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Strongly Pseudoconvex Manifolds and
Strongly Pseudoconvex Domains

By

Shigeo NAKANO* and Takeo OHSAWA*

§ 1. Statement of the Result

A non-compact complex manifold X is called a strongly pseudoconuex (spc)
manifold if it is exhausted by a C°° function which is strictly plurisubharmonic
outside a compact set, that is to say, if there exist a proper C°° map

(1.1) <f>: X — >[0, d)

and a constant CQ (Q<c0<d) such that the Hermitian matrix [—= — %=-T-} is positive
\ ozaozP /

definite at any point x for which <p(x)>c0. Here (z) denotes a holomorphic local
coordinate system around x. If X and <p are as above and if we set

(1.2) Xu={x^X\<I)(x)<u} (c0<u<d),

then Xu is relatively compact in X and is itself an spc manifold. We shall call
an spc manifold which can be thus represented an spc domain.

We shall assume that X is connected throughout. The purpose of the present
article is to find out a nice sufficient condition for an spc manifold X to be an
spc domain. For the purpose we consider a Hermitian metric

(1.3) ds*=2VgA-?dz«dz?

on X, such that

d.4) = On *-*<•

It is clear that there exists such a metric if we replace c0 by a bit larger value.
It is also clear that the conditions stated below are independent of the choice of
such metrics.

(a) (p is bounded, that is to say d<oo.
(b) With the metric ds2, the diameter and the volume of X are finite.
(c) Tensor fields composed of successive derivatives of ^ have bounded magni-

tudes, the magnitude being counted pointwise with respect to ds2 and bound-
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edness referring to the change of the point in X.

(d) There exists a constant &i>0 such that for (M)

ln and at every point of X. Namely, the length of 90 is bounded.
(e) There exist a positive constant kz and a constant d (cQ<c1<d) such that

(1.5) A = ̂ gPa-~^--^~^kz on X—XC..

Namely, the length of 90 is larger than a positive constant outside a compact set.

The statement in (c) may not be clear enough, but it will be clear in the
course of the proof. If X is an spc domain, conditions (a)~(c) are satisfied and
condition (d) is realized when we replace <j> by exp (p. If, moreover, the function
$ is not critical at any point of dX, then (e) is satisfied.

The main result is :

Theorem. // an spc manifold X with the exhaustion function (p satisfies the
conditions (a)~(e) and if rL=dimcX^3, then X is an spc domain, that is to say,
there exists an spc manifold X with an exhaustion function f such that sup

is biholomorphically homeomorphic with X and, after identifying these, we have

The condition n^3 is used in the proof because we make use of a result
in [7].

§ 2. Product Structure as Differentiable Manifolds

We shall assume that conditions (a)~(e) hold for X and (f). Let us take c
such that Ci<c<d and set Bc={x^X\<f>(x)=c}, then Bc is a compact differen-
tiate manifold of real dimension 2n— 1 and we have X—XCl = Bcx(clf d) (diffeo-
morphic). To be more precise, let us consider the family of surfaces {Bu c±<u
<d} (defined similarly to Bc} and the vector field orthogonal to these surfaces.

The vector field ^g^a-^.-B ^^+Sg5'3^-^-^r *s such. We shall normalize

this as

1 f 5 3c£ d -o 3c/> 5 i
71— J^ rrpa—L. LV^ rjaP—i- 1-c Q A \£j & ^-R 3 a ' -£j & 3 8 3-n \>

6/L v. (7Z^ UZ 0"^^ uZ i

and consider the integral curve f of this vector field. In other words we con-
sider the ordinary differential equation

(2.1) -^ = -7^

The effect of the normalization lies in the fact that we have
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='
along each integral curve /'. Thus the parameter u can be interpreted as the
value of (p at the corresponding point of j.

We start at the value c of u with the initial condition j(u}=^Bc, then the
solution will be

(2.3) z*=z«(u\ f).

