On the Stable Hurewicz Image of Some Stunted Projective Spaces, II

Dedicated to Professor N. Shimada on his 60th birthday
By
Mitsunori Imaoka* and Kaoru Morisugi*

§ 1. Introduction

In the previous paper [3], we investigated the order of the cokernel of the stable Hurewicz homomorphism on the stunted projective space $H P_{2}^{\infty}$. In this paper, we consider the analogous problem for the quaternionic quasi-projective spaces.

Let $Q P^{n}(1 \leqq n \leqq \infty)$ be the ($4 n-1$)-dimensional quaternionic quasi-projective space, and $Q P_{k}^{n}=Q P^{n} / Q P^{k-1}(2 \leqq k \leqq n)$ (denoted by $Q_{n, n-k+1}$ in James [4]) be the stunted quasi-projective space. For the complex projective space $C P^{n}$ and the quaternionic projective space $H P^{n}$, it is known (cf. James [5]) that $Q P^{\infty}$ is a cofiber of the projection $q: C P^{\infty} \rightarrow H P^{\infty}$. Thus there is a cofiber sequence

$$
\begin{equation*}
C P^{\infty} \xrightarrow{q} H P^{\infty} \longrightarrow Q P^{\infty} \xrightarrow{\Delta} \Sigma C P^{\infty} . \tag{1.1}
\end{equation*}
$$

As is well known, the induced homomorphism $q_{*}: H_{*}\left(C P^{\infty} ; Z\right) \rightarrow H_{*}\left(H P^{\infty} ; Z\right)$ is epimorphic, and so the induced homomorphism $\Delta_{*}: H_{*}\left(Q P^{\infty} ; Z\right) \rightarrow H_{*-1}\left(C P^{\infty} ; Z\right)$ is monomorphic. We denote by $b_{i} \in H_{2 i}\left(C P^{\infty} ; Z\right)(i \geqq 1)$ the standard generators. Then we define $\gamma_{i} \in H_{4 i-1}\left(Q P^{\infty} ; Z\right)(i \geqq 1)$ to be the element which satisfies

$$
\begin{equation*}
\Delta_{*} r_{2}=b_{2 \imath-1} \tag{1.2}
\end{equation*}
$$

Thus the reduced homology group of $Q P_{k}^{n}$ is a free abelian group with basis $\left\{\gamma_{i} \mid k \leqq i \leqq n\right\}$, that is,

$$
\begin{equation*}
\widetilde{H}_{*}\left(Q P_{k}^{n} ; Z\right)=Z\left\{\gamma_{k}, \gamma_{k+1}, \cdots, \gamma_{n}\right\} \quad(1 \leqq k \leqq n \leqq \infty) . \tag{1.3}
\end{equation*}
$$

Consider the Atiyah-Hirzebruch spectral sequence

$$
\begin{equation*}
E_{p, q}^{2}=\widetilde{H}_{p}\left(Q P^{\infty}\right) \otimes \pi_{q}^{s}\left(S^{0}\right) \Longrightarrow \pi_{p+q}^{s}\left(Q P^{\infty}\right), \tag{1.4}
\end{equation*}
$$

and let $d^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}(r \geqq 2)$ be the differential in it. For an element

[^0]$\gamma \in E_{p, q}^{2}$, we denote its class in $E_{p, q}^{r}(r \geqq 2)$ simply by γ. In (3.1), we define a homotopy class $\alpha^{\prime}(n) \in \pi_{4 n-5}^{s}\left(S^{0}\right)$. Then our main theorem is stated as follows:

Theorem I. Let $t^{\prime}(n)=(2 n-1)!/ 15$ if n is odd, and $t^{\prime}(n)=(2 n-1)!/ 6$ if n is even. Then

$$
t^{\prime}(n) \gamma_{n} \in E_{4 n-1,0}^{4 n-\frac{1}{2}} \text { and } d^{4 n-4}\left(t^{\prime}(n) \gamma_{n}\right)=\gamma_{1} \otimes \alpha^{\prime}(n) .
$$

Let

$$
\begin{equation*}
h_{n, k}(Q): \pi_{4 n-1}^{s}\left(Q P_{k .}^{\infty}\right) \longrightarrow H_{ \pm n-1}\left(Q P_{k}^{\infty} ; Z\right) \tag{1.5}
\end{equation*}
$$

be the stable Hurewicz homomorphism, and $\left|h_{n, k}(Q)\right|$ the order of the cokernel of $h_{n, k}(Q)$. Then $\operatorname{Im} h_{n, k}(Q)$ is the subgroup generated by $\left|h_{n, k}(Q)\right| \gamma_{n}$, equivalently, $\left|h_{n, k}(Q)\right|$ is equal to the stable order of the attaching map of the (4n-1)-dimensional cell of $Q P_{k}^{\infty}$. By Walker [12] (see also Mukai [9] or [7]), $\left|h_{n, 1}(Q)\right|$ is determined. Note that $\left|h_{n, k}(Q)\right|$ is equal to the so called stable quaternionic James number.

