 31 and Sf. Set ^ =—n_±r +Ar +Ar + J_r +J_r1 4 4 2 2 2 2

We can check that Sf=31+Zo)1. Set 0j=—r\——r3* One can see easily
2* 2*

0^3$ and 6l= — l. Moreover 26^Sf(^Z since 0^^=—— and d^S^Z.

Note that it implies that the reflection se (x)=x+2(x°01)01 defines a homomor-
phism Bf to S*. Let Gl be the subgroup of the orthogonal group of 3f gener-

ated by s$i, Si9, Jv ^5, JYe, JYT» ^8
 and ^o- The SrouP ^iis the Wey! group of

type B9 since the mutual intersection numbers of 6l9 r3, • • • , n0 giye the following
Dynkin graph.

7s

Lemma 5.1. Every element S^Sf with £2= — l is conjugate to 6l with

respect to the action of G^ Moreover every element £^3f with £2=—-2 is con-
jugate to r3 with respect to the action of WE^,
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Proof. We first show that every element £<=3f with S2=-l or ¥= —2

belongs to the free submodule F' generated by 0l5 r& r45 •••, TiQ- Otherwise we

have an element y^F' with S=y+o)1 since [ 3 f : F']=2. It is easily checked

that the restriction of the intersection form to F' has values in Z. Thus y2 and

2y»o)1 are integers since 2a>1eF'. It follows that o)l=S2—y2—2y°o)1 is an

integer. However we have o>? = — 9/45 a contradiction0 Secondly we show that

every element <?e#? with <f2= — 2 belongs to SV We may assume that £ el1',

Assume moreover that E&Blm Then we have an element zeSj with <f=z-\-Ol

since [F': HJ=2. It follows that 6\=l;2—z2—26l»z is an even integer. How-

ever 0i= — 1, which is a contradiction. Since F' and Sl are the root lattices of

type B9 and D9 respectively one obtains the desired claim by the theory of root

systems. Q.R.D.

Corollary 5a20 (1) Every element r^^ClF with r2=—2 is a root,

(Recall that an element r^F conjugate to some n (1^£*"^10) with respect to WP

is called a root,)

(2) For every element 0^3f with 62= — l9 the reflection s& belongs to Gx.

(3) For every element 6^Ef with 0f= —1, we have an element £^3f with

(4) For every element Tj^Bf with 7}2=—2, we have an element f eSf with

f.37=l.

Proof. (1) Since GxC WP it is obvious.

(2) There is g e G! with ^ =g(01). Thus ^-g^ g'1 e GlB

(3) Since 2(o>1+r3)^i-lJ 2g(©1+ra)^=l for ^=g(^).

(4) We can assume that 7?=g(r3) for g e GlB Then g(^4) has the desired proper-

ty. Q.E.B.

Let Hi be the set of all elements £ eSf with f2^ — 1 or —2. Hi is the

root system of type B9. Bl is identified with the co-root lattice Q(lli)9 i.e., the

free module generated by co-roots. 3f is the weight lattice P(n^. Moreover

Let us proceed to the case concerning to A2=9e0— 3s1— 3s2— • • • — 3eB— 2e9—

SIQ. Set B2=Zri+Zr2+Zr3+Zr4+Zrs+Zr*+Zr7+Zrt and o)2=3e0-61-e2

—s3—£^~e5—e6—€7—£8—2£Q+£1Q. 32 is the root lattice of type EB and it is

easy to see that the orthogonal complement A of ZX2 in F is the orthogonal
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Tz TS T& 7*5 7*6
o o o o O —

direct sum of Zo)2 and 5*2? i-e-9 A=Zo)2+S2. Thus we have J*=^(
B$, since o>2=— - 4. Let G2 be the Weyl group of type E generated by s^9 s^,

fyg, ,Sy4, J^5, .Sy6, .%7 and >%8. (12 acts on ^o>2 trivially. Let T be a cyclic group
of order 2 generated by the reflection ^(W2/2) acting on A* = Z(o)2/4) + S$ .
Tacts on S$ trivially and acts on Z(o)2/4) as the change of the sign; a-*— a0

53, (1) If62=-l for 6<=Z(a)2/4)+3f, then 0=±Q)2I2.