The solutions for various <f exist for the interval cl<u<d, and by virtue of the
general theory of ordinary differential equations, (2.3) gives the diffeomorphism

(2.4) 0: Bex(clt d)—>X-XCl

ID UJ

Bcxu being mapped onto Bu.
We can take the differentiable manifold Bcx(c} d + s) and patch it together

with X according to the rule 0 above, then we obtain a differentiable manifold
M which contains X as an open submanifold. X is relatively compact in M and
the boundary dX of X in M is nothing but the subset BcXd of BcX(c, d + e\
M can be considered as a candidate for a manifold which makes X an spc domain.
In fact, using conditions (c) and (e) we can prove the following proposition. We
omit its proof because it will be routine to the readers. This can also be seen
from Proposition 3' and what follows.

Proposition 0. The completion X of X with respect to the distance induced
by ds* is nothing but the closure X=XUdX of X in M.

§ 3. Analysis on Metric Tensors

On Bc we take a coordinate neighbourhood U and differentiable local coor-
dinates (f1, • • - , f271"1) on U, then

(3.1) (I1, • • - , f2"-1, £a«) where q2n = u

is a coordinate system on Ux(c, d + e) and, if we restrict to the domain c<c2"
<d, it is a differentiable coordinate system on 0(UX(c, d))dX. We shall ex-
amine the Riemannian metric dsz a bit closely, in terms of this coordinate system.
Set

2n
(3.2) ds2= 2 GlJ(^)dqid^], GLJ = Gji,

then Gij(£) is nothing but the inner product (9/9f*, 9/df7") of the vector fields
3/9f* and 9/9f/ at the point (f). We first consider a vector field v=^la

id/dqi

(a* being constants) and consider the inner product (v, v) as a function of u =
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c°", other coordinates being considered as auxiliary parameters. Set

(3.3)

and calculate -^— according to the differential equation (2.1). We have, from
(2.1),

(3.4) -^-v(z«) =

and its conjugate, and this implies that the components of Puv are linear com-
binations of those of v, with tensor field composed of derivatives of (p as coeffi-
cients. Here u denotes the vector field 9/9f2n on Ux(c, d] and FH denotes the
covariant differentiation along u. Then

- W . ^ P)=2CF.p, „)

and we have the following inequality

(3.5) -L^(

with a certain constant L!>O. This implies that

(3.6) ^(c)exp(-L1(w-c))^^(w)^^(

for c<u<d.

We can take U and (<J) so that (f1, • • • , f271"1) are local coordinates on a neigh-
bourhood of U. This being done, <p(c) is bounded on UXc, and is uniformly
bounded in v if we put the condition X(a*)2=l- This means that we have con-

stants L2 and L3 such that

(3.7) 0<L2^ S G^flVgLs on £7x(c, d),
*.j=i

L2 and L3 being independent of (a*) provided 2(0*)2=1-
From this we draw the following conclusion immediately.

Proposition 1. The entries of the metric tensor G=(Gi3) with respect to the
coordinate system (f) are bounded functions on Ux(c, d). detG remains away from
0 there and the entries of G~l are also bounded. We have L±dv^dql ••• d£2n^L5dv
with L4, L5>0.

Next we shall show

Proposition 20 Successive derivatives of dj are bounded functions on Ux
(c, d), bounds depending on the type of derivatives.
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To see this, first take another vector field w=-^bld/dgi and examine the
boundedness of w(v, v). Since

| 10(17, 17)1=21^17, I7)|^2(FBI7, 7UV^'(V9 I?)1'8,

and since (u, i;) is bounded, we have only to show the boundedness of <pl=
(Fwi7, Fwi7). Now

= 2(F«F.i7, F

As mentioned after the formula (3.4), Fuu is the linear combination of v with
tensors composed of derivatives of <f> as coefficients. V UVW— VJ7U is nothing
but the curvature operator. Hence we have the inequality of the form

(LG, L7: const).

Thus we see the boundedness of <plf uniformly in (b] provided S(&1)2^1.
If we have r vector fields wlf • • •, wr instead of single w, we can prove, by

induction on r, that Wi ° ••• ° wr(v, v) is bounded.
This proves that successive derivatives of GtJ are bounded.

§4. Almost Complex Structures and CR Structures

Let us consider the tensor / of the almost complex structure induced by the
complex structure on X. With respect to the holomorphic local coordinate (z),
] has the component

"T/- 11
0 — v"— lln] (/TO=unit matrix of size n).