Now, for an integer $i, \nu_{2}(i)$ denotes the index of 2 in the prime power decomposition of i. Then, by Theorem I, we have

Theorem II. Let $n \geqq 2$. Then

$$
\nu_{2}\left(\left|h_{n, 2}(Q)\right|\right)=\nu_{2}((2 n-1)!/ a(n+1)),
$$

where $a(i)=1$ if i is even, and $a(i)=2$ if i is odd.
Concerning the stable Hurewicz homomorphism $h(m, l): \pi_{2 m}^{s}\left(C P_{l}^{\infty}\right) \rightarrow$ $H_{2 m}\left(C P_{\iota}^{\infty} ; Z\right)$, we denote by $U(n, k)$ the order of the cokernel of $h(n-1, n-k)$. Then as an application of Theorems I and II, we have the following:

Corollary III. Let $n \geqq 2$. Then

$$
\nu_{2}(U(2 n, 2 n-2))=\nu_{2}(U(2 n, 2 n-3))=\nu_{2}((2 n-1)!/ 2) .
$$

We remark that $U(2 n, 2 n-3)$ is already known by Walker [12; Corollary 6.2]. Also, the odd primary components of $U(n+2, n)$ and $\nu_{2}(U(m+2, m))$ for $m \not \equiv 0$ $\bmod 4$ are determined by Knapp [6; Proposition 7.41].

We have also determined $\nu_{2}(U(2 n+1,2 n-1))$ as an application of the stable map $g: \Sigma^{\mathrm{s}} Q P^{\infty} \rightarrow Q P^{\infty}$ (see Appendix).

Throughout this paper, we make free use of notations used in [3]. The notations of the collapsing map $p_{k, l}$, the inclusion map $i_{k, l}$ and the map ∂_{k} mentioned in $[3 ;(1.5)]$ are used also for the quasi-projective spaces; that is,

$$
\begin{aligned}
& p_{k, l}: Q P_{k}^{n} \rightarrow Q P_{l}^{n}, \quad i_{k, l}: Q P_{m}^{k} \rightarrow Q P_{m}^{l} \quad(1 \leqq m \leqq k \leqq l \leqq n \leqq \infty) \quad \text { and } \\
& \partial_{k}: Q P_{k+1}^{n} \rightarrow \Sigma Q P^{k} \quad(n \leqq k) .
\end{aligned}
$$

This paper is organized as follows:

In Section 2, we consider a stable map $g: \Sigma^{\mathrm{s}} Q P^{\infty} \rightarrow Q P^{\infty}$ from [i] and investigate some properties which are necessary for the proof of Theorem I. In Section 3 we prove Theorems I and II, and Section 4 is devoted to the proof of Corollary III. In Appendix we determine $\nu_{2}(U(2 n+1,2 n-1))$.

§ 2. The Stable Map g

By [7], there is a stable map

$$
\begin{equation*}
g: \Sigma^{8} Q P^{\infty} \longrightarrow Q P^{\infty} \tag{2.1}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
g_{*}\left(\gamma_{n}\right)=((2 n+3)!/(2 n-1)!) \gamma_{n+2} . \tag{2.2}
\end{equation*}
$$

Restricting this map to $\Sigma^{8} Q P^{1}$, we have a map

$$
\begin{equation*}
g_{1}: S^{11}=\Sigma^{8} Q P^{1} \longrightarrow Q P^{3} \tag{2.3}
\end{equation*}
$$

Then from (2.2) it follows that

$$
\begin{equation*}
g_{1 *}\left(\gamma_{1}\right)=120 \gamma_{3} . \tag{2.4}
\end{equation*}
$$

By James [4; (2.10)], the following is known:
(2.5) The attaching map of the ($4 l-1$)-dimensional cell $(l \geqq 2)$ to the ($4 l-5$)dimensional cell is $l j_{3}$,
where $j_{4 k-1} \in \pi_{4 k-1}^{s}\left(S^{0}\right)$ is a ($4 k-1$)-dimensional generator of the image of the stable J-homomorphism. Especially, $Q P_{2}^{3}$ is a mapping cone of $3 j_{3}$. Since the order of j_{3} is equal to 24 , we have a unique map

$$
\begin{equation*}
g^{\prime}: S^{11} \longrightarrow Q P_{2}^{3} \text { satisfying } g_{*}^{\prime}\left(\epsilon_{11}\right)=8_{\gamma_{3}}^{\prime} \tag{2.6}
\end{equation*}
$$

where $!_{11} \equiv H_{11}\left(S^{11}\right)$ is a generator. Then we have
Lemma 2.1. $\partial_{1} g^{\prime}=16 j_{7}$, where $\partial_{1}: Q P_{2}^{3} \rightarrow \Sigma Q P^{1}=S^{1}$.
Proof. Recall that there is a map $J: Q P^{\infty} \rightarrow \Sigma C P^{\infty}$ in (1.1) which satisfies (1.2). Then J induce a map from the spectral sequence (1.4' to the spectral sequence

$$
\begin{equation*}
E_{p, q}^{2}=\tilde{H}_{p}\left(C P^{\infty}\right) \otimes \pi_{q}^{s}\left(S^{0}\right) \Longrightarrow \pi_{p+q}^{s}\left(C P^{\infty}\right) . \tag{2.7}
\end{equation*}
$$

But, according to Mosher [8; Proposition 4.11], we have

$$
\begin{equation*}
d^{8}\left(8 b_{\bar{\jmath}}\right)=b_{1} \otimes 16 j_{\tau} \tag{2.8}
\end{equation*}
$$

in (2.7), where $b_{n} \in H_{2 n}\left(C P^{\infty} ; Z\right)$ is a standard generator. Thus br 1.2) and the naturality of spectral sequences, we have

$$
\begin{equation*}
d^{8}\left(8 \gamma_{3}\right)=\gamma_{1} \otimes 16 j_{7}, \tag{2.9}
\end{equation*}
$$

and (2.6) and $(2.9$ imply the lemma.
q.e.d.