(2) If if =—2 for ?7e^r(a>2/4)+£rf? then y^Sf and such an element rj is con-

jugate to each other with respect to the action of G2a

Proof. (1) Set 0=(wG>2/4)+£ with m(=Z, f eEf0 We have — 1 = —
(m2/4)+f2 since Q)|=— 4. Since f2 is a negative even integer unless f =0, one
sees that m==j=2 and f =0.
(2) We set 7i=(mvJ4)+£ with we2T, f eEf8 We have -2=-(w2/4)+£2.
Thus m=0 and r]^3$ since f2 is a non-positive even integer and since 8=2x4
is not a square of any integer. Every element 57 eS? with r^2=—2 is conjugate
with respect to G2 since S$ is the root lattice of type EB. Q.E.Do

5.4. (1) Every element r^^(o)2/4)+Efc:r with r2=—2 is a
root.

(2) For every element 6^Z(o}2l4}-{-E^ with 62= — 1, the reflection SQ belongs to
T.

(3) For every element d^Z(o)2/4)+Sf with 02= — l, we have an element £ e

Z(a>2/4)+3f with 2f-^=1.
(4) For ^v^rj element ?j^^(o)2/4)+3f with rf=—2 we have an element £GE

Let J72 be the set of elements £<=Z(o)2/4)+S$ with <?2= — 1 or — 2, J72 is

the root system of type y^+Jig. The irreducible component of type Al is con-
sisted of {±0)2/2} and they are regarded as short roots compared with those in
the system of type E8. Equalities Q(n^)=Z(o2+3f9 Q(n2)=P(nv

2)=Z(o)2l2)-\-
Sf, P(nj=Z(a>2/4)+St holds.

Lemma 5.5. Assume f== 1 or 2. Let A be the orthogonal complement of
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Z%i in F, The following conditions are equivalent for T^eEHom(/i*? E).
(a) There exists an element ju^F with ju2=Q9 ju°A~2 and T/ru(jtt)=Qa

(b) There exists an element O^A* with 62= — 1 and -^(d)=Q.
(c) There exists an element 6^ A* with 62= — l such that sQ(^)=ty.

Proof. (a)=Kb). Recall the definition of u. Since F cZ(Jf-/4)+ A*5 every
element a^r can be written uniquely as a=(mXi/4)+a' with m^Z, a'^A**

Then a'=u(a). Thus setting 0=u(ju), we have ju=(^/2)+6 since jU°A~2. We
have 02=((*i/2)-tif=l-2+0=-l and i/r(6)=^u(ju)=0.
(b)=>(a). Since u is surjective, there is an elemnt ju'^P with 6=u(fjLr)0 Then
there is an integer m^Z with M=(mXi/4)+6. We have (ju')2=m2/4—l, which

implies that m=4n+2 for some integer n, since (X)2 is an even integer, (F is
an even lattice.) Set /JL=JLL'— nl{. Then ju^P, ju2=09 ti»hi=2 and T/ru(ju)=Q.

(b)=^(c). If (b) is satisfied, then for x<= A*, (s@(^J) (x)=i/r(se(xj)=ir(x+2(x°0)6)

Note that there is an element £ ̂ A* with 2£-0=l. (Corollary 5.2,
Corollary 5.4.) If (c) is satisfied, then ^)=^S0(^=^(S)+ir(6). Thus ^(6)
-0. Q.E.D.

The above lemma implies that the criterion for whether the marked
rational surface can be realized as a quartic surface or not can be interpreted with
group-theoretic words.

To help reader's understanding we write down one more lemma.

Lemma 5.60 For every element r^A with r2=—2, the following conditions

are equivalent.

