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R. L. HUDSON*, P. D. F. ION** and K. R, PARTHASARATHY***

Abstract

In a previous paper [6] it was shown that a certain two-parameter dilation of a given
strongly continuous self-adjoint contraction semigroup, called the time-orthogonal unitary
dilation, gives rise to noncommutative Feynman-Kac formulae through the mechanism of
Boson second quantisation in Fock space. This paper explores the modifications of this
theory which arise firstly by using Fermion rather than Boson second quantisation, and
secondly by using Boson second quantisation based on extremal universally invariant states
of the CCR algebra. In the second case it is found that the programme is successful if
and only if the infinitesimal generator of the original semigroup is of trace class.

§ 1. Introduction

In a previous paper [ 6 ] a certain two-parameter unitary
evolution, called the time-orthogonal unitary dilation, was constructed for
a given strongly continuous self-adjoint contraction one-parameter
semigroup. Upon passing to second quantisations in Boson Fock
space, one obtains a unitary evolution possessing properties of
Euclidean covariance and independence which permit the construction
of a non-commutative Feynman-Kac formula [5, 6] for perturbations
of the semigroup which is the second quantisation of the originally
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given contraction semigroup.

The purpose of the present work is to investigate the modifica-

tions of this theory which arise when Fock Boson second quantisation

is replaced, firstly by Fermion second quantisation in Fock space,

and secondly by non-Fock second quantisation based on extremal

universally invariant states of the CCR algebra.

We recall that in [6], a non-commutative Feynman-Kac formula

was associated with the following structure. A reflective covariant

system (N9 (Ns>t), (^), p) consists of a von Neumann algebra N9 a

doubly filtering system (N5it9 J>0 of von Neumann subalgebras of

N, and a realisation of the one-dimensional Euclidean group by

automorphisms of N in which for t^R translation through t is

realised by ft and reflection at the origin by p, satisfying the condi-

tions

(i.D
(1.2)

for r, s9 t^R9 s>t. A reflective covariant reducing map j for such a

system is a strongly continuous linear map from N to the algebra B(§Q)

of bounded operators in a Hilbert space §0 satisfying the conditions

(1.3)
(1.4)
(1.5) joTt=jop=j

for arbitrary A^N, t^R and Al9 A2 belonging to subalgebras A^,^,

Ns t for which the time intervals ~\tl9 jj, ]£2? ̂ 2] are disjoint. An

evolution (Us>t:s>t} is said to be reflectively covariant ly adapted to the

system (N9 (NSit) , (^), p) if each USit^Ns>t and for arbitrary r, s9

with s>t,

Given a reflective covariant reducing map j and a reflectively

covariantly adapted evolution (USit) for the system (N9 (NStt), (^),

/o), the operators j(USit) form a strongly continuous self-adjoint con-

traction semigroup in §0, called the reduced evolution,

Moreover, if (t/SJ) is unitary, for each self-adjoint B<= fl Ns t
s>t

invariant under the automorphisms ^, t^R and p, there is a unique
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cocycle (M?if) for (t/M) satisfying

so that in the case when the operators USitBUT.} J s>t, all commute

The perturbed evolution

U»t = M*tU,.t

is also reflectively covariantly adapted and the corresponding semi-
group is given by

Thus in the commuting case we obtain the Feynman-Kac formula

Let (At:t>ty be a strongly continuous one parameter self-adjoint
contraction semigroup acting in a Hilbert space §0

 and write At =
exp (—£//) where H is positive and self-adjoint. Let §=L2(R ; £)0)?

§i = l}o©l3 and let J : £->(£, 0) be the natural embedding of 1}0 in ^.
We recall from [6] that there exists a unitary evolution (UStt: s>t)
in Ijl5 the time-orthogonal unitary dilation of (At), such that the
following properties for arbitrary r, s, tEiR with j>L

a)
(1.6) As_t=J*Us,tJ

b) in the decomposition \= (50©^]/,s])©%,S], where ^,|S-, is the
subspace of ^ comprising functions with support ]£, s\ and % s]

is its orthogonal complement in f), U,it assumes the form
where VSit is a unitary operator in

c)
(1.7) (/©5r)t/
(1.8) (/©*)£/,!,(/©*) -^t/-,.-,

where 5r and ^? are the shift and reflection operators in L2(R ;

As shown in [6], the second quantisations (T+(USit), s>t) in
Boson Fock space /^+(^i) =jT"l"(5o)(8)^'+(^) form a reflectively covar-
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iantly adapted evolution and the map j+ : T-+F+ (J*}TF+ (/) from

B(F+(^)j)) into 5(/1+(^0)) is a reflective covariant reducing map for

the reflective covariant system (N+, (N*t), (7^), p+) where

:.t=B(r+ (&) <g>r+

When the semigroup (At) in §0 is e~l acting by multiplication in C
the corresponding Feynman-Kac formula is that of the Ornstein-
Uhlenbeck velocity process, [5, 7], the "oscillator" formula of [12].