By (2.4) and :2.6, we have $p_{1,2} g_{1}=15 g^{\prime}$. Hence we have the following lemma by this equality and Lemma 2.1:

Lemma 2.2. (i, There is an extension $h^{\prime}(1): \sum^{7} M_{15} \rightarrow S^{0}$ of $16 j_{i}$ such that the following diagian is commutative up to sign:

where M_{t} is the mod t Moore spectrum, and $i_{0}: S^{0} \rightarrow M_{t}$ and $p_{1}: M_{t} \rightarrow S^{1}$ are the inclusion and the projection respectively.
(ii) There is a coextension $A^{\prime}(1): \Sigma^{8} M_{15} \rightarrow M_{15}$ of $h^{\prime}(1)$ which satisfies $p_{1} A^{\prime}(1) i_{0}=16 j_{:}$,

Since the order of j_{3} and j_{7} are equal to 24 and 240 respectively and since $\left\langle 12,20 j_{r}, 12\right\rangle=0$ by $[11 ;(3.10)]$, we have

Lemma 2.3. , i) There is an extension $h^{\prime}(2): \Sigma^{3} M_{12} \rightarrow S^{0}$ of $2 j_{3}$.
(ii) There is a map $A^{\prime}(2): \Sigma^{s} M_{12} \rightarrow M_{12}$ such that $p_{1} A^{\prime}(2) i_{0}=20 j_{7}$.

Now, consider the diagram

Then the following lemma can be proved using the totally similar method to the proof of Lemma S in [3], and we omit its proof:

Lemma 2.4.

$$
p_{1,2} \circ g_{1} \circ h^{\prime}(2)=0
$$

Thus by (2.10 there is a map $\varphi^{\prime}: \sum^{14} M_{12} \rightarrow S^{3}$ satisfying

$$
\begin{equation*}
i_{1,3} \varphi^{\prime}=g_{1} \circ h^{\prime}(2) \tag{2.11}
\end{equation*}
$$

Then we have
Lemma 2.5.

$$
e\left(\varphi^{\prime} i_{0}\right)=1 / 12
$$

wherc $e(\alpha)$ is the . 4 dams e_{R}^{\prime}-inviariant of $\alpha=\varphi^{\prime} i_{0}$.
Proof. We put $\varphi^{\prime}=\varphi^{\prime} i_{0}$. From (2.11), we have the following commutative diagram:

Let $p h: \widetilde{K O}() \rightarrow \widetilde{H} *(; Q)$ be the Pontrjagin character and $f^{\prime} i_{2}$, be the 20-dimensional component of $p h$. We denote a generator of $\widetilde{K O}\left(S^{c i}\right.$ by $\xi_{s} s$. By Adams [2] (see also Walker [12]), Adams e_{R}^{\prime}-invariant is a functional Pontrjagin character. So in our case we have

$$
\begin{equation*}
e\left(\psi^{\prime}\right)=\left(p h_{20}\right)_{\varsigma^{\prime}}\left(g_{s}\right), \tag{2.13}
\end{equation*}
$$

where $\left(p h_{20}\right)_{\varphi^{\prime}}: \widetilde{K O}\left(S^{s}\right) \rightarrow \widetilde{H}^{*}\left(S^{20} ; Q\right) / \operatorname{Im} p h_{20} \cong Q / Z$ is a functional Pontrjagin character of ψ^{\prime}. From (2.12) we have the commutative diagram

Let § be a canonical quaternionic line bundle over $H P^{2}$, and ${ }^{\circ} \mathrm{S}^{* *}$ denote the tensor product over the quaternion of ξ and its conjugate bundle ξ^{*}. Then, as is well known, $\Sigma Q P^{3}$ is a Thom space of $\xi \otimes \xi^{*}$. We put $\check{\zeta}=5\left(\varsigma^{*} * \oplus 4_{R}\right.$, where 4_{R} is the real 4 -dimensional trivial bundle. Thus we have $\Gamma^{\circ} Q P^{3}=\left(H P^{2}\right)^{5}$. Then there is a Thom class $U \in \widetilde{K O}\left(\Sigma^{j} Q P^{3}\right)$ and we have $i_{1,3}^{*}\left(L^{-\ddot{ }}=\xi_{0}\right.$. Moreover we have

$$
\begin{equation*}
g_{1}^{*}(U)=g_{16} \text { up to sign. } \tag{2.15}
\end{equation*}
$$

Indeed, in order to prove (2.15) we may show that $p h_{16}\left(g_{1}^{*} C^{*}=\varepsilon_{,}\right.$for a generator $\varepsilon_{16} \in H^{16}\left(S^{16} ; Z\right)$, because $p h_{16}: \widetilde{K O}\left(S^{16}\right) \rightarrow H^{16}\left(S^{16} ; Z\right)$ is isomorphic. Applying $[1$: Theorem 5.1] we see that

$$
\begin{equation*}
p h_{16}(U)=(1 / 120) \bar{\gamma}_{3} \quad \text { up to sign, } \tag{2.16}
\end{equation*}
$$

where $\overline{\bar{\gamma}}_{3} \in H^{16}\left(\Sigma^{5} Q P^{3} ; Z\right)=H^{11}\left(Q P^{3} ; Z\right)$ is the dual of $\left.\gamma_{3} \in H_{11}{ }^{\circ} Q P^{\prime} ; Z\right)$. By (2.4), $g_{1}^{*}\left(\bar{\gamma}_{,}\right)=120 \iota_{16}$. Thus we have $p h_{16}\left(g_{1}^{*} U\right)=g_{1}^{*} p h_{16}(U)=\iota_{16}$ up to sign, hence (2.15).