(a) -vKr)=0.
(b)
(c)

Proof. Here we only give the proof of (c)=$>(b). The other parts are
trivial. Recall that there is an element £&A* with £°r=l- (Corollary 5.2,

Corollary 5.4) If (c) is satisfied, then ^(f)^^(f)=:=^(<?)+Vr(r). Thus ^(r)
-0. Q.E.D.

Summing up the above results we have the following proposition.

Proposition 5.1, Assume i= 1 or 2. Let A be the orthogonal complement

of Zl{ in F and u: F-*A* be the canonical surjection. Let G{ be the group
generated by all reflections s^ corresponding to elements y^A* with 7}2= — I or
—2. The following conditions are equivalent for i/r^Hom(A*, E).
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(A) There exists a marked rational surface Z=(Z, D, ay c) over E of degree

— 1 such that
(i) the characteristic homomorphism <p^ of 2> coincides with i/ru;
(ii) the line bundle L=a(Zi) defines a genetically one-to-one morphism

<PL: Z->ZcP3 to a normal quartic surface X; and
(iii) the combination of singularities on X is a unique £& T2>3i7, or E12 (It

depends on whether E is an elliptic curve, C*, or C.} plus a combination of

rational double points associated to the set of Dynkin graphs S Pk^k+

S ftA+S rmEm.
(B) The kernel Ker ^ contains no element 6^ A* with 62= — l and ihe set of
elements y^A* with 7]2=—2, ^(^)=Q is the root system of type ^1 pkAk+

S
(C) The isotropy group IGi(^)={g^Gi\g(^)='^} of ^ with respect to G{ con-

tains no reflections associated to any element 0e A* with #2— — 1 and moreover
the maximal subgroup of IGf^r) generated by reflections is the Weyl group of type

Remark, The group G1 is the Weyl group of type B9 and G2 is the Weyl
group of type A^E^. In the latter case the irreducible component of type
A! corresponds to the elements 6^ A* with 62= — I.

Now our classification is reduced to the classification of subgroups of Gi

which can be realized as the maximal subgroup generated by reflections of
)=^} for some ^eHom(yi*, E).

Definition §Je The following procedure which associates a root system
R to its root subsystem R' is called the elementary transformation of the root
system.
(1) We divide R into the direct sum of irreducible root system5 say R=®Ri.

(2) We choose a fundamental system of roots for every /, say ^-c:^..
(3) For every /, we choose a proper subset 3i of the union Ai U {— 77 f-} where r]i

is the highest root associated to A{.

(4) We set Rf=®R/
i where R'i is the root system generated by 2im

i

Proposition 5890 When E is an irreducible smooth elliptic curve (resp.

C7*), the following conditions are equivalent for any subgroup H of the Weyl
group W= W(R) associated to a fixed root system R. We denote by Q the co-
root lattice of R, i.e., the free Z-module generated by co-roots {y v \rj^R},

(1) The group H coincides with the maximal subgroup generated by reflections
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of the isotropy group Iw(ir)for some
(2) The group H is generated by a set of reflections {j, | r\ e K'} where R"
is a root subsystem of R which is obtained by elementary transformations re-
peated twice (resp. only once.) from R.

Proof. Let Q be the root lattice of R. The vector space Q®R is regarded
as the dual space of Q®R. We denote the canonical pairing Q®MxQ®M->
R by < , >.