§ 2. Fermion Fock Space and Second Quantisation

Let | be a Hilbert space. Let F~ (fj) be the Fermion Fock space
over \

n=0

where the n- particle spaces,

are the antisymmetric parts of the n-fold Hilbert space tensor
products of § with itself, which we regard as the Hilbert space of

n

bounded, skew symmetric n-fold-conjugate-linear functionals m:

->C for which

\m r =

where (//) is a maximal orthonormal set in 5 [9].

For /£§ the corresponding Fock annihilation operator a ( f ) is the

bounded operator in -T(5) whose action is

a(J) (m05 ml5 m 2 , . . .

Clearly

(2.1)

where ^3 or -O(^) is the Fock vacuum vector,

0=(1, 0, 0 , . . . ) ;

also a (/) depends conjugate-linearly on /£=§,
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(2.2)

and together with its adjoint #T (/) satisfies the canonical anticom-
mutation relations (CAR)

(2.3) ]*(/), flfe)[ = 0, M/), *T(£)[ = </5 £>/, /,££§,

where ]^4, 5[ denotes the anticommutator

]4, B\_ = AB+BA.

It is well known that the family of operators

(2.4) {«(/), fl'(/) :/e$}

is irreducible [ 2 ] and that the set of vectors

(2.5) {«'(/„) • • • ̂ T(/i)£ : * = 0, 1, 2, . . . , /1? /2, . . . , fn^}

is total in Fock space, that is the vacuum is cyclic [2]. Conversely,
given a triple (S, a, 12) comprising a Hilbert space ®, a map # from I)
into the bounded operators on $ and a unit vector Q in S such that
(2.1), (2.2) and (2.3) hold and the families (2.4) and (2.5) are
respectively irreducible and cyclic, then there exists a unique Hilbert
space isomorphism from $ to Fock space that maps Q to the Fock
vacuum and intertwines each «(/), f$=.\ with the corresponding
Fock annihilation operator [2].

Now let $ be a Z2~graded Hilbert space, that is the internal
Hilbert space direct sum

of even and odd Hilbert sub-spaces $0 and ^. The algebra
of bounded operators in ® is ZT graded [3] by the rule that

is even if T®+c®+ and T^_g^_, and odd if r®+c®_ and

. Equivalently, T is even if 6T=T6 and odd if 6T-
— TO, where 0 is the parity operator which acts as / on ^0 and — /
on %

If ®' is a second Z2-graded Hilbert space then the tensor product
' is naturally Z2-graded by the rule

;(mod 2).

For operators T^B(&) and T ' E i B f f i ) having even and odd com-

ponents TO, TI, we define an operator T®T' in 5(^(g)^') by
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where C(X)D denotes the usual Hilbert space product operator whose
action on product vectors is

and 6 is the parity operator on $. Then the following rules hold:

(2.6) CT(g)r

for S, T<E£($), S', T'e £(«'), /<=$, £GE®' all either even or odd,
where the sign is + unless, in the first case, both T and /, and in
the second case, both T' and S, are odd.

We regard the Fock space F~ (I)) over § as a Z^-graded Hilbert
space, taking the even and odd subspaces to be the subspaces of
vectors whose n-particle components vanish for n odd and even
respectively. Now let 5 — §i©§2 be a direct sum. Then it is easily
seen that the triple comprising the Hilbert space /"" (§1) (x)^~ (J)2),
the map

from ^ to £(F-(iy (x)F-(iy) and the unit vector fl(^) (g)fi(t)2)

satisfies the conditions (2.1), (2.2) and (2.3) together with the irre-
ducibility and totality of the corresponding families (2.4) and (2.5).
Hence there is a unique Hilbert space isomorphism, which we use
to identify the two spaces, from F~ (I)i) (x) F~ (I)2) to F~(5) mapping

fl(I)i)(g)0(lJ2) to £0}) and intertwining each a (/i) (g) /+ / (g) a (/2) with

«(/i,/2). Thus

(2.7) r- (^ © ̂  - r- (y (g) r- (|2) ,
(2.8) a(fl,f2)=a(fl}^)I+I(^a(f2\ f^h j=l, 2,

(2.9) fl(5i©fe)=fi(5i)(g)fi(fe).

