On the $X Y$-Model on Two-Sided Infinite Chain

By

Huzihiro ARAKI*

Abstract

The $X Y$-model on the one-dimensional lattice, infinitely extended to both directions, is studied by a method of C^{*}-algebras. Return to equilibrium is found for any vector state in the cyclic representation of the equilibrium state.

A known relation between the algebras of Pauli spins and the algebra of canonical anticommutation relations (CARs) is used to obtain an explicit solution. However the C^{*} algebras generated by the two sets of operators become dissociated in the thermodynamic limit of an infinite one-dimensional lattice extending in both directions (in contrast to onesided chain) and this causes a mathematical complication.

In particular, we find three features different from the case of one-sided infinite chain: (1) There are no non-trivial constant observables. (2) The (twisted) asymptotic abelian property holds only partially and not in general. (3) Return to equilibrium occurs for all values of the parameter γ and is proved by a method different from the case of one-sided chain.

§ 1. Introduction

The $X Y$-model with the Hamiltonian

$$
\begin{equation*}
H=-J \sum\left\{(1+\gamma) \sigma_{x}^{(j)} \sigma_{x}^{(j+1)}+(1-\gamma) \sigma_{y}^{(j)} \sigma_{y}^{(j+1)}\right\} \tag{1.1}
\end{equation*}
$$

will be studied in the C^{*}-algebra approach, where

$$
\sigma_{x}^{(j)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}^{(j)}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}^{(j)}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are Pauli spin matrices at the lattice site $j \in \mathbb{Z}$ (mutually commuting for different sites j), J is real and $-1<\gamma<1$. For an observable Q belonging to the C^{*}-algebra \mathfrak{A} generated by all Pauli spins, we study the asymptotic behavior of its time translation

$$
\begin{align*}
& \alpha_{t}(Q)=\lim _{N \rightarrow \infty} \alpha_{t}^{(N)}(Q), \tag{1.2}\\
& \alpha_{t}^{(N)}(Q)=e^{i t H(-N, N)} Q e^{-i t H(-N, N)},
\end{align*}
$$

[^0]where $H(-N, N)$ is H of (1.1) with the sum extending over $j=-N$, $-N+1, \cdots, N-1$. (The limit $N \rightarrow \infty$ of two-sided infinite chain.) We study its expectation value in a state ψ of \mathfrak{A} given by an arbitrary vector $\Psi \in \mathscr{H}_{\beta}$ in the cyclic representation π_{β} of the unique equilibrium state φ_{β} with the inverse temperature β.
\[

$$
\begin{equation*}
\psi\left(\alpha_{t}(Q)\right)=\left(\Psi, \pi_{\beta}\left(\alpha_{t}(Q)\right) \Psi\right) \tag{1.4}
\end{equation*}
$$

\]

(We refer, for example, to [1] for a standard material.)
Our main result is the return to equilibrium:

Theorem 1. For any $Q \in \mathfrak{A}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi\left(\alpha_{t}(Q)\right)=\varphi_{\beta}(Q) \tag{1.5}
\end{equation*}
$$

Such a return to equilibrium for the $X Y$-model has been discussed in [2] and [3], but the discussion has been limited to the so-called even part of \mathfrak{A} (to be defined later). More recently [4], asymptotic behavior of $\psi\left(\alpha_{t}(Q)\right)$ for large time t has been found for arbitrary $Q \in \mathfrak{A}$ in the case of the $X Y$-model on the one-sided infinite chain. The return to equilibrium (1.5) does not occur in general (for $\gamma \neq 0$) due to the existence of a constant observable $B_{r} \in \mathfrak{A}$ (i.e. $\alpha_{t}\left(B_{r}\right)=B_{\gamma}$) given by

$$
B_{r}=\sum_{j=1}^{\infty}(-\alpha)^{j-1} \sigma_{z}^{(1)} \cdots \sigma_{z}^{(2 j-2)} \times\left\{\begin{array}{lrr}
\sigma_{x}^{(2 j-1)} & \text { if } & 0<\gamma<1 \tag{1.6}\\
\sigma_{y}^{(2 j-1)} & \text { if } & -1<r<0
\end{array}\right.
$$

which is in \mathfrak{A} due to $\alpha \equiv(1-|\gamma|) /(1+|\gamma|) \in(0,1)$ for $\gamma \neq 0$. However the return to equilibrium do occur in any one of the following cases:
(a) $\gamma=0$, any $\Psi \in \mathscr{H}_{\beta}$, any $Q \in \mathfrak{A}$.
(b) $\gamma \neq 0$, any $\Psi \in \mathscr{H}_{B}$ satisfying $\psi\left(B_{\gamma}\right)=0$, any $Q \in \mathfrak{Q}$.
(c) $\gamma \neq 0$, any $\Psi \in \mathscr{H}{ }_{\beta}$, any Q satisfÿing $\Theta(Q)=Q$.