Now, by (2.14; (2.15) and the naturality of the functional operation, we have

$$
\begin{equation*}
\left(p h_{20}\right)_{\dot{\varphi}^{\prime}}\left(g_{8}\right)=\left(p h_{20}\right)_{\dot{\psi}^{\prime}}\left(i_{1,3}^{*} U\right)=\left(p h_{20}\right)_{2 j_{3}}\left(g_{1}^{*} U\right)=\left(p h_{20}\right)_{2 j_{3}}\left(g_{16}\right) . \tag{2.17}
\end{equation*}
$$

Since $\left(p h_{20}\right)_{2 \rho_{3}}\left(g_{10}\right)^{\prime}=e\left(2 j_{3}\right)=1 / 12$, (2.13) and (2.17) give the desired result.

> q.e.d.

Let

$$
\begin{equation*}
M^{\prime}(\varepsilon)=M_{1 \delta} \text { if } \varepsilon=1, \text { and } M^{\prime}(\varepsilon)=M_{12} \text { if } \varepsilon=2 \tag{2.18}
\end{equation*}
$$

Then, using Lemmas 2.2-2.5, we can prove the following theorem by the similar way of the proof of Theorem 3 in [3]:

Theorem 2.6. Let $\varepsilon=1$ or 2 , and let $k(\varepsilon)=7$ (resp. 3) if $\varepsilon=1$ (resp. 2). Then the following diagram is commutative :

§3. Proofs of Theorems I and II

Using the maps in Lemmas 2.2 and 2.3, we define elements $\alpha^{\prime}(n) \equiv \pi_{4 n-5}^{s}\left(S^{0}\right)$ ($n \geqq 2$) as follows:

$$
\alpha^{\prime}(n)=\left\{\begin{array}{lll}
h^{\prime}(1) A^{\prime}(1)^{m-1} i_{0} & \text { if } \quad n=2 m+1 & (m \geqq 1), \tag{3.1}\\
h^{\prime}(2) A^{\prime}(2)^{m-1} i_{0} & \text { if } \quad n=2 m & (m \geqq 1),
\end{array}\right.
$$

where $i_{0}: S^{t} \rightarrow \Gamma^{t} M^{\prime}(\varepsilon)$ are the respective inclusions. Then $\alpha^{\prime}(2)=2 j_{3}$ and $\alpha^{\prime}(3)$ $=16 j_{7}$. Moreover we have the following proposition by the definition of $\alpha^{\prime}(n)$ and using [2; Theorem 11.1]:

Proposition 3.1. Let $m \geqq 1$.
(i) The order of $\alpha^{\prime}(2 m+1)$ is equal to 15 , and

$$
\alpha^{\prime}(2 m+3) \in\left\langle 16 j_{\tau}, 15, \alpha^{\prime}(2 m+1)\right\rangle
$$

(ii) The order of $\alpha^{\prime}(2 m)$ is equal to 12 , and

$$
\alpha^{\prime}(2 m+2) \in\left\langle\alpha^{\prime}(2 m), 12,20 j_{\tau}\right\rangle
$$

Let $t^{\prime}(n)$ be the following integer :

$$
t^{\prime}(n)= \begin{cases}(2 n-1)!/ 15 & \text { if } n \text { is odd } \tag{3.2}\\ (2 n-1)!/ 6 & \text { if } n \text { is even }\end{cases}
$$

Then, from the construction of the spectral sequence (1.4), it is easy to see that

Theorem I is equivalent to the following theorem, so we shall prove it:
Theorem 3.2. There is a stable map $X^{\prime}(n): S^{4 n-1} \rightarrow Q P_{2}^{n}$ for $n \geqq 2$ which satisfies

$$
\begin{equation*}
h_{n, 2}(Q)\left(X^{\prime}(n)\right)=t^{\prime}(n) r_{n} \tag{3.3}
\end{equation*}
$$

and
$(3.4)_{n}$

$$
\partial_{1} X^{\prime}(n)=\alpha^{\prime}(n),
$$

where $h_{n, 2}(Q): \pi_{4 n-1}^{s}\left(Q P_{2}^{n}\right) \rightarrow H_{4 n-1}\left(Q P_{2}^{n} ; Z\right)$ is the stable Hurewicz homomorphism and $\partial_{1}: Q P_{2}^{n} \rightarrow \Sigma Q P^{1}=S^{1}$.

Proof. Consider the following diagram:

where the maps g and \bar{g} are defined from the map in (2.1) by restricting it to $\Sigma^{\mathrm{s}} Q P^{k}(k=1, n-1, n), g_{1}$ is the map in (2.3) and $\partial^{\prime}=p_{1,2} \partial_{3}$. Then all the squares and the triangles in (3.5) are commutative, and the sequences

$$
Q P_{2}^{n+2} \xrightarrow{p_{2,4}} Q P_{4}^{n+2} \xrightarrow{\partial^{\prime}} \Sigma Q P_{2}^{3} \quad \text { and } \quad \Sigma Q P^{1} \xrightarrow{i_{1,3}} \Sigma Q P^{3} \xrightarrow{p_{1,2}} \Sigma Q P_{2}^{3}
$$

in (3.5) are cofiberings.
We prove the theorem by induction on n.
For $n=2$, we take $X^{\prime}(2)$ as the identity map of S^{3}. Then (3.3) $)_{2}$ is obvious. Since $Q P^{2}$ is a mapping cone of $2 j_{3}$ by (2.5) and $\alpha^{\prime}(2)=2 j_{3},(3.4)_{2}$ also holds. For $n=3$, we take $X^{\prime}(3)$ as the map g^{\prime} in (2.6). Then (3.3) $)_{3}$ and (3.4), follow from (2.6) and Lemma 2.1 respectively.