Let C be a contraction from a Hilbert space I) to a second Hilbert
space 5'. The second quantisation F~ (C) of C is the bounded operator

n

from /"'"(I)) to F~(^) which acts on each ^-particle space as (X)C.
j=i

Then the map C— >F~(C) is continuous for the respective strong
operator topologies and satisfies the functorial rules

(2.10) /"(/)=/,
(2.H) r-(c1c2)=r-(G1)r-(c2),
(2.12) r-(c*)=
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Also

(2.13)

and if C is isometric, then for

(2.14) r-(o«(
(2.15) r- (C) a1 (/) = a' (C/) r~ (C) .

Theorem 2.1. // U=Ui@U2 is a direct sum of unitary operators
Uj in fy, j=l, 2, then

(2.16)

Proof. Since the r~(Uj) are even, using (2.6) and (2.8) we have,
r / y e^ ,y=l , 2

(f/2)

Hence, using (2.14) together with the fact that F '([/) ~: = r (U~l)

r- cc/o (g> r- ( Lr
2) « (/b /2)

that is, the operator F~(U) ~ir~ (U-^) ®r~(U^) commutes with each
0(yi, jT2). A similar argument shows that this operator commutes
with each 0T(/ij /2), and thus with all elements of the irreducible
family {a(/l5 /2), 0T(/b /2) : /ye^;j = l5 2}. Hence it is a scalar
operator and for some

Comparing the action of F~(Ui) (8)/^"(C/2) and F~(U) on the vacuum
vector using (2.13) and (2.9) shows that £ = 1.Q

Finally we show that the second quantisation of an isometric
embedding of one Hilbert space in another characterises the vacuum



614 R. L. HUDSON, P. D. F. ION AND K. R. PARTHASARATHY

conditional expectation for the algebras on the corresponding Fock
spaces. In this connection, see [4].

Theorem 2.2. Let \ be a direct sum, §i = §0@§ and let J be the
isometry 60^(fo5 0) from §0 into \. Then the map T^>r~(J)*TF~(J}
from B ( F ~ ( ^ l } } to 5(-T~(5o)) is the vacuum conditional expectation given
B(r-djo)), that is, for arbitrary TeE5(F-(iy ), r-(J)*Tr~(f) is the
unique element of B(r~~(§0}} such that, for arbitrary $,

(2.1?) <$, r-(j)

Proof. Because of the totality of such vectors in /^"(IJo) it is
sufficient to establish (2.17) in the case when <J> and % are of form

for ? i , . . . , fm, i?i, . . . , f)^\. Then we have using (2.15)

. D

§ 3. Fermion Feynman-Kac Formulae

Let 04, : f>0 ) be a strongly continuous self-adjoint contraction
semigroup acting in a Hilbert space Ifo, and let (C/s,( : J>0 be its
time-orthogonal unitary dilation in \ = §0<§>L2(R ; ̂ 0). Let A^" be the
von Neumann algebra 5(r~(^)) and, for s>t, let A^s~, be the von
Neumann algebra generated by the elements a(f, /), £eJJo» /e5],.s>
Let 7-,"", <e/J and p~ be the automorphisms of JV~ given by

rT ( 70 = r- (i e sj rr- a © s,) -1

Then (JV~, (N^t~), (^r), i<>~) is a reflective covariant system. Indeed,
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it is clear that N7,t^N^u for ]£, j]^]r, w], and that N~ is generated
by the N~t follows from the fact that it is generated by the <z(f , /),
fe^o, /el), that (f, /)-><z(f,/) is continuous in the strong topology
on ^ and the uniform topology in 5(.T~(I)i)) and that U 5]/.S] is

s>f

dense in I). That the inclusions (1.1) and (1.2) are satisfied follows
from (2.14), (2.15) and (2.16).

Now let j" be map from N~ to 5(.T~(IJo)) given by

By Theorem 2.2, j" is the conditional expectation given B(r~(§0}) in

N-.

Theorem 3.1. j~ is a reflectively covariant reducing map and (F~(USA) :
j>0 is a reflectively covariantly adapted evolution for (N~, (A^), (ft")?

Proof. The proof differs essentially from that of the corresponding
result for the Boson case, Theorem 6.1 of [6], only in the argument,
which will now be given, that j satisfies the condition

whenever A^NStt, B^NriU for disjoint ]£, 5], ~\u, r]. By our identi-
fication of j as a conditional expectation and Theorem 1.1 of [6] it
is sufficient to show that the corresponding von Neumann subalgebras
N1 and JV2 of B(r~(ff)) generated by the a(f) for which/ vanishes
outside ]£, s] and ]w, r], respectively, are independent in the vacuum
state, that is, for arbitrary