Hence, |/ |2— ̂ .^gajg"'5JadJ^r and the squares of the magnitude of successive
covariant derivatives of / are summable on X, by virtue of the conditions (c)
and (b). Hence, a fortiori, they are summable on the domain 0(Ux(c, d}}. On
Ux(c, d), we consider everything in terms of coordinates (?). Then because of
Proposition 1, we see the following :

[ SI/M
J U ^ ( c , d - ) i , j

where {/*,-} stand for the components of / with respect to (?), and Fl
mk are
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those of Christoffel symbols. Gjk, - '* , ••• are all bounded on Ux(c, d\ there-

fore we see that fl
j} -—{-, ~^^T, ••• are all square summable on Ux(c, d).

Now let us make use of the following Lemmas, Lemma 1 being the well known
Sobolev imbedding theorem. (See for example [2], p. 30 Th. 11.1 and the problem
which follows.) Lemma 2 is elementary.

Lemma 1. Consider a bounded domain Qx(c, d) in Rm, where the boundary
of Q is a C°°-smooth manifold of dimension m—2. If f is a function in the Sobolev

space of order k in Qx(c, d), then f is of class Cl in Qx(c, d) for l^k— jy 1 —1.

Moreover f can be extended as a C l- function beyond each regular boundary point of
Qx(c, d\

Lemma 2. Notations being as above, if a function f on Qx(c, d) can be ex-
tended for any />0, to a function of class Cl on Qx(c, d+£i\ £i being a positive
number, then f can be extended to Qx(c, rf+e) as a function of class C°°, for
some £>0.

By virtue of these Lemmas we can assert the following

Proposition 3. // we replace U by a bit smaller neighbourhood, the com-
ponents flj of the almost complex structure tensor can be extended to functions of
class C°° on Ux(c, d+e}, for some s>0.

Proposition 3'. The components GIJ of the metric tensor can be extended to
functions of class C°° on Ux(c, d+e).

We can cover Bc by coordinate neighbourhoods Uv for which Proposition 3
holds. Thus {UvX(c, d+e)} may be considered as an open covering of M.
Making use of a partition of unity, we can extend the tensor field / on X to
that on M, of class C°°, which we still denote by /. We don't know if J2=—id
holds on M— X, but this relation holds at points of X. The metric can also be
extended to M as a Riemannian metric of class C°°.

For u with c<u<d, Bu= {x^X\<f>(x)=u} has the CR structure induced by
the complex structure of X. To give the CR structure is to give the C-sub-
bundle T2 of the complexified tangent bundle CTBU as

where T"x denotes the bundle of tangent vectors of type (0, 1). It can also be
described in terms of the tensor /. Since / is extended to dX (taken in M), we
have a CR structure on dX too, the limit structure of those on Bu'§.

Proposition 4. The limit CR structure on dX is strongly pseudoconvex.

Proof. Let us take u«d) and consider the CR strucure on Bu. Take a
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point of J3U and holomorphic local coordinates (z) in a neighbourhood. Without
loss of generality, we can assume that d6/dzn^Q in this neighbourhood. Then
(T'u)x is generated by

(4.1) :c,= (

and

(4.2,
can be taken as a base of the real subbundle F of CTBU, for which CTBU

20CF holds. By direct computation we have

(4.3) [z6'f l, W^ = ^/—lc?aW() modCu1!, ••• , wn-lt wlf

where

dtp" "

To say that the CR structure on Bu is strongly pseudoconvex is nothing but to
n-l

say the Hermitian form S c j3«g<9<?a is positive definite. But it can be seen

that this Hermitian form is nothing but the restriction of the Hermitian form
dsz onto the subspace (T'£)x. Hence it is positive definite and, as we have seen
in Proposition 3', the inner product ds2 (or the matrix (Gl-7)) remains positive
definite on dX. Thus we see that the limit structure is again strongly pseudo-
convex.

§5. Limit CR Structure and Original Complex Structure

We shall show that the CR holomorphic functions on dX are nothing but
the boundary values of holomorphic functions on X—XU (for some u < d\ Namely
we shall prove the following proposition:

Proposition 5. Suppose dim^=?z^2 in addition to the previous conditions.
Given a C°°-function f on dX which is CR holomorphic, we can find an open neigh-
bourhood V of dX on M and a C00-function f on Xn\ V such that f is holomorphic
in Xr\V and /kr=/.