Here Θ is the automorphism of \mathfrak{A} satisfying

$$
\begin{equation*}
\Theta\left(\sigma_{x}^{(j)}\right)=-\sigma_{x}^{(j)}, \Theta\left(\sigma_{y}^{(j)}\right)=-\sigma_{y}^{(j)}, \Theta\left(\sigma_{z}^{(j)}\right)=\sigma_{z}^{(j)} \tag{1.7}
\end{equation*}
$$

for all j (i.e. 180° rotation of all spins around z-axis), where j is restricted to the natural numbers \boldsymbol{N} for one-sided chain. In contrast, the result given by Theorem 1 for the two-sided chain is simple. However it disguises the complexity in its derivation.

The derivation of the results described above uses an explicit solution of the model on a finite chain in terms of a relation between
the algebra \mathfrak{Q}^{s} of spins and the algebra $\mathfrak{Y}^{\text {CAR }}$ of CAR's [5]. In the case of the two-sided chain, the two algebras become distinct C^{*} subalgebras of a bigger C^{*}-algebra \mathfrak{A} and this brings about some complication, which we will describe in the next section for a general one-dimensional spin lattice.

§ 2. Spin-Fermion Correspondence

Let $\mathfrak{Y}^{\mathrm{CAR}}$ be the C^{*}-algebra generated by c_{j} and $c_{j}^{*}(j \in \boldsymbol{Z})$ satisfying the following CAR's:

$$
\begin{align*}
& {\left[c_{j}, c_{k}\right]_{+}=\left[c_{j}^{*}, c_{k}^{*}\right]_{+}=\mathbf{0}} \tag{2.1}\\
& {\left[c_{j},\right.} \tag{2.2}\\
& \left.c_{k}^{*}\right]_{+}=\delta_{j k} 1 . \quad\left([A, B]_{+}=A B+B A .\right)
\end{align*}
$$

Let Θ and Θ_{-}be automorphisms of $\mathfrak{Y}^{\text {CAR }}$ satisfying

$$
\begin{align*}
& \Theta\left(c_{j}\right)=-c_{j}, \quad \Theta\left(c_{j}^{*}\right)=-c_{j}^{*} \quad(j \in \boldsymbol{Z}), \tag{2.3}\\
& \Theta_{-}\left(c_{j}\right)=\left\{\begin{array}{l}
c_{j} \\
-c_{j}
\end{array} \quad \Theta_{-}\left(c_{j}^{*}\right)= \begin{cases}c_{j}^{*} & (j \geqq 1), \\
-c_{j}^{*} & (j \leqq 0) .\end{cases} \right. \tag{2.4}
\end{align*}
$$

They satisfy $\Theta^{2}=\Theta_{-}^{2}=$ id., $\theta \Theta_{-}=\Theta_{-} \Theta_{\text {. }}$ Let $\hat{\mathcal{A}}$ be the C^{*}-algebra generated by $\mathfrak{Y}^{\text {Car }}$ and an element T satisfying

$$
\begin{equation*}
T=T^{*}, T^{2}=\mathbf{1} \tag{2.5}
\end{equation*}
$$

(The C^{*} crossed product of $\mathfrak{Q}^{\text {CAR }}$ by the \boldsymbol{Z}_{2}-action Θ_{-}.)
Let \mathfrak{U}^{s} be the C^{*}-subalgebra of \mathfrak{A} generated by the following Pauli spin matrices $\sigma_{\alpha}^{(j)}(\alpha=x, y, z)$ on lattice sites $j \in \mathbb{Z}$:

$$
\begin{align*}
& \sigma_{z}^{(j)}=2 c_{j}^{*} c_{j}-\mathbf{1}, \tag{2.7}\\
& \sigma_{x}^{(j)}=T S^{(j)}\left(c_{j}+c_{j}^{*}\right), \tag{2.8}\\
& \sigma_{y}^{(j)}=T S^{(j)} i\left(c_{j}-c_{j}^{*}\right), \tag{2.9}\\
& S^{(j)} \equiv\left\{\begin{array}{lll}
\sigma_{z}^{(1)} \cdots \sigma_{z}^{(j-1)} & \text { if } & j>1, \\
1 & \text { if } & j=1, \\
\sigma_{z}^{(0)} \cdots \sigma_{z}^{(j)} & \text { if } & j<1 .
\end{array}\right.
\end{align*}
$$

They satisfy the following relations which characterize \mathfrak{A}^{s} as a $C^{*}-$ algebra.

$$
\begin{align*}
& \left(\sigma_{\alpha}^{(j)}\right)^{2}=1 \quad(\alpha=x, y, z) \tag{2.10}\\
& \boldsymbol{\sigma}_{\alpha}^{(j)} \boldsymbol{\sigma}_{\beta}^{(j)}=-\boldsymbol{\sigma}_{\beta}^{(j)} \boldsymbol{\sigma}_{\alpha}^{(j)}=i \boldsymbol{\sigma}_{\gamma}^{(j)} \tag{2.11}\\
& ((\alpha, \beta, \gamma)=\text { any cyclic permutation of }(x, y, z)),
\end{align*}
$$

$$
\begin{equation*}
\left[\sigma_{\alpha}^{(j)}, \sigma_{\beta}^{(k)}\right]=0 \quad \text { if } \quad j \neq k \quad(\alpha, \beta=x, y, z) \tag{2.12}
\end{equation*}
$$

The automorphisms Θ and Θ_{-}are extended to \mathfrak{M} such that $\Theta(T)$ $=T, \Theta_{-}(T)=T$. We define even (+) and odd (-) parts:

$$
\begin{align*}
& \hat{\mathfrak{A}}_{ \pm}=\{x \in \hat{\mathfrak{H}}, \Theta(x)= \pm x\}, \tag{2.13}\\
& \mathfrak{U}_{ \pm}^{\mathrm{CAR}}=\mathfrak{\mathscr { A }}^{\mathrm{CAR}} \cap \hat{\mathfrak{A}}_{ \pm}, \hat{\mathfrak{U}}_{ \pm}^{s}=\mathfrak{A}^{s} \cap \hat{\mathfrak{U}}_{ \pm} . \tag{2.14}
\end{align*}
$$

We have

$$
\begin{equation*}
\mathfrak{U}_{+}^{s}=\mathfrak{Y}_{+}^{\mathrm{CAR}}, \mathfrak{X}_{-}^{s}=T \mathfrak{U}_{-}^{\mathrm{CAR}} . \tag{2.15}
\end{equation*}
$$

Clearly T and \mathfrak{A}^{s} generates $\widehat{\mathfrak{U}}$.

§3. Time Evolution

Let $\mathfrak{Y}^{s}(I)$ be the C^{*}-subalgebra of \mathfrak{U}^{s} generated by $\sigma_{x, y, z}^{(j)}$ with j belonging to a non-empty subset I of lattice points (i. e. $I \subset \mathbb{Z}$). Let $\Phi(I) \in \mathfrak{A}^{s}(I)$ (a many-body interaction potential between spins of sites in a non-empty finite subset I of \boldsymbol{Z}) and

$$
\begin{equation*}
H_{N}=H([-N, N]), H(I)=\sum_{\Lambda \subset I} \Phi(\Lambda) \tag{3.1}
\end{equation*}
$$

(the total Hamiltonian for the interval $[-N, N]$).
We make the following assumptions in general.
(1) Evenness: $\Theta(\Phi(I))=\Phi(I) \quad(I \subset \boldsymbol{Z})$.
(2) Bounded surface energy: For disjoint finite subsets I and J, we denote

$$
\begin{equation*}
W(I, J) \equiv \sum_{K}\{\Phi(K): K \subset I \cup J, K \not \subset I, K \not \subset J\} \tag{3.2a}
\end{equation*}
$$