To do this we write

r-(5)=r-(^.I])r-(^,I]o
corresponding to the direct sum decomposition

5 = ̂ ,S]©^>S]S

and note that NI is generated by operators of form

aC/i)(g)/=fl(/i)(8)/
where /iS^ ,s], while A^2 is similarly generated by operators of form
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where 0 is the parity operator in /^"(^i), with f2^.\u.r^\t,sr- Hence
the element C of A^ is of form d®/ for deBCr^,,-,)), while the

element D of N2 is of the form 7(x)A + 0(x)A with A, A ^ £ (F (Ij^-/) ) .
Since @ maps the vacuum to itself, we have, writing Ql=

Setting C and A respectively, equal to the identity shows that

Hence in general we obtain

as required. Q

As in the Boson case, the reduced evolution corresponding to the

reducing map j~ of the evolution r~(USit} is the second quantisation

of (4) :

In the case when At = e~t acting by multiplication in C, this is the

semigroup I@e~f in F" (C) =(70(7; its infinitesimal generator is thus

the two-level Hamiltonian with eigenvalues 0 and 1. Perturbations

j~CB) for which the F~ (UtiS}Br~ (Ut>s)~
l all commute, so that the

Feynman-Kac cocycle takes exponential-integral form, must them-

selves be diagonal so that, at least in the case of time-independent

perturbations, the Feynman-Kac formula which results seems unlikely

to be of value for computations8 It bears the same relationship to

the Fermion Ornstein-Uhlenbeck velocity process

o

where 04,) is the Fermion Wiener (Brownian motion) process
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as does the oscillator process formula of the Boson case to the
Boson canonical Ornstein-Uhlenbeck velocity process of [6, 7].

§ 4. Extremal Universally Invariant Second Quantisation

Let ^ be a Hilbert space and let F+ (§) be its Boson Fock space,
with vacuum vector Q+ or Q+ (I)) . Denote by W(f), /e§ the Weyl
operators over 1) ; these form an irreducible family of unitary opera-
tors in r+(fy satisfying

(4.1)

moreover the map f-*W(f) is strongly continuous on I).
Now let | be the dual Hilbert space of § and for /el) let /

denote the element £-></, £> °f 5- Let K be the natural conjugate
isomorphism /—»/ from I) to | and for TeS(I)) let T denote the
element KTK~l of 5(5). By identifying the dual of a direct sum
with the direct sum of the duals through the isomorphism

(/l,/23...)^(/l,/2,...)

and the dual of a tensor product with the tensor product of the
duals through the isomorphism which extends the map

we identify the dual of the Fock space F+ (§) with the Fock space
F+(f)) of the dual, in such a way that for any contraction C5 the

second quantisations T+(C) and F+ ( C) in rM (fj) and r+(j)) =r+(f))
satisfy

Now set

If ^=©5j is a finite direct sum then by combining the corresponding
3 = 1

isomorphism for the Fock case with the natural permutation isomor-
phism from
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n n _

to

we obtain an isomorphism from F (fj) to ®/\Ij/) which we use to
3 = 1

identify these spaces. Note that in this identification

If C is a contraction from § to a Hilbert space §', we write

(4.2) F(Q=r+(C)(x)r+(c).
Because of corresponding properties of the Fock second quantisa-
tions, F(C) is a contraction, C-»/\C) is strongly continuous and the
functorial rules

(4.3)
(4.4)
(4.5)

are satisfied ; moreover if C = @Cj is a finite direct sum then
3 = 1

(4.6) T(C)=(g)r(Q).
J = l

Now let ff be a real number >1, fixed once and for all Let a
be the positive number such that

Then it is easily verified that the family of unitary operators Wa=
(Wa(f) :/e§) defined by

Wa(f) =W(coshaf)® W(sinhaf)

forms a RCCR over ^ (that is, is strongly continuous on finite-
dimensional subspaces of § and satisfies

W.(f) W,(g) = e X p - - i Im</, ̂ > Wa(f+g), f,

Moreover

(4.7) <0,

PKa is thus a realisation of the RCCR corresponding to an extremal



NONCOMMUTATIVE FEYNMAN-KAC FORMULAE. II 619

universally invariant state of the CCR algebra in the sense of [10].
Similarly, if

then W is an RCCR over | such that

1 2

It can be verified directly that every element Wa(f} commutes
with every W'ff(g). Moreover, since

(4.8) Wa(f} W'a(g) = W(coshaf+smhag) (x) JV(sinha/+cosha&)
= W(coshaf+ sinhag, sinha/+ coshag) ,

and the real linear map in §®|

Ta '• (/? g)->(cosha/+sinhag, sinho/+ coshag)

is clearly invertible, we see that the operators W a ( f ) , W0(g)ifig£=§,
jointly generate the elements of the Fock RCCR over §01). Since
this is irreducible it follows that the von Neumann algebras generated
by the representations Wa and W"a are mutually commuting factors
(in fact they are each other's commutants) ; we denote them by Na

and N^ or Na(fj) and N'a(§) respectively. Q is cyclic and separating
for both Na and N'a.