We first assume that E is an elliptic curve. We have representation
E=CfZ+ZT where reC7 and Im r>0. We fix such repreentations. The
covering mapping n: C-^C/Z+Zr induces the covering mapping n: Q®C->

Q®E, Set W=W [X (Q®Q) where (X denotes the semi-direct product with

respect to the diagonal action of W to Q® Q. (i.e., for g<E W9 (£', £") <=Q®Q>

g(t', £")=&£', g£"). ) The group W acts on Q®C by (g, £', E") (^'+r^")=

(g(^')+£ O+rWO+f") where g£E PF? f ', f ''eg and ̂ ', ^^Q®E. We
have a canonical isomorphism of isotropy groups. /fK^^^OK1?)) f°r ^^
2®CJ. Thus we can consider the action of W on Q® C instead of that of W

Set Wa= JF-IX 6- The group W^ is the affine Weyl group of R. We have
a diagram

Pi

where Pl(g, f, £")=(g, f')5 P2(g? f, f/7)=(g, <?") and i/f. (g, f ')=g 0=1, 2).
Set >fi=i/rf+T<i/r" with ^',is"s=Q®R. Let (g^')^IWa(^

f). We have g(^')+
f'=Vr / and one sees that f is uniquely determined by g and ^'. Thus the

restriction ^1|/PFfl('^') of ^ is injective. Set J(is'}=Vi(IW(fa'))° J(i^') is iso-

morphic to /^(^O .and ^l Jty')=J&') K 2 is isomorphic to pf1 IWaty
r) via

P2= We have

(5.1)

We claim here that there is a root subsystem jR' of R which is obtained
from R by one elementary transformation and Jty') is the Weyl group generated
by {s^ T] e R'} and that conversely for any root subsystem R' obtained by one
elementary transformation from R, there is a point ^'<=Q®R such that
coincides with the Weyl group generated by
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To see this recall that the action of Wa on Q®R has a fundamental domain
C0. C0 is called a small Weyl chamber. (Cf. Bourbaki [3]). Since every small

Weyl chamber is conjugate we can assume that ^eQ. (~ denotes the
closure.) Now let SH denote the reflection of Q®R in Wa whose set of fixed
points coincides with a hyperplane H. Let M be the set of all hyperplanes H

with %e Wa. The domain C0 is a connected component of Q®R— U H. Set
Hejf

MQ = {HtEM\dim(HnC0) = dimH}. MQ is the set of walls of the small
chamber C0. It is known that for every H^M0 there is a unique root 77 ^R

perpendicular to H and such that (x, ??>>0 for x^C0. We denote it by ri(H).
Let R=@R. be the decomposition into irreducible root systems. Then there is

i

a fundamental system of roots ^idRi for each i such that the union LM,-U
i

{— 7]{} coincides with the set {^(H)\H^M^ where 77,- is tne highest root of R{

associated to Jf.. Let M0(^0={#^-Mol^/e#}- It: is the set of walls of co
passing through ^'. Then it is also known that the isotropy group IWa(&')

coincides with the subgroup of Wa generated by {sH\H^MQ(^')}, the set of
reflections corresponding to walls of C0 passing through ty' . Since the intersec-
tion of all walls of the small Weyl chamber of an irreducible root system is
empty, for every i, (Ai U {— ̂ f-» fl {n(H) \ H^M^')} is a proper subset of A{ U
{—If}. Let R' be the root system generated by {?(#) | H^MQ(^')}, the set of
roots perpendicular to some wall of C0 passing through ^' and in the direction
of the inside of C0. By the construction R is the one obtained by one ele-
mentary transformation from R and /(^') is the Weyl group generated by

Conversely let R' be a root subsystem of R=Q)Ri obtained by one elemen-
i

tary transformation from R. Choosing the fundamental system of Jz-Ci?z- of
the irreducible root system R; is equal to choosing a Weyl chamber C£ of W(Ri)
in Qi®R where g,. is the'co-root lattice of Rt. Let C/0 be the small Weyl chamber
contained in C{ and such that OsCz-0, which is the fundamental domain of

Wa(Ri)=r/(R:)b<Qi- Let Mio={H: hyperplane in Q^Rls^
dim (HnCiQ)=dim H\. Mio is the set of walls of Cio. Then the set

H<=Mio} coincides with ^ U { — ??,•} where 77- is the highest root. For the
specified proper subset 2t of A{ U {— ?7Z-} let 'vK be a general point in the intersec-
tion n {H\H^Mio, 7](H)^2-}. The isotropy group IWa(R^W) coincides with
the Weyl group generated by {s^ \ y^R't} where R'{ is the root system generated
by Jf.. Let ̂ ' be the image of ®^ by the inclusion ©ft® R eg® 12. One
knows that the isotropy group Iw (^') is the Weyl group generated by {^ | rj e
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@R'i=R'}. Thus we have the above claim.