We assume that the theorem holds for $n \geqq 2$, and we may prove it for $n+2$. By Theorem 2.6, we have

$$
\begin{equation*}
g_{1} \alpha^{\prime}(n)=i_{1,3} \alpha^{\prime}(n+2) . \tag{3.6}
\end{equation*}
$$

Using (3.6) and the diagram (3.5), we can construct a required map $X^{\prime}(n+2)$ quite similarly to the construction of the map $X(n+2)$ in Theorem 5 of [3].
q.e.d.

Proof of Theorem II. For integers k and $l, k \mid l$ means that k is a divisor of l. Then, by Theorem I, we have

$$
\begin{equation*}
\left|h_{n, 2}(Q)\right| \mid t^{\prime}(n) . \tag{3.7}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\nu_{2}\left(\left|h_{n, 2}(Q)\right|\right) \leqq \nu_{2}\left(t^{\prime}(n)\right)=\nu_{2}((2 n-1)!/ a(n+1)), \tag{3.8}
\end{equation*}
$$

where $a(i)=1$ if i is even and $a(i)=2$ if i is odd.
On the other hand, Walker [12] estimates the lower bound of the James numbers. Using his result [12; Theorem 0.2], we have

$$
\begin{align*}
&(1 / a(n-s)((2 n-1)!) s)\left(\sum_{i=0}^{s=1}(-1)^{i}\binom{2 s}{i}(s-i)^{2 n}\right)\left|h_{n, k}(Q)\right| \in Z \tag{3.9}\\
& \text { for } \quad k \leqq s \leqq n .
\end{align*}
$$

Especially, for $k=s=2$, since $\sum_{i=0}^{s-1}(-1)^{\iota}\binom{2 s}{i}(s-i)^{2 n}=4^{n}-4$ we have

$$
\begin{equation*}
a(n+1)\left(4^{n-1}-1\right)\left|h_{n, 2}(Q)\right| /(2 n-1)!\in Z \tag{3.10}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\nu_{2}\left(\left|h_{n, 2}(Q)\right|\right) \geqq \nu_{2}((2 n-1)!/ a(n+1)), \tag{3.11}
\end{equation*}
$$

and (3.8) and (3.11) complete the proof. q. e. d.

§4. Proof of Corollary III

According to Walker [12; Theorem $0.1(\mathrm{i})$], the following proposition holds :
Proposition 4.1. Let $K(n, s)=\sum_{i=0}^{s-1}(-1)^{i}\binom{2 s}{i}(s-i)^{2 n}(n \geqq s \geqq 1)$, and $k=2 l$ or $2 l-1(l \geqq 1)$. Then, for $n-l+1 \leqq s \leqq n$,

$$
\begin{equation*}
(1 / s((2 n-1)!)) K(n, s) U(2 n, k) \in Z, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(\varepsilon /(2 n)!) K(n, s) U(2 n+1, k) \in Z \tag{ii}
\end{equation*}
$$

where $\varepsilon=2$ if $k \equiv 1 \bmod 4$ and $s=n-l+1$, and otherwise $\varepsilon=1$.
Especially, for $k=2 n-2$ or $2 n-3$, we have
Corollary 4.2. Let $n \geqq 2$. Then

$$
\nu_{2}(U(2 n, 2 n-i)) \geqq \nu_{2}((2 n-1)!/ 2) \quad(i=2 \text { or } 3) .
$$

Since $U(2 n, 2 n-3) \mid U(2 n, 2 n-2)$ by definition, to prove Corollary III we have
only to show the following:
Proposition 4.3. $\quad \nu_{2}(U(2 n, 2 n-2)) \leqq \nu_{2}((2 n-1)!/ 2)$.
The remainder of this section is devoted to the proof of Proposition 4.3.
First we prove Proposition 4.3 for even n. We put $n=2 m(m \geqq 1)$. By Theorem 3.2, there is a map $X^{\prime}(2 m): S^{s m-1} \rightarrow Q P_{2}^{2 m}$ satisfying $h_{2 m, 2}(Q)\left(X^{\prime}(2 m)\right)$ $=((4 m-1)!/ 6) r_{2 m}$ and $\partial_{1} X^{\prime}(2 m)=\alpha^{\prime}(2 m)$. We define a map $Y^{\prime}(2 m)$ as follows:

$$
\begin{equation*}
Y^{\prime}(2 m)=d^{\circ} \cdot X^{\prime}(2 m): S^{s m-1} \rightarrow Q P_{2}^{2 m} \rightarrow \Sigma C P_{2}^{4 m-1} \tag{4.1}
\end{equation*}
$$

where J is the map in (1.1). Then by (1.2) we have

$$
\begin{equation*}
\Gamma^{\prime}(2 m)_{*}\left(\varepsilon_{8 m-1}\right)=((4 m-1)!/ 6) b_{1 m-1} \tag{4.2}
\end{equation*}
$$

for a generator $\iota_{s m-1} \in H_{8 m-1}\left(S^{8 m-1}\right)$. This implies that

$$
h_{2 m, 2}\left(Y^{\prime}(2 m)\right)=((4 m-1)!/ 6) b_{ \pm m-1} .
$$

Thus it follows that

$$
\begin{equation*}
U(4 m, 4 m-2) \mid(4 m-1)!/ 6, \tag{4.3}
\end{equation*}
$$

and we have the proposition for $n=2 m$.
Next we shall prove the proposition for odd n. We put $n=2 m+1(m \geqq 1)$. By Toda [10], there is a stable map

$$
\begin{equation*}
F: \Sigma^{2} C P^{\infty} \longrightarrow C P^{\infty} \tag{4.4}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
F_{*}\left(b_{2}\right)=(i+1) b_{\imath+1} \quad \text { for } \quad i \geqq 1 . \tag{4.5}
\end{equation*}
$$