Let U be a unitary operator in I). From the corresponding
property for the Fock case we see that, for /el),

(4.9)

thus conjugation by F (IT) induces automorphisms of Na and N'a.
It is important for us to know when these automorphisms are inner,
or equivalently when F (U} can be factorized in the form

(4.11) F(U)=A(U}A(U)

with A (If) and A (U} unitary elements of Na and N'a respectively.
Because Na and N'a are factors it is clear that, if it exists, such a
factorization is non-unique only to the extent that A (If) and A (U)
may be replaced by a A (If) and or1 A (If) respectively, where a is
an element of the group T of complex numbers of unit modulus. It
is also clear that the set of unitary operators for which the factorization
(4.11) exists is a group under multiplication, of which the map £7— »
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TA(U} is a unitary ray representation [ 1 ]. We recall from [ 1 ]
that a unitary ray representation G^g-*TUs of a topological group
G is said to be continuous if, for an arbitrary vector (/> there is a
neighbourhood 9? of the neutral element of G such that whenever

inf \

Theorem 4.1. The group %2($) °f unitary operators in § for which
the factorisation (4.11) exists consists precisely of those unitary operators
U for which U—I is a Hilbert- Schmidt operator. Moreover if ^2(§) ^
topologised by the metric

P(U1} U2)=\\U1-U2\\2,

where \\ ||2 is the Hilbert-Schmidt norm, then the map U-*TA(U) is a
continuous unitary ray representation of %2(§}'

Proof. Inverting the relation (4.8), we have that for all/, g^.\

(4.12) W(f, g) = M^(cosha/-sinha£) W'a(-sinhaf+coshag')

where W( , ) is the Fock RCCR over §01). Suppose that F(LT)
admits the factorisation (4.11). Then since /!([/) commutes with
each W'a(k), AJeij and A' (U) with each Wa(K)9 h<=§ we have

W'0( -s'mhaf+coshag)A(U)

= Wa(coshaUf— sinhat/g) W0 ( — sinha/+ cosha^)

using (4.9). By (4.12) we can write this as

where

(4. 13) / = (cosh2a£7 - sinh2 «/)/+ (/- £7) sinha
(4.14) g'= (U — 7)sinha coshq/+ (cosh2a/ — $'mh

Suppose, conversely, that there exists a unitary operator A(U) in
F(fy such that, for all/, g&fy

(4.15) A(LT)W(f9 g)A(U)-l=W(f, g}
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with f',g given by (4.13), (4.14). Replacing / and g by cosho/+
and s'mhaf+coshag in (4.15) we have that, for arbitrary

A(U}
= ]>K(coshaty/+sinhag, sinha[//+cosha'^),

that is, using (4.12), that

4(£/) W.(f) W'a(g)A(U) -'= W,(Uf) W'a(g) .

Setting /=0 shows that A(LT) commutes with each W'a(g) and hence
belongs to Na. Setting g=Q shows that, for all

and hence that if

then A' (IT) commutes with all W a ( f ) and so belongs to A'^. Thus

admits a factorisation of type (4.11).
We have thus shown that P (IT) admits a factorisation of type

(4.11) if and only if there exists a unitary operator (which can be
taken to be /!([/)) such that, for arbitrary/,

where/7, g are given by (4.13), (4.14). But according to Shale's
theorem [11] on the unitary implementability of linear canonical
transformations in the Fock RCCR, such a unitary operator A(lf)

exists if and only if the real-linear map L : (/, £)->(/', /) in the
real Hilbert space got by equipping 5® 5 with the real part of its
original inner product has the property that (L*L}*~ I is Hilbert-
Schmidt, or equivalently that

L*L-/=

is Hilbert-Schmidt. Hence to complete the proof of the first statement
of the theorem we need to show that L*L — I is Hilbert-Schmidt in
the real Hilbert space §®| if and only if U—I is Hilbert-Schmidt

in 5-

To do this we represent the operator L in l)®| in matrix form
as
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cosh2aC7 —sinhW cosha sinha(7 — I
cosha s'mhaK(U~I) cosh2a/—sinh2at7

7+cosh2o:Z) — cosha s'mhaDK"1 1
cosha sinhoJLD /—sinh2aZJ J

where D=U—L After some manipulation using the unitarity condition

U*U=I for U in the form

we find that L*L—I is represented by the matrix

-coshasinha (D + D*) (s'mh2aD + cosh2aD*) K~l. ,
2 cosh a smh a . . ^ ^^

— cosha smha(ZH-D

and is thus Hilbert-Schmidt if and only if D=U—I is Hilbert-

Schmidt as required.