In what follows we assume that ir'^Q®R and R' has the relation mention-
ed in the above claim.

Let Qf be the co-root lattice associated to R'. Then /O') D< Q' is the
affine Weyl group associated to R. Thus applying the above claim to R one
sees that subgroups H of W with the property (2) in Proposition 5.9 coincide

with subgroups which can be written as //(.//oixQ'C^'O for some ^\ ^"^Q®R.
Therefore by the equality (5.1) and by the nexMemma we conclude that (1) and
(2) are equivalent when E is an elliptic curve.

Lemma 5.10. Any reflection in Ijw}KQW) belongs to //

(Note that in general Q 3 2'.)

Proof. Any reflection in W (X Q can be written as (j,, f) where rj ̂ R and

£&Q. Assume 0,, O^/MOKcd/')- We have 77 ^R and ^"— <?, ^"y^+c
=-V>". Thus £=<77, Vr//>?7v- Note that we have an element w^P(R) such that
O, 5V'>=1. One sees that <w, £>=<?> V"> Js an integer since P(^) is the dual
lattice of Q. Thus we have f e g' and ( ̂ , f) e /O') P< g'. Q.E.D.

Next assume E=C*. Let TT: C->C* be the covering mapping. It induces
the covering mapping n: Q®C->Q®C*. If n(^r)=^ then IWJ(&)^IW(&)*
where Wa=W\^Q. Thus the problem is reduced to the classification of
isotropy groups of the action by Wa to Q®C. However note that the answer
never changes by replacing C by R since the condition g(^)=^ for g^Wa,
^^.Q®C is written with an affine equation whose coefficients are all real
numbers.

Pick %^Q®R. Let C0 be a small Weyl chamber whose closure contains
X. Then as mentioned above, IWa(x) is the Weyl group generated by reflections
associated to walls of C0 passing through x and moreover the set of generating
reflections corresponds to a root system R' which is obtained by one elementary
transformation from R.

We conclude the proof of both cases in Proposition 5.9.
The next proposition deals with the case E=C.

Proposition 5.11. Let W= W(K) be the Weyl group associated to a fixed
root system R. Let Q be the co-root lattice of R. Then for any subgroup Hd W,
the following conditions are equivalent.
(1) For some i/r^Q®C, H=IW(^).
(2) For some fundamental system of roots ddR and for some subset A'CLA, H
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is the Weyl group generated by {s^ \ rj^R1} where Rf is the root system generated
by A'.

Proof. For g<=W and ^&Q®C, the condition g(i^)=i^ is described by a
linear equation whose coefficients are all real numbers. Therefore we can
replace C by R. Pick x<^Q®R. Let C be the Weyl chamber of FT such that
the closure of C contains %. Let M be the set of hyperplanes HdQ®R such
that for some reflection in W its fixed-point-set equals to H. A connected
component of Q®R— IJ H is C. Let M0 be the set of walls of C, i.e., M0=

Hf=M __

{H<=M\dimH=dim(HnC)}. For H e Jf0 we have a unique root j?eJ?
perpendicular to //" and <;c, ??>>0 for ;ceC. If we denote it by 7](H)9 the set
{n(H) | H^M0} is a fundamental system of roots of R. Moreover it is known
that choosing a Weyl chamber C is equivalent to choosing a fundamental system
of roots. Set 4'= {q(H) I H^ M0, z^H}. A' is the set of walls passing through
X. It is also known that Iw(x) is the Weyl group generated by reflections {s^ \
7]^R'}, where R' is the root system generated by A' . Thus (1) and (2) are
equivalent. Q.E.D.