We consider the following diagram ($l=4 m-1$) :

where the maps F, \bar{F}, F_{1} are defined from the map in (4.4) by restricting it,
$\partial^{\prime}=p_{1,2} \partial_{4}$ and $Y^{\prime}(2 m)$ is the map in (4.1). Here the squares and the triangles in (4.6) are commutative, and the sequence

$$
C P_{2}^{+m+1} \xrightarrow{p_{2,5}} C P_{5}^{4 m+1} \xrightarrow{\partial^{\prime}} \Sigma C P_{2}^{4}
$$

is a cofibering.
Now we put $G=p_{1,2} \circ i_{3,1} \circ\left(F_{1} \circ F_{1}\right): S^{7} \rightarrow \Sigma C P_{2}^{\frac{1}{2}}$. Then
Lemma 4.4. $G \circ h^{\prime}(2)=0$.
Assume that the lemma holds. Then, by chasing the diagram (4.6), it follows that there is a map $Y^{\prime}(2 m+1): S^{8 m+2} \rightarrow C P_{2}^{4 m+1}$ satisfying

$$
\begin{equation*}
p_{2,5^{\circ}} Y^{\prime}(2 m+1)=(F \circ F) \circ p_{2,3^{\circ}} \circ Y^{\prime}(2 m) . \tag{4.7}
\end{equation*}
$$

Then by (4.7) and the commutativity of (4.6) we have

$$
\begin{equation*}
p_{2,4 m+1} \circ Y^{\prime}(2 m+1)=(\bar{F} \circ \bar{F}) \circ p_{2, \leqslant m-1} \circ Y^{\prime}(2 m) . \tag{4.8}
\end{equation*}
$$

By (4.2), (4.5) and (4.8), we see that

$$
\begin{equation*}
h(4 m+1,2)\left(Y^{\prime}(2 m+1)\right)=((4 m+1)!/ 6) b_{1 m+1}, \tag{4.9}
\end{equation*}
$$

where $h(n, 2)$ is the stable Hurewicz homomorphism. Thus we have

$$
\begin{equation*}
U(4 m+2,4 m) \mid((4 m+1)!/ 6), \tag{4.10}
\end{equation*}
$$

and complete the proof of the proposition for $n=2 m+1$.
Proof of Lemma 4.4. We consider the following diagram:
(4.11)

Here the triangles commute obviously, and the square commute, because $\left(F_{1} \circ F_{1}\right)_{*} b_{1}$ $=6 b_{3}$ by (4.5). η denotes a generator of $\pi_{1}^{s}\left(S^{0}\right)$, and $\partial^{\prime}=p_{1,2} \partial_{2}$. The sequence

$$
C P_{3}^{4} \xrightarrow{\partial^{\prime}} S^{5} \xrightarrow{i_{2,4}} \Sigma C P_{2}^{\frac{4}{2}} \xrightarrow{p_{2,3}} \Sigma C P_{3}^{4}
$$

is a cofibering. As is well known,

$$
\begin{equation*}
C P_{3}^{+} \text {is a mapping cone of } \eta \tag{4.12}
\end{equation*}
$$

and ∂^{\prime} factors an odd multiple of j_{3}, that is,

$$
\begin{equation*}
\partial^{\prime}=(2 l+1) j_{3} \circ p_{i}, \text { for some integer } l . \tag{4.13}
\end{equation*}
$$

By (4.12) the sequence

$$
S^{7} \xrightarrow{i_{3,1}} \Sigma C P_{3}^{+} \xrightarrow{p_{3,1}} \Sigma C P_{1}^{4} \xrightarrow{\eta} S^{5}
$$

in (4.11) is a cofibering.
Now, by (4.12) and that $\gamma_{i}^{3}=12 j_{3}$, we have

$$
\begin{equation*}
p \circ 3_{3}^{\circ} G \circ h^{\prime}(2) \circ i_{0}=i_{\text {人, } 4} \circ 12 j_{3}=0 \tag{4.14}
\end{equation*}
$$

Since $\pi_{5}^{s}\left(S^{0}\right)=0$, (4.14) yields

$$
\begin{equation*}
G \circ h^{\prime}(2) \circ i_{0}=0 . \tag{4.15}
\end{equation*}
$$

Thus there is a map $\psi: S^{11} \rightarrow \Sigma C P_{2}^{\frac{1}{2}}$ such that $\psi^{\circ}{ }^{\circ} p_{1}=G \circ h^{\prime}(2)$. Then

$$
\begin{equation*}
p_{2,3}{ }^{\circ} \psi=0 . \tag{4.16}
\end{equation*}
$$

In fact, since $p_{2,4} \circ \psi \in \pi_{2}^{s}\left(S^{\circ}\right), p_{2,4} \circ \psi=0$ or η^{2}. But $\eta^{\circ} p_{2,1} \circ \psi=\eta^{\circ} p_{2,1} \circ^{\circ} p_{2,} \circ \psi=0$ and $\eta^{\eta} \neq 0$. Thus $p_{2,4}{ }^{\circ} \psi=0$, and we have (4.16), since $\pi_{4}^{s}\left(S^{0}\right)=0$.