From the form (4.16) of the matrix of L it is clear that the

map £7—»L is continuous from the topological group ^2(I)) into the

group =£?2(§©i) of real-linear transformations in tj©§ differing by

Hilbert-Schmidt operators from the identity, topologised in the same

way as ^2(I)). Now in [11] it is proved that the unitary operators

implementing unitarily implementable linear-canonical transformations

constitute a continuous unitary-ray representation of the subgroup

of J^2(§©|) consisting of such linear canonical transformations.

Combining this fact with the continuity of the map t/-»L shows

that U—>TA(U) is a continuous unitary ray representation of ^2(Ij)

as claimed. Q

§ 5. Time-Orthogonal Unitary Dilations of Semigroups
with Trace-Class Infinitesimal Generator

Let ( U S t t ) acting in ^i = ^0©^5 where §=L2(R ; §0), be the time-

orthogonal unitary dilation of the strongly continuous self-adjoint

contraction semigroup acting in \

with infinitesimal generator //.

Theorem 5.1. A necessary and sufficient condition that the elements

USit belong to the group (%2(§i) is that the infinitesimal generator H be
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trace-class. If this is the case then the evolution (USit) is continuous in

the sense of the topology of %2(§i)'

Proof. As in [6], we write USit in matrix form,

v r ASit BSit

where AStt = As_t and the actions of Bs>t : ^-^^05 CSit '- §0-*$ and Dst '•

^-^5 are respectively

Bs,tf= - (2tf) * > s

(DSttf) (*) = -it.*i(x)XM(x)HAx-yfW dy.

If each USit differs from the identity by a Hilbert-Schmidt

operator then clearly As_t=J*USitJ has the same property and thus,
in particular, has a discrete spectral resolution. Hence we may

assume without loss of generality that H has a discrete spectral

resolution, hence that there exists a maximal orthonormal set (Cy) of

eigenvectors of H in terms of which H can be expanded as a
strongly convergent sum

where /(X)g is the rank one operator <^-^<g? <^>/. The matrix elements

ASit—I, BSih CSih DStt of USit—I are then given by

(5.1) ^M-

(5.2) fl,.,=z;
where

and

where

^'.//C*J =

Identifying the spaces L2(/2 ; ^0) and L2(K)(x)^0 by means of the
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isomorphism that extends the map /C-»/(S)C we see tnat Di.t can be
written

(5.3)

where d{tt is the integral operator in L2(R)

(5.4) d{ttf(x} =

Since the ranges of Cy (8)/l *j (gl * (8) C/) * and Z)J>f are mutually orthog-
onal for different j, the finite or infinite Hilbert-Schmidt norms of
BSih Cttt and DSit are given by

\ \r f$\fj 112—y 1 ufj 152 _y / i .~2^(s~°^ll^j^y/s .Hl — Zj l l j s . f l l — 2_j v i — e )
3 3

= 4 S

Also from (3.5)

\\As,t-I\\l=Z (^(s-°-l)l
y

Hence ASit— /, 5SJ, CS|i and DM5 and hence also t/M— /, have finite
Hilbert-Schmidt norm if and only if each of the series

converges. But convergence of the last of these implies that of the
other two. Hence Ust—I is Hilbert-Schmidt for all s>t if and only
if 2 %j converges, that is H is trace-class.

If this is the case then, for r^>s>t from (5.1),

as r->j, by the monotone convergence theorem, from (5.2)

\\Br,t-Bs,t\\i=z\\fi,t-fi.t\\
2

-2^^ dx
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»0 as r->s,

gi.t-gL\\2

rr -2*,<*-o ,
= 2 2 IA 0 3 dx

j Js

-2^,(s-« -2J.(r-

= — *
J

»0 as r— >sy

while from (5.3), (5.4)

ll/>r.,-A^I=SRt-rfklfj
. 9 f f l ' r s -2^-U-^) , , , frf -2^-U-^) . .

= 42 ^1 \ \ e J dxdy + \ \ e 3 dxdy
j \JsJt Jsjy

j

->0 as r-*s.

Hence USit is continuous in s for fixed t, A similar argument shows
that U5tt is continuous in t for fixed s. Q

§6. Factorisation of (F(I7M))

Let (.4, : ^>0) be a strongly continuous self-adjoint contraction
semigroup in the Hilbert space § having trace-class infinitesimal
generator H. Let (UStt : s>t) be the time-orthogonal unitary dilation
of G4j). Combining Theorems 4.1 and 5.1? we have that, for arbitrary
s>t, r(USit) admits a factorisation

(6.1) r(c/f.,)=^x*
into unitary operators A5tt in Na and A'Sit in N'0 which is non-unique
only to the extent of multiplying ASit by an arbitrary element of T
and A'Sit by its reciprocal. Moreover the unitary ray-valued map
(s9 t)-*TASit = ASit is separately continuous in its two arguments. It
follows from a theorem of Wigner [13 13] that the representatives
ASit can be chosen in such a way that the map (s, t)-+AStt is strongly
separately continuous. This choice is clearly non-unique only to the
extent of multiplying A5tt by a(s, t) and A'Sit by a(s, t\ where a is
a separately continuous T-valued function.