Now by Proposition 5.7, Remark just after Proposition 5.7, Proposition
5.9 and Proposition 5.11, the main parts of Theorem 0.2, Theorem 0.3 and
Theorem 0.4 are obvious.

Recall that the intersection numbers of elements in the union of a
fundamental system A of an irreducible root system and (—1) times its as-
sociated highest root are described by the extended Dynkin graph. Thus the
elementary transformation of root systems corresponds to the elementary
transformation of the Dynkin graphs. The series (I) in Theorem 0.2, Theorem
0.3 and Theorem 0.4 corresponds to <J1=7e0 ----- 2e10 and the series (II)
corresponds to A2=9eQ ----- e1Q. However we did not necessarily use the expres-
sion containing Bg or A1-\-EB in those theorems. We used a simpler expres-
sion to say the same contents.

The part left unproved is the following proposition.

Proposition 5,12. (Urnezu [22]) Assume that a normal quartic surface X

has singularity S8, T237 or E12 and that S Pg(X, x)^2. Then X has only 2
' ' X€=X

singular points and both of them are of type £8. Conversely a normal quartic
surface with 2 singular points of type £8 exists.

However this is Y. Umezu's result.
Let us proceed further to the case of branched double coverings.
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In this case it is obvious that the orthogonal complement A of ZA3 is the
orthogonal direct sum of Zr1Q and B2=Zri+Zr2+Zr3+Zr4+Zr5+ZrQ+Zr7

+ZrB. (^=6£0-2£l-2e2-2£3-264-2e5~26B-2£7~2eB-69-£1Q.) 32 is the
root lattice of type E8. Let J73 be the set of all elements £ ̂ Zr10+32

 w^h ^2=

-—2. U3 is the root system of type Ai+EB. The lattice ZriQ+32 is its root
lattice and Z(riQ/2)+E2 is its weight lattice. Moreover we have that Q(H3)=
Q(ff^=Zr1Q+32 and P(II3)=P(II^=Z(r10/2)+32=A*. Thus Hom(F/^39

E) is identified with Hom(Z(r10/2)+329 E). We denote by G3 the Weyl group
generated by JY|, Jv jYa, ,yv jYj., *Yfl, sv Jv jYlj). (jYg does not appear.) The
group G3 acts on ZriQ+S2 and Z(riQ/2)+32 and it is of type

T2 TS T& TS TQ TI

The next lemma is easily checked.

Lemma §B130 (1) Every element r^Zri0+E2 with r2=—2 is a root.
(2) For every r^Z(r10/2)+32 with r2=—2, we have £<=Z(riQ/2)+32 with r*<?
= 1.

Thus Lemma 5.6 holds even when i=3.

Lemma 5914e The following conditions are equivalent for

(a) There exists an element #eF with #2=0, ^»^3=1 an
(b) ^(^=0 where ^i Hom(Z(rlQ/2)+32, E)->Hom(Z(r1Q/2), E) is the projec-
tion,

Proof, Let #eF be an element with jaz = 0 and #«^3=1. Since Fc
^3/2)+^(ri0/2)+S?

25 we have an integer m and £ ̂ 32 such that ^=(^2)+
(/WTio/2)+f. (The coefficient of ^3 is 1/2 since ^o^3=i.) It yields the equality
0=#2=(l/2)— (m2/2)+f2. Thus /w=±l and f =0 since f2 is a negative integer
unless f =0. One knows #=(;t3/2):Hrio/2). Since w(/0=±rio/2, we have the
desired equivalence. Q.E.D.

We have the following proposition.