Then, either for a finite interval I_{1} and any subset I_{2} of the complement of I_{1}, or for $I_{1}=(-\infty, j]$ and $I_{2}=[j+1, \infty)$ with any $j \in \boldsymbol{Z}$, the following limit exists

$$
\begin{equation*}
\lim _{N \rightarrow \infty} W\left(I_{1} \cap[-N, N], I_{2} \cap[-N, N]\right)=W\left(I_{1}, I_{2}\right), \tag{3.2b}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{N}\|W([-N, N],(-\infty,-N) \cup(N, \infty))\|<\infty . \tag{3.3}
\end{equation*}
$$

Under assumption (2), the following limit exists and defines a continuous one-parameter group of automorphisms of $\widehat{\mathfrak{A}}$:

$$
\begin{equation*}
\alpha_{t}(x)=\lim _{N \rightarrow \infty} e^{i H_{N^{t}}} x e^{-i H_{N^{t}}} . \quad(x \in \widehat{\mathbb{U}}) \tag{3.4}
\end{equation*}
$$

The existence of limit for $x \in \mathfrak{A}^{s}$ is by [6] and for T by the
computation below, see (3.14) and (3.15). Due to the evenness assumption (1), $\Phi(I)$ belongs to $\mathscr{U}_{+}^{s}=\mathscr{U}_{+}^{\text {CAR }}$ and hence

$$
\begin{align*}
& \alpha_{t}\left(\mathfrak{H}^{s}\right)=\mathfrak{Y}^{s}, \alpha_{t}\left(\mathfrak{H}^{\mathrm{CAR}}\right)=\mathfrak{Y}^{\mathrm{CAR}}, \tag{3.5}\\
& \alpha_{t} \Theta=\Theta \alpha_{t} . \tag{3.6}
\end{align*}
$$

In the case of the two-sided $X Y$-model, we have

$$
\begin{align*}
\Phi(\{j, j+1\}) & =-J\left\{(1+\gamma) \sigma_{x}^{(j)} \boldsymbol{\sigma}_{x}^{(j+1)}+(1-\gamma) \sigma_{y}^{(j)} \boldsymbol{\sigma}_{y}^{(j+1)}\right\} \tag{3.7}\\
& =2 J\left\{c_{j}^{*} c_{j+1}+c_{j+1}^{*} c_{j}+\gamma\left(c_{j}^{*} c_{j+1}^{*}+c_{j+1} c_{j}\right)\right\} .
\end{align*}
$$

($\Phi(I)=0$ for all other I.) A computation of [4] yields

$$
\begin{equation*}
\alpha_{t}(B(h))=B\left(e^{2 J i K_{r} t} h\right), \tag{3.8}
\end{equation*}
$$

where we have used the following notations:

$$
\begin{equation*}
c(f)=\sum_{j} f_{j} c_{j}, \quad c^{*}(f)=\sum_{j} f_{j} c_{j}^{*} \tag{3.9}
\end{equation*}
$$

$$
f=\left(f_{j}\right)_{j \in \boldsymbol{Z}} \in l_{2}(\boldsymbol{Z})
$$

$$
\begin{equation*}
B(h)=c^{*}(f)+c(g) \text { for } h=\binom{f}{g} \tag{3.11}
\end{equation*}
$$

$$
K_{r}=\left[\begin{array}{ll}
U+U^{*} & r\left(U-U^{*}\right) \tag{3.12}\\
-\gamma\left(U-U^{*}\right) & -\left(U+U^{*}\right)
\end{array}\right]
$$

The time evolution of T is given by

$$
\begin{align*}
& \alpha_{t}(T)=T V_{t} \tag{3.14}\\
& \begin{aligned}
V_{t} & =\lim _{N \rightarrow \infty} T e^{i H_{N^{t}}} T e^{-i H_{N^{t}}} \\
& =\lim _{N \rightarrow \infty} e^{i \theta_{-}\left(H_{N}\right) t} e^{-i H_{N^{t}}} \\
& =\sum_{j=0}^{\infty} i^{n} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \alpha_{t_{n}}(A) \cdots \alpha_{t_{1}}(A)
\end{aligned} \tag{3.15}
\end{align*}
$$

by the theory of inner perturbation of automorphism groups (for example, see [1]), where