626 R. L. HUDSON, P. D. F. ION AND K. R. PARTHASARATHY

Theorem 6.1. There exists a unique system of representatives ASit of

the unitary rays ASit, s>t, such that
a) (ASit : s>£) is a (strongly continuous) unitary evolution, that is, for

r>s>t

(6.2) ArtSAs,t=Ar,t.

b) For arbitrary r^R and s>t

(6.3)
and

(6.4)

Proof. The proof consists of three stages of which the first two

are lemmas.

Lemma 6.2. There exists a system of representatives A5it, s>t forming

an evolution. Moreover this system is non-unique to the extent of
multiplying each ASit by fi(s, 0> where the T-valued function /3 is

separately continuous and satisfies the functional equation

(6.5) fi(r, 0=j8(r, j)j8(j, t) (r>s>t).

Proof of Lemma 6.2. By second quantising the evolution equation
satisfied by (UStt) we obtain, for r>s>t

(6.6)
For any strongly separately continuous choice of representatives
(ASit) we have, on the one hand

where

while on the other hand, from (6.6)

and AriSASit and A'r^A'Sit are unitary elements of N0 and N'a respectively.
Hence, by the non-uniqueness of the factorisation (6.1) for
for some a(Y, j, t) E=.T we have, for r>^>^,
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(6.7) 4it = a(r, s

Clearly the function a is separately continuous in r, s and t. By

defining ASit=A^} for j<£ and extending the domain of definition of

a to all of R3 by the convention

a(r, j, 0 = (a(r', /, O)',

where <5 is the sign of the permutation (r, s, £)—»(/• ' , 5', O? we niay
assume that (6.7) holds for all r, s, t^R. From the associativity

identity

(4iS4,M.o=4.s(4.Ao)
we obtain the functional equation for a

a(r, s, i)a(r, t, 0) =a(r, s, Q}a(s, t, 0),

that is

c ,x _ a(f, J, 0)«(J, t, 0)
r, ^, 0)

so that (6.7) can be written

a(r, ^, 0)4.f = a(r, j, 0)4,s«(^ t

Replacing each representative 4,* by a(j9 ^, 0)4.* we thus obtain
representatives satisfying the evolution equation (6.2). If A5it =

f)(s, 04. *5 ^^^ is another set of such representatives then, compar-

ing (6.2) with the evolution equation for (4,*) in the form

j8(r, s)ArJ(s, t)A,.t = p(r, 04.*

shows that ft satisfies (6.5), completing the proof of the lemma.

The general solution of the functional equation (6.5) is easily

seen to be

(6.8) p(s,
where the function j must be taken to be continuous to ensure

separate continuity of /3, and is unique if it is required to satisfy

(6.9)

Lemma 6.3- There exists a system of representatives 4.*5 s>t

forming an evolution and in addition satisfying (6.3). Moreover this

system is non-unique to the extent of multiplying each ASit by ^^(s""°,
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where A is a real number.

Proof of Lemma 6.3. Second quantising (1.2) we have, for

and hence, choosing representatives of each /""(t/s.f) in accordance
with Lemma 1

(6.10) r (t/,.,) =r(i@srr
ir(ur+,.r+l')ru@sr)

=r(i®sr)-
1Ar+,.r+lr(i@sr)r(i®srr

l4+,.r+lr(i®s
Now by (4.9) and (4.10), conjugation by the second quantisation

- 1 = - 1

is an automorphism of both N, and N'a. It follows that (6.10) gives
a factorisation of r(US:t) into unitary operators

in Na and N'0 respectively, moreover the representatives AStt clearly
inherit strong separate continuity. Moreover, since the original
representatives formed an evolution, we have, for u>s>t

that is the new representatives also form an evolution. It follows
from Lemma 1, together with the form (6.8), (6.9) of the solutions
to the equation (6.5) that, for each re/2, there is a continuous
function jr : R-*T with ^(0) = ! such that

or equivalently

where we have set

(6.12) w(s9 0=
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Comparing the two expressions

shows that, for arbitrary r, v£HR and s>t

(6 13) <o(r+v, s} _ a)(r, v+s}co(v, 5)
(v, t}"