For the proof we shall first establish a Lemma. If we restate the situation:
M is a 2n-dimensioned manifold with a Riemannian metric ds2 of class C°
and (jj: M-»[0, d + s) is a proper C°°-map. X={x^M\<fi(x)<d] and
for (f)(x)=d. X has a complex structure for which (f> is strictly pluri^ubharmonic
outside XCl—{x^X\(p(x}<Ci} and for which ds" is Hermitian.
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We shall further assume that X has a Kahler metric da2=2^ra-^dzadz?, for
which

where c2 is a constant cl<cz<dj B is a positive constant and ^ is a non-decreas-
ing convex function of class C°° on (-co, d), with ^=0 on (—00, cO and =
W-r)-1 for c2<7<d.

Let us consider the space Cj> i (Z(^0 of the C°° differential forms of type (0, q),
with compact supports in X. We introduce two kinds of inner product (<p, £)
and (<p, fh by

(5.2) (P,l)

where * and 77 denote the formation of the adjoint forms with respect to ds2

and daz respectively. We denote the completions of C°Q'q(X) with respect to ( , )
and ( , h by Lq(X) and Lq(X, 2) respectively. We have Lq(X, 2)dLq(X) as sets
of measurable forms. We also introduce into C0

5(M), the space of <?-forms on M
with compact supports in M, the inner product ( , ) as in the first formula of
(5.2) X being replaced by M, and denote the completion by Lq(M}.

An element TJ of Lq(X] can be extended to a form TJ onMby setting £=0
at points of M—X, and gives an element of Lq(M}. Thus Lq(X)dLq(M). It
should also be noted that da2 is complete because of (5.1). (Proof is the same as
[4], Prop. 1.)

Lemma 3. Under these circumstances, if <p is an element of Lq(X, 1} with
o(p=Q in the sense of distributions and if Q<q<n, then there exists an element

(X, 1} such that <p=d^.

Proof. In the spaces Lr(X, A), r=0, 1, 2, ••• we consider the operator o and
its adjoint 3*. Then we have, in general,

(5.3) Lq(X, ^)=ff® [/?r]® [/?5-s] ,

where RQ, RQ^ denote the ranges of d, 5j respectively, [ ] denotes the closure
in the Hilbert space and H={(p^Lq(X, %)\d(p=Q, ofcp^O}. If we can show that
H={Q} and [tfri^^s, then we are through.

We define the Laplace-Beltrami operator D^ by n*=o ° of-Hj o 3. Then
as in [5], formula (56) we have, for

(5.4) Ui<p=

where I= — V— lddA(<f>) and A denotes the adjoint of the exterior multiplication
by the Kahler form. From this we obtain
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(5.5) $<p, Sph + tffy, 5fy)i^-(<4e(X)iP, p); ,

and, if we take (5.1) into account, we can derive, as in [5], '62' . the inequality

(5.6) (3<

for (p = CQQ>(1(X), where C is another constant.
For an element f of Lq(X, 1} which belongs to the intersection of the domains

of 3 and 5%, the formula (5.5) still holds good. Hence if £ e/J, then —(Ae(%)t~, f);t

—0. But X is negative semi-definite and strictly negative on a non-empty open
set. Hence we have ?=0 on this set. (The integrand of (Ae(7,)$t zh is negative
semi-definite and strictly negative when I is so. This can be seen most easily
when we take an orthonormal base for differentials of type (0. 1;, in which coef-
ficients of 1 is diagonal.) By a theorem of Aronszajn on the unique extension
of harmonic forms, we have ?=0 on the whole X. JThus we have H= {0} .

Next, proposition 1.2 of [6] shows that (5.6) implies IR^~] = R^.

Proof of Proposition 5. First we shall prove our proposition in case the
condition of Lemma 3 is satisfied.