$$
\begin{align*}
A=\lim _{N \rightarrow \infty}\left(\Theta_{-}\left(H_{N}\right)-H_{N}\right)= & \Theta_{-} W((-\infty, 0],[1, \infty)) \tag{3.16}\\
& -W((-\infty, 0],[1, \infty))
\end{align*}
$$

due to the split

$$
\begin{equation*}
H_{N}=H([-N, 0])+H([1, N])+W([-N, 0],[1, N]) \tag{3.17}
\end{equation*}
$$

and the relation $\Theta_{-}(x)=x$ for $x=H([1, N]) \in \mathscr{U}^{s}([1, \infty)), \Theta_{-}(y)=$ $=\Theta(y)=y$ for $y=H([-N, 0]) \in \mathscr{A}^{s}((-\infty, 0])$. Note that V_{t} is a unitary operator (both V_{t} and V_{t}^{*} are strong limits of unitaries)
belonging to $\mathfrak{U}_{+}^{s}=\mathfrak{H}_{+}^{\mathrm{CAR}}$ and $\Theta\left(V_{t}\right)=V_{t}^{*}$ (by the second line of (3.15)) so that $\left(T V_{t}\right)^{2}=\mathbf{1}$.

§ 4. Equilibrium States and Associated Representations

There exists an $\left(\alpha_{t}, \beta\right)-\mathrm{KMS}$ state $\hat{\varphi}_{\beta}$ of $\hat{\mathfrak{U}}$ as a weak accumulation point of the Gibbs state for H_{N} as $N \rightarrow \infty$.

Let $\hat{\Theta}_{-}$be the automorphism of $\widehat{\mathfrak{A}}$ (the dual action of Θ_{-}) satisfying

$$
\begin{equation*}
\hat{\Theta}_{-}(T)=-T, \hat{\Theta}_{-}(a)=a\left(a \in \mathfrak{A}^{\mathrm{CAR}}\right) \tag{4.1}
\end{equation*}
$$

Such $\hat{\Theta}_{-}$exists as an automorphism of $\widehat{\mathfrak{N}}$. Since $H_{N} \in \mathfrak{Y}^{\text {CAR }}$, it is $\hat{\Theta}_{-}$ invariant and hence

$$
\begin{equation*}
\hat{\Theta}_{-} \alpha_{t}=\alpha_{t} \hat{\Theta}_{-} \tag{4.2}
\end{equation*}
$$

and $\hat{\varphi}_{\beta}$ is $\hat{\Theta}_{-}$-invariant.
Since Θ and $\hat{\Theta}_{-}$commute, we have the decomposition

$$
\begin{align*}
& \hat{\mathfrak{U}}=\sum_{\sigma, \sigma^{\prime}} \hat{\mathfrak{N}}_{\sigma, \sigma^{\prime}}, \tag{4.3}\\
& \hat{\mathfrak{N}}_{\sigma, \sigma^{\prime}}=\left\{x \in \hat{\mathfrak{U}} ; \quad \Theta(x)=\sigma x, \hat{\Theta}_{-}(x)=\sigma^{\prime} x\right\}, \tag{4.4}
\end{align*}
$$

where σ and σ^{\prime} are + or - . We have

$$
\begin{equation*}
\hat{\mathfrak{A}}_{\sigma+}=\mathfrak{A}_{\sigma}^{\mathrm{CAR}}, \hat{\mathfrak{A}}_{\sigma-}=T \mathfrak{U}_{\sigma}^{\mathrm{CAR}} . \quad(\sigma=+,-) \tag{4.5}
\end{equation*}
$$