Proposition §01§B The following conditions are equivalent for ty e

the projection and G3 be the Weyl group of the root lattice Zri0+32. (G3 is of
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type Ai+E*)
(A) There exists a marked rational surface Z>=(Z, D, a, c) over E of degree

— 1 such that

( i ) the characteristic homomorphism <P ̂  of Z coincides with -\/ni ;

(ii) the line bundle L=a(A^) defines a generically one-to-one morphism 0:

Z->XdP(l9 I, 1,3) to a branched double covering over P2 branching along

a reduced sextic curve B\ and

(HI) the combination of singularities on X is a unique EB9 T2t3i7 or E12 (It

depends on whether E is an elliptic curve, C* or C.) plus a combination of

rational double points associated to the set of Dynkin graphs

(B) ^(i/^^O and the set of elements 7]^Z(riQ/2)+S2 satisfying rf=—2 and

•^0?)=0 is the root system of type 2] /V^+2] tf/A+23 rmEm.
(C) K^T/r) 41 0 and the maximal subgroup generated by reflections of the isotropy

group /G3f>) is the Weyl group of type 2] /v**+2] tf/A+23 rMEm.

Lemma 5, 16. (1) Assume that E is an elliptic curve or C*. If^i(^)=0

for i^eHom (Z(ruJ2)+S2, E), then we have another element ̂ 'eHom (Z(rw/2)

+S2, E) such that n^^^Q and IGJ[^r')=IG^/r).

(2) Assume E=C. Let Gf
3 be the subgroup of G3 generated by JY]» %2

9 "°' ^VB-

2, C), then IG^)=IG>^).

Proof. Let T be the cyclic group of order 2 generated by S^IQ and x2:

Hom(Z(riQl2)-\-32, E)->Hom(E2, E) be the projection. Note that the equality

43(^)=^i(^))x/G^2(^)) holds.

(1) Let *eHom (^(ri0/2)+H25 E) be the element with X^z)=0, ^(n0)=0 and

Xrio/2) =f= 0. If Eh an elliptic curve or C*., such % exists. The element ^rf=

•^r-\-% satisfies the above condition.

(2) If E=C9 then the condition z(r\0)=^ and x(rio/2)=Q are equivalent. Thus

if ^(^O =f= 0, then IT(^\(^)) is the trivial group. Q.E.B.

The important parts of Theorem 0.53 Theorem 0.6 and Theorem 0.7 follow

from Proposition 5.15, Lemma 5.16, Proposition 5.9 and Proposition 5.11.

The parts left unproved are disconnectedness of strata in P(H°(P2
9 OP

2(6)))

and the case 2] Pg(X> x)^2. As for the case 2] Pg(X, x)^2, please see the last
remark in this section.

The basis of disconnectedness is the following fact.

Fact S817, (Cf. Dynkin [7]) The root system R of type E8 with the
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action of the Weyl group W(K) contains two non-conjugate root subsystems
of the following types-

(1) A7 (2) 2A3 (3) AS+A! (4) A3+2A, (5) 4A,

Moreover both of non-conjugate ones of each type can be obtained by
elementary transformations repeated twice from R.

According to this fact one knows for 10 cases in Theorem 0,5, (ii) there are

two root subsystems Rl9 R2 of 1J3 of the same type such that for any automorphism
of lattices ]3: P-*P satisfying j3(/c)=/c and ft(^=^39 ft(Rj) never coincides with

R2. Indeed if we have a homomorphism ft with ft(Rl)=R2, then ft(R1 n 32)=R2

PI 32 since the root subsystem ZT3 n S2 of H3 is the unique one of type EB.
However for type EB the Weyl group coincides with the automorphism group.

Thus Rl n 32
 and ^2 H 32 are conjugate with respect to W(S2 n #3).

Let E be a fixed elliptic curve. By Proposition 5.15, there are two marked
rational surfaces of degree — 1 over E9 2i=(Z1? Dl9 al9 ^) and 2>2=(Z2, D29 a2, c2)
such that L~a.(^ defines a morphism 0f-: Zi-^Xi to a branched double cover-
ing n^. Xi-^P2 and Ker <p^m f}IIz=Ri (/=!, 2). Thus for any intersection

preserving homomorphism ft: Pic (ZJ-^Pic (Z2) satisfying ft(a>z^ = o)Z2 and

£(aiWa))=a2(^3)> two root subsystems /5* (Ker (Pic (Z^-^Pic (A))) H ^2(^3) an(i
Ker (Pic (Z2)->Pic (D2)) D ̂ 2(^3) never coincide. However if the set of sextic

curves with a combination of singularities under consideration is connected, we

get a contradiction by the following lemma.