Therefore there is a map $\varphi: S^{11} \rightarrow S^{5}$ satisfying

$$
\begin{equation*}
i_{2} \circ \varphi \circ p_{1}=G \circ h^{\prime}(2) . \tag{4.17}
\end{equation*}
$$

Since $\pi_{6}^{s}\left(S^{0}\right)$ is a group of order 2 and generated by $\left(j_{j}\right)^{2}, \varphi=0$ or $\left(j_{j}\right)^{2}$. But the kernel of $i_{2,4 *}:\left\{S^{11}, S^{5}\right\} \rightarrow\left\{S^{11}, \Sigma C P_{2}^{4}\right\}$ is generated by $\left(j_{3}\right)^{2}$ by (4.13). Thus $i_{2,1^{\circ}} \varphi=0$, and we have the lemma by (4.17).
q. e.d.

Appendix. The Number $\boldsymbol{U}(2 \boldsymbol{n}+1,2 \boldsymbol{n}-1)$

As is well-known, $U(n, n-1)=(n-1)$! (cf. [10], [8]) and this is given by applying the map F in (4.4). We have determined in [3] the values of $\nu_{2}(U(2 m+1,2 m-2))$ and in Corollary III the values of $\nu_{2}(U(2 m, 2 m-2))=$ $\nu_{3}(U(2 m, 2 m-3))$ for $m \geqq 2$ by using the maps $f: \Sigma^{8} H P^{\infty} \rightarrow H P^{\infty}$ and $g: \Sigma^{8} Q P^{\infty}$ $\rightarrow Q P^{\infty}$ in [7] respectively. Using Proposition 4.1(ii) and the above fact that $U(n, n-1)=(n-1)$!, we have immediately that $\nu_{2}(U(4 m+1,4 m-1))=\nu_{2}(U(4 m+1$, $4 m)$). In this appendix we shall determine $\nu_{2}(U(4 m+3,4 m+1))$ for $m \geqq 0$ by using the map g_{1} in (2.3) and a stable map $\Sigma^{8} C P^{\infty} \rightarrow C P^{\infty}$. We denote the map g_{1} simply by g in this appendix. Consequently we obtain all values of $\nu_{2}(U(n, n-i))$ for $1 \leqq i \leqq 3$ and $i<n$.

Let $\eta \in \pi_{1}^{s}\left(S^{0}\right)$ be the generator and $\bar{\eta}: \Sigma M_{2} \rightarrow S^{0}$ be any extension of η to the $\bmod 2$ Moore spectrum $M_{2}=S^{0} \cup_{2} e^{1}$. We prepare the following diagram :

Then we have
Lemma A.2. $p_{12} \circ g^{\circ} \bar{T}_{t}=0$.
Proof. Using (2.4), we have $p_{1,3} \circ g^{\circ} \circ \bar{\eta} \in p_{1}^{*}\left\langle 120, r_{,}, 2\right\rangle=0$. Thus $p_{1,2^{\circ}} g \circ \bar{\eta}$ factors a map $\sum^{12} M_{2} \rightarrow Q P_{2}^{2}=S^{7}$. Since $\pi_{5}\left(S^{0}\right)=0$, there is a map $\alpha: S^{13} \rightarrow Q P_{2}^{2}=S^{7}$ with $i_{2,3^{\circ}} \alpha^{\circ} p_{1}=p_{1,2}{ }^{\circ} g \circ \bar{\eta}$. But $\pi_{6}^{s}\left(S^{0}\right)$ is generated by j_{3}^{2} and $Q P_{2}^{3}$ is the mapping cone of $3 j_{3}$. Therefore $i_{2,3} \circ \alpha=0$, and we have the desired result. q.e.d.

By the above lemma we have a map $\varphi: \sum^{12} M M_{2} \rightarrow Q P^{1}=S^{3}$ which satisfies (A. 3)

$$
i_{1,3^{\circ}} \varphi=g \circ \bar{\eta} .
$$

Lemma A.4. There is a coextension $h: S^{8} \rightarrow I_{2}$ of $120 j_{7}$ such that $\bar{\eta} \circ h=$ $\varphi \circ i_{0}: S^{12} \rightarrow S^{3}=Q P^{1}$.

Proof. For an element α we denote its d_{R}-invariant by $d_{R}(\alpha)$. By (A.3) we have a commutative diagram:

Let $U \in \widetilde{K O}\left(\Sigma^{j} Q P^{3}\right)$ be a Thom class (see the proof of Lemma 2.5) and $g_{\mathrm{s} 2} \equiv$ $\widetilde{K O}\left(S^{8 i}\right)$ be a generator. Then by (A.5) and (2.15) we have

$$
d_{R}\left(\varphi i_{0}\right)=\left(\varphi i_{0}\right) *\left(g_{8}\right)=\left(\varphi i_{0}\right) * i_{1,3}^{*}(U)=\eta^{*}\left(g^{*} U\right)=\eta^{*}\left(g_{16}\right) \neq 0 .
$$

On the other hand by [2] the Toda bracket $\left\langle\eta, 2,120 j_{7}\right\rangle$ consists of elements in $\pi_{9}^{s}\left(S^{0}\right)$ whose d_{R}-invariants are non-zero. Thus we can take a coextension h of $120 j_{7}$ satisfying $\bar{\eta} \circ h=\varphi \circ i_{0}$.
q.e.d.