By (4.2), $\left(\hat{\varphi}_{\beta}+\hat{\varphi}_{\beta} \circ \hat{\Theta}_{-}\right) / 2$ is a $\hat{\Theta}_{-}$-invariant $\left(\alpha_{t}, \beta\right)-\mathrm{KMS}$ state of $\hat{\mathscr{A}}$ and hence we assume that $\hat{\varphi}_{\beta}$ is already $\hat{\Theta}_{-}$-invariant. By (3.6) and $\left[\Theta, \hat{\Theta}_{-}\right]=0$, we may also assume that $\hat{\varphi}_{\beta}$ is Θ-invariant. Its restrictions to \mathfrak{Q}^{s} and $\mathfrak{Y}^{\text {CAR }}$ are $\left(\alpha_{t}, \beta\right)-\mathrm{KMS}$ states and, as such, are unique by the assumption (2). ([7], [8]) Hence such $\hat{\varphi}_{\beta}$ is the unique $\hat{\Theta}_{-}$-invariant extension of the unique $\left(\alpha_{t}, \beta\right)-\mathrm{KMS}$ state of $\mathfrak{U}^{\mathrm{CAR}}$ and at the same time the unique $\Theta \widehat{\Theta}_{-}$-invariant extension of the unique $\left(\alpha_{t}, \beta\right)-\mathrm{KMS}$ state of \mathfrak{Z}^{s}. In particular, the unique $\left(\alpha_{t}, \beta\right)-$ KMS state of \mathfrak{U}^{s} can be obtained as the restriction (to $\mathfrak{U}^{\text {CAR }}$) of the unique $\hat{\Theta}_{-}$-invariant extension (to $\hat{\mathfrak{Q}}$) of the unique (α_{t}, β)-KMS state of $\mathfrak{Y}^{\text {CAR }}$.

By the Θ - and Θ_{-}-invariance, $\hat{\varphi}_{\beta}$ is 0 on $\widehat{\mathscr{U}}_{\sigma \sigma^{\prime}}$ except for $\widehat{\mathfrak{U}}_{++}=\mathfrak{Y}_{+}^{\text {CAR }}$ and hence explicitly determined by $\varphi_{A}^{\mathrm{CAR}}$ on $\mathfrak{U}_{+}^{\mathrm{CAR}}$. The cyclic representation $\hat{\pi}_{\beta}$ of $\hat{\mathscr{V}}$ associated with $\hat{\varphi}_{\beta}$ (on a Hilbert space $\widehat{\mathscr{H}}_{\beta}$ with a cyclic vector $\hat{\Phi}_{\beta}$ yielding $\hat{\varphi}_{\beta}$) can also be constructed from the cyclic representations of $\mathfrak{A}^{\mathrm{CAR}}$ as follows:

Let $\left(\mathscr{H}_{\beta}^{\mathrm{CAR}}, \pi_{\beta}^{\mathrm{CAR}}, \Phi_{\beta}\right)$ and $\left(\mathscr{H}_{\beta, \theta_{-}}^{\mathrm{CAR}}, \pi_{\beta, \theta_{-}}^{\mathrm{CAR}}, \Phi_{\beta, \theta_{-}}\right)$be triplets of the

Hilbert space, the cyclic representation of $\mathfrak{A}^{\text {CAR }}$ and the cyclic vector associated with states $\varphi_{\beta}^{\mathrm{CAR}}$ and $\varphi_{\beta, \theta_{-}}^{\mathrm{CAR}}=\varphi_{\beta}^{\mathrm{CAR}}{ }_{\circ} \Theta_{-}$, respectively. The triplet for $\hat{\varphi}_{\beta}$ can then be constructed by the following formulas:

$$
\begin{equation*}
\widehat{\mathscr{H}}_{\beta}=\mathscr{H}_{\beta}^{\mathrm{CAR}} \oplus \mathscr{H}_{\beta, \theta_{-}}^{\mathrm{CAR}} . \tag{4.6}
\end{equation*}
$$

$$
\begin{align*}
\hat{\pi}_{\beta}(a) & =\pi_{\beta}^{\mathrm{CAR}}(a) \oplus \pi_{\beta, \theta_{-}}^{\mathrm{CAR}}(a) . \quad\left(a \in \mathfrak{U}^{\mathrm{CAR}}\right) \tag{4.7}\\
\hat{\pi}_{\beta}(T) & \left(\pi_{\beta}^{\mathrm{CAR}}(a) \Phi_{\beta} \oplus \pi_{\beta, \theta_{-}}^{\mathrm{CAR}}(b) \Phi_{\beta, \theta_{-}}\right) \tag{4.8}\\
& =\pi_{\beta}^{\mathrm{CAR}}\left(\Theta_{-}(b)\right) \Phi_{\beta} \oplus \pi_{\beta, \theta_{-}}^{\mathrm{CAR}}\left(\Theta_{-}(a)\right) \Phi_{\beta, \theta_{-}} .
\end{align*}
$$

$$
\begin{equation*}
\hat{\Phi}_{\beta}=\Phi_{\beta} \oplus \mathbf{0} . \tag{4.9}
\end{equation*}
$$