Take a CR holomorphic function / on dX. As the proof of Theorem 2.3.2'
in [3] shows, we can extend / to a C°°-f unction /i in a neighbourhood V of SX
in M, so that dfi—(d—$Y°g, where g is a 1-form on V of class C", We extend
/i to the whole X. Then d/i belongs to L\X, X). We can apply Lemma 3 and
can solve

(5.7) 3v=3f1

where v^L\X, X).
If we can show that the boundary value of v on dX is equal to zero, then

/=/i— v satisfies the requirement of the Proposition, (v is extended to M by
setting r=0 outside X.) To see this let us denote the extended function by v.
Then v sL°(M). We extend the operator 3 on X to a differential operator D
on AL This can be done because the almost complex structure tensor is ex-
tended. Take a monotonous C°°-f unction p of t^R, which is =1 for t< — 1, =0
forj^O and set p^x^pW^x^ — d)). Now for an element r=Ct!M}, we have

(Du, tfx=(v, D*i])x=(v, D-r])x

Here o(p]lv) = pJldf1
Jr3pn'U and the support of 3pn is contained in A"— Xd-i/n and

\dpn\^n (const), while v is in L°(X, X). Hence we conclude that 3(pnv) con-
verges to 5/1 in Ll(X\ Thus we have proved that Dv is locally square sum-
mable and that
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Sf on X

0 on M-X.

Because of the condition on 5flf the right hand side is a form of class C1 on M,
while the symbol of D remains non-degenerate in a neighbourhood of X. Thus
D*D is strongly elliptic there and we see that v is of class C1. This implies

v\dx—^ as required.
To achieve the proof for a general case, we have only to know that the

following Lemma holds.

Lemma 4. // X is a strongly pseudoconvex manifold exhausted by y as above,
then there exist a closed analytic submanifold X in a product P^(C)xCN of a
projective space PM(C) and a CN, and a proper holomophic map x : X -* X which
is biholomorphic outside a compact set. Furthermore X can carry a Kdhler metric
with the condition (5.1). (Here %($) is lifted to X and cz is taken bigger if neces-
sary.}

Proof. According to Grauert [8], there exists a compact analytic subset
AdX and a proper holomorphic map 7* from X onto a Stein space X such that
T\X\A is biholomorphic. By the fundamental work of Hironaka [9], [10], [11],
there is a complex manifold X obtained from X by a succession of blowing-ups
along nonsingular centers, such that the induced bimeromorphic map TT : X —»X
is holomorphic. X can be chosen so that
(I) f°7r is biholomorphic on X\n~l(A\
(II) 7L~\A} is a divisor with normal crossings whose irreducible components

{Aj}v
3=i are smooth,

(III) there exist i> tuple of positive integers (plf • • • , p») so that the line bundle

J* is very ample.

From this, the lemma follows immediately (for a similar argument, see the proof
of Proposition 3.3 in [12] p. 231).

§ 6. Conclusions

We can now achieve the proof of our theorem. By [7], dX can be realized
as a hypersurface in a complex manifold Y! provided dimcA^3. Then a neigh-
bourhood W of oX in Y! is separated into two parts by dX. Our Proposition 5
shows that one part has to be biholomorphic with X— (compact set). This means
that we can patch A' and W together and obtain a complex manifold Y, in which
X appears as a relatively compact open submanifold. By a suitable choice of IF,
we can identify the underlying differentiate manifold of W with the previous
M. (M may be replaced by a smaller one if necessary.) This means that the
coordinate u f=|272) is a C°°-function $ on Y which extends <p on X. Since the



SPC MANIFOLDS AND SPC DOMAINS 715

Levi form of (p remains positive definite at every point of dX, $ is strictly plu-
risubharmonic on a neighbourhood of dX in Y and we have X= {x^Y\$(x)<d\.
This accomplishes the proof of our theorem.

As an application we shall give a consequence of our main theorem. Let
3C be the set of all complex structures on the underlying differentiable manifold
\X\ of an spc domain X in a complex manifold M. Let 3?0 be the subset of T
which consists of the structures of finite distance from that of X measured by
the C°°-topology with respect to the metric on M. Then we have

Proposition 6. Let X be an spc domain of dimension ^3. Then there exists
a neighbourhood 'V of X in 3£0 such that every complex structure in <U provides
on \X\ the structure of an spc domain.

The proof is immediate from our main theorem.

In conclusion, we express our thanks to Professor Norio Shimakura and
other friends for their discussions. Thanks are also due to the referee for many
suggestions.
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