Setting £ = 0 in (6.13) and using the fact that co( . , 0)=1 gives

(6.14) w(r + v, s)o)(r, v] =(w(r, v+s}co(v, s)

for arbitrary ^>0, while setting s = Q gives

co(r, v + £)a)(v, t) =a)(r + v, t)co(r, v)

for arbitrary t<0. Hence co satisfies the multiplier equation (6.14)
for arbitrary r, v, s^R. In addition <«( - , 0)=1. Setting ^ = 0 in
(6.11) shows that w is measurable. Every measurable solution of the
multiplier equation (6.14) is of form

for some d : R-+T with 5(0) = 1 ; in particular CD is symmetric. From
(6.12) a) is continuous in its second argument, hence a) is separately
continuous in both arguments. But then, [8], the function d can be
chosen to be continuous. Substituting the solution (6.15) into (6.11)
we have

Hence the system of representatives

satisfies

Ar+,.r+l
which is equivalent to the validity of (6.3). Since d is determined
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by (6.15) non-uniquely to the extent of multiplication by a continuous
solution f] of the functional equation

that is by a function of form

for some ^ejR, it is clear that the new system of representatives is
non-unique to the extent of multiplying each AStt by e^(s~t} . This
completes the proof of Lemma 2.

To complete the proof of the theorem we must show that there is
a unique choice of 1 such that, for the system of representatives A5it

of Lemma 2, the system e^(s~^AStt will satisfy (6.4). By second
quantising the relation (1.3) we have

or equivalently

= r (i®R) -MI* , _SA *tt _s

where

A's,t=
are elements of Na, N'a respectively. ASil clearly inherits separate
continuity in s and t from Ast. Moreover for r>s>t,

=Ar.t,

so that the representatives A,it form an evolution, and for
>



NONCOMMUTATIVE FEYNMAN-KAC FORMULAE. II 631

=ru©fl) -l[_r(i®S-r*)A_t:_sr(i®S-r} -1]

Hence the representatives ASit also satisfy (6.3). It follows that there
is a real number fj, such that, for all s>t,

A — JfJL(S-t)/l/Ls,t — * yisj?

that is

Setting fji — 21 we find that the system of representatives el*(5~"A5it

satisfies (6.4) as required. It is clear that the choice of /! is unique.

D

§7. The Finite Temperature Boson Feynman-Kac Formula

Let

At=e-tH, t>Q

be a strongly continuous self-adjoint contraction semigroup acting in
the Hilbert space ^05 with trace-class infinitesimal generator //, and
let (U5it : s>t) be its time-orthogonal unitary dilation acting in

where ^ = L2(R ; ^0). Fix a>l. For s>t write

corresponding to the direct sum decomposition

and let

Then, because the map f-*Wa(f) inherits strong continuity from the
corresponding Fock representation and because U \t s] is dense in

s>*

I, (NSit : s>t} is a double filtration of N. Moreover by (4.9) the
conjugations by /"(/05r), r<=R and by F (I@R) are automorphisms
Yr and p of Ar, and since 5r^>s]C^]i+r s+r] and -R^.o— %-s,-<] these
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obey (1.1) and (1.2). Thus (TV, (NSit\ ( f t ) , p) is a reflective covariant
system.

Next, let j be the vacuum conditional expectation from N into
5(F(iy), so that, for T&N, j(T) is the unique element of J3(r(lj0))

such that, for arbitrary 0, X

In fact j maps N into TVa(§0) 5 since finite linear combinations of the

operators W0(^ /), ? elfo, /£§ are strongly dense in N it is sufficient,

to see this, to observe that

as follows from the tensor decomposition

which in turn follows easily from the corresponding decomposition

property of the Fock Weyl operators. Since for /e^.S], g^$iu.r

]£, 5], ]M, r] disjoint

-
2

1 ' 4

a similar density argument shows that ;' has the property (1.4).

Properties (1.3) and (1.5) are immediate, hence j is a reflective

covariant reducing map for the system (TV, ( N S t t ) , (ft), p).

Now let (ASit : s>t) be the system of representatives of Theorem

6.1.

Theorem 7.1. (AStt : s>t) is a reflectively covariantly adapted evolution

for the reflective covariant system (N, ( N S t t } , (7*,), p).

Proof. We need only prove that A5it^NSit ; everything else is a

consequence of Theorem 6.1. Writing USit as VSit@I for V5it acting

in §O©§]M], we have from (4.6)
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The unitary operator VSit inherits from U5it the property of differing
from the identity by a Hilbert-Schmidt operator. It follows that

) can be factorised as

for

Hence also

Now

and similarly A §§I ̂ N'a(§^ . Hence by the uniqueness of factorisation
of r(UStt}, ASit is a scalar multiple of A®I. But in that case AStt

also belongs to Na(^Q@^ttS^)^)I = NSit as required. Q
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