Since $\left\langle 2,120 j_{7}, 2\right\rangle=0$, there is an extension $A: \Sigma^{8} M_{2} \rightarrow M_{2}$ of h. Then it follows that $p_{1} \circ A \circ i_{0}=120 j_{7}$. Using these maps, we define a μ-series $\mu_{s m-1} \in$ $\pi_{8 m+1}^{s}\left(S^{0}\right)(m \geqq 0)$ as follows:

$$
\begin{equation*}
\mu_{8 m+1}=\bar{y}_{f} \circ-A^{m} \circ i_{n}: S^{8 m+1} \longrightarrow \sum^{\diamond n+1} M I_{2} \longrightarrow \sum M_{2} \longrightarrow S^{0} \tag{A.6}
\end{equation*}
$$

Now we have the following theorem in which we consider only for the 2-localized version and we denote the 2-primary component of $\pi_{i}^{s(I)}$ by ${ }_{2} \pi_{l}^{s}\left(Y^{\top}\right)$.

Theorem A. For $m \geqq 0$ therc is an element

$$
X_{m} \in_{2} \pi_{8 m-4}^{8}\left(C P_{2}^{4 m-2}\right)
$$

uhich satisflies

$$
h\left(X_{m}\right)=((4 m+2)!/ 2) b_{1 m+2} \quad \text { and } \quad \partial_{1} \mathrm{Y}_{m}=\mu_{m+1},
$$

uhere $h:{ }_{2} \pi_{i}^{s}\left(I^{*}\right) \rightarrow H_{i}\left(I^{\top} ; Z_{(2)}\right)$ is the stable Hurewicz homomorphism and $\partial_{1}:{ }_{2} \pi_{i}^{s}\left(Y^{\prime}\right.$, $\rightarrow{ }_{3} \pi_{i-1}^{s}\left(C P^{1}\right)={ }_{2} \pi_{i-3}^{s}\left(S^{0}\right)$ for $Y=C P_{2}^{4 m+2}$ and $i=8 m \div 4$.

By the above theorem and Proposition 4.1(ii) we obtain
Corollary B. $\quad \nu_{2}(U(4 m+3,4 m+1))=\nu_{2}((4 m+2)!/ 2)$ for $m \underline{\underline{2}} 0$.
The rest of this paper is devoted to the proof of Theorem A. Let $\int_{c}(n, s)$: $\Sigma^{1 n} C P^{\infty} \rightarrow C P^{\infty}$ be the stable map in [7; Section 3]. We put $F^{\prime}=f_{c}(2,1): \Sigma^{8} C P^{c o}$ $\rightarrow C P^{\infty}$ which may be equal to the 4 -fold composition of F in (4.1). Then it follows that

$$
\begin{equation*}
F_{*}^{\prime}\left(b_{\imath}\right)=((i+4)!/ i!) b_{i+1}, \tag{A.7}
\end{equation*}
$$

and the following diagram is commutative:

where Δ is the map in (1.1).
Now we prove the theorem by induction on m. First we take X_{0} to be the identity map. Since $C P^{2}$ is the mapping cone of η, the theorem clearly holds for $m=0$. Assume that the theorem holds for m. Then we can consider the following diagram :

where the square and the triangles are commutative. If the part (I) in (A.9) is commutative, then by the same reason in the proof of Theorem 5 in [3] or Theorem 3.2, we can construct a stable map $X_{m+1}: S^{8 m+12} \rightarrow C P_{2}^{+m+6}$ satisfying the assertions in the theorem and the proof is completed.

Lemma A.10. The part (I) in the diagram (A.9) is commutative, that is, $F^{\prime} \bar{r}=i_{1,5}{ }^{\circ} \bar{\eta}^{\circ} \circ$.

Proof. Consider the following diagram:

Then we have $\Delta g=F^{\prime}$ by (A.8). By Lemma A. 4 there is a map $\alpha: S^{13} \rightarrow Q P^{1}$ $=S^{3}$ such that $i_{1,3}{ }^{\circ} \alpha^{\circ} p_{1}=g \circ \bar{\eta}-i_{1,3}{ }^{\circ} \bar{\eta}^{\circ} A$. But ${ }_{2} \pi_{10}^{s}\left(S^{0}\right)$ is generated by $\eta \mu_{9}$ (cf. [11]) and $C P^{2}$ is the mapping cone of η. Therefore $i_{1,2} \circ \alpha=0$ and we have $g \circ \bar{\eta}$ $=i_{1,3} \circ \bar{y}_{j} \circ A$. Thus we have the desired result.
q.e.d.

This completes the proof of Theorem A.

References

[1] Adams, J. F., On the groups $J(X)$-II, Topology, 3 (1965), 137-171.
[2] - On the groups $J(X)$-IV, Topology, 5(1966), 21-71.
[3] Imaoka, M. and Morisugi, K., On the stable Hurewicz image of some stunted projective spaces, I, Publ. RIMS, Kyoto Univ., 20 (1984) (this volume), 839-852.
[4] James, I. M., Spaces associated with Stiefel manifolds, Proc. London Math. Soc., 9 (1959), 115-140.
[5] , The topology of Stiefel manifolds, London Math. Soc. Lecture Note Series, 24.
[6] Knapp, K., Some applications of K-theory to framed bordism : E-invariant and transfer, Habilitationsschrift, Bonn, 1979.
[7] Morisugi, K., Stable self maps of the quaternionic (quasi-) projective space, preprint.
[8] Mosher, R.E., Some stable homotopy of complex projective space, Topology, 7 (1968), 179-193.
[9] Mukai, J., The order of attaching class in the suspended quaternionic quasi-projective space, Publ. RIMS, Kyoto Univ., 20 (1984) (this volume), 717-725.
[10] Toda, H., A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Memoirs Univ. of Kyoto, 32 (1957), 103-119.
[11] -, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, 1962.
[12] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981), 467-489.

[^0]: Communicated by N. Shimada, August 1, 1983.

 * Department of Mathematics, Faculty of Education, Wakayama University, Wakayama 640, Japan.