We note that two representations $\left(\pi_{\beta}^{\mathrm{CAR}}, \mathscr{H}_{\beta}^{\mathrm{CAR}}\right)$ and ($\left.\pi_{\beta, \theta_{-}}^{\mathrm{CAR}}, \mathscr{H}_{\beta, \theta_{-}}^{\mathrm{CAR}}\right)$ are unitarily equivalent due to the following circumstances: Let

$$
\begin{align*}
& \alpha_{t}^{0}(a)=\lim _{N \rightarrow \infty} e^{i H_{N}^{0} t} a e^{-i H_{N}^{0} t} \quad\left(a \in \mathfrak{A}^{\mathrm{CAR}}\right), \tag{4.10}\\
& H_{N}^{0}=H([-N, 0])+H([1, N]) . \tag{4.11}
\end{align*}
$$

Let φ_{β}^{0} be the unique (α_{t}^{0}, β)-KMS state of $\mathfrak{X}^{\text {CAR }}$. By Θ_{-}-invariance of $H_{N}^{0}, \alpha_{t}^{0} \Theta_{-}=\Theta_{-} \alpha_{t}^{0}$ and hence $\varphi_{\beta}^{0} \circ \Theta_{-}=\varphi_{\beta}^{0}$. Let ($\mathscr{H}^{0}, \pi^{0}, \Phi^{0}$) be the triplet associated with φ_{β}^{0}. By the Θ_{-}-invariance of φ_{β}^{0}, there exists a unitary operator $U\left(\Theta_{-}\right)$on \mathscr{H}^{0} satisfying

$$
\begin{equation*}
U\left(\Theta_{-}\right) \pi^{0}(a) \Phi^{0}=\pi^{0}\left(\Theta_{-}(a)\right) \Phi^{0} . \tag{4.12}
\end{equation*}
$$

Due to (3.17), α_{t} is an inner perturbation of α_{t}^{0} by

$$
\begin{equation*}
W=W((-\infty, 0],[1, \infty)) \tag{4.13}
\end{equation*}
$$

Let

$$
\begin{align*}
& U\left(\alpha_{t}^{0}\right) \pi^{0}(a) \Phi^{0}=\pi^{0}\left(\alpha_{t}^{0}(a)\right) \Phi^{0}, \tag{4.14}\\
& U\left(\alpha_{t}^{0}\right)=e^{i H^{0} t} . \tag{4.15}
\end{align*}
$$

Then, by theory of inner perturbations, Φ^{0} is in the domain of $V=\exp -\beta\left(H^{0}+W\right) / 2$ and $\left\|V \Phi^{0}\right\|^{-1} V \Phi^{0} \equiv \Phi_{\beta}$ is a cyclic vector giving rise to $\varphi_{\beta}^{\mathrm{CAR}}(a)=\left(\Phi_{\beta}, \pi^{0}(a) \Phi_{\beta}\right)$, whilst $U\left(\Theta_{-}\right) \Phi_{\beta}=\Phi_{\beta, \theta_{-}}$is a cyclic vector giving rise to $\varphi_{\beta, \theta_{-}}^{\mathrm{CAR}}(a)=\left(\Phi_{\beta, \theta_{-}}, \pi^{0}(a) \Phi_{\beta, \theta_{-}}\right)$. Therefore, representations $\left(\pi^{0}, \mathscr{H}^{0}\right),\left(\pi_{\beta}^{\mathrm{CAR}}, \mathscr{H}_{\beta}^{\mathrm{CAR}}\right)$ and $\left(\pi_{\beta, \Theta_{-}}^{\mathrm{CAR}}, \mathscr{H}_{\beta, \Theta_{-}}^{\mathrm{CAR}}\right)$ are all unitarily equivalent.

§5. Asymptotic Behavior of $\mathfrak{U}^{\text {CAR }}$

Theorem 2. For $a, b \in \mathfrak{Q}^{\text {CAR }}$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \|\left[\left[a, \alpha_{t}(b)\right]_{\theta} \|=0\right. \tag{5.1}
\end{equation*}
$$

where the graded commutator $[,]_{\Theta}$ is defined as follows:

$$
\begin{align*}
& {[a, b]_{\Theta}=a b-b a \text { if } \Theta(