Lemma 5e180 Let 33 c UxP2 be a family of reduced sextic curves over a

connected analytic variety U9 i.e., a subvariety of codimension 1 of UxP2 such

that for every tGEU, Bt=$Sr\ {t}xJP2 is a reduced sextic plane curve. We

assume that Bt has a unique E8 singular point and other several rational singular

points. We assume moreover that the number of each type of rational singular

points is independent of t^U. Let t' and t" be arbitrary points on U. We

define varieties X'9 X", Z', Z", D'9 D" and morphisms x', 7c"9 p'9 p" as follows.

The branched double coverings over P2 with the branch locus B'=Btr andB"=Bt,,

are n': X'-^P2 and x": X"-^P2 respectively. The minimal resolution of singu-

larities are denoted by p': Z'-*X' and p"'. Z"-*X". Let D' and D" be the

exceptional curves of the simple elliptic singularities in X' and X'1 respectively,

We set J7={M<EEPic (Z")\M2=-2, M*c*z,,=Q, M-p//*w//*O/Xl)=0>. Then

there is an intersection-form-preserving homomorphism j3: Pic (Z7)—>Pic (Zx/)

satisfying ]3(a>z,)=a>z,,, )ff(p/V*Op«(l))=p//*2r//*OP.(l) and U n ft (Ker (Pic
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(Z')->Kc (D')J)=n n Ker (Pic (Z")-*Kc (£>"))•

Proof. If t/" is connected, we can choose finite points tl9 r23 • •• , ̂ e 17 with

f'=fi, t"=tq and analytic morphisms /) : T-*U9 l^i^q from the unit disc

T={z<=C | |z|<l} such that t{ and r/+1 belong to the image /XT), Con-

sidering the pullback of the family S3 by f{ instead of S3 itself, we can assume

that U is the unit disc T without loss of generality,

Let XtdP(l, 1, 1, 3) be the branched double covering along BtC.P2,

Obviously the set 3£= U {t}xXtcTxP(l, 1, 1, 3) is an analytic variety. Let
fer

Zt be the minimal resolution of singularities of Xt. The set B^ U {t} X Z^ also
ter

has the structure of analytic variety. The relative Picard group Picg/r ig a

constant sheaf over T of free ^-modules equipped bilinear forms. Let a : PT->

Picg/r be an isomorphism from the constant sheaf with values in P. Let /? be

the composition

Kc(Z,//) - Pic(Z') .

Note that for any 7j^Pic(Zt) with rf-=—2 such that 77 is orthogonal to the

dualizing sheaf and the polarization, either ?? or —77 is effective if and only if
77 or —TI is the class of a exceptional divisor of the resolution of Zt-*Xt. By

assumption that the combination of singularities on Bt and thus that on Xt is

independent of reT, one sees that the above p has the desired property.
Q.E.D.

Remark, Applying the same method as in Umezu [22], we can also deduce

the next proposition. We omit the proof here, since we can find essential parts

in [22].

Proposition §019e Assume that the branched double covering X over P2

branching along a reduced sextic curve has a singularity of type £8, T2,3,7 or EU

and that S Pe(X* x)^2. Then the combination of singularities on X is either 2EB
x^X

or 2^8+^!. Conversely the branched double covering along a reduced sextic

curve with 2EB singularities and that with 2EB+A1 exist.

Recall that the existence of X with given combination of singularities is

equivalent to the existence of the sextic curve with the same combination by

Lemma 1.1. The next figure gives the example of curves with 2E8 and 2EB+A1.
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Figure 6.1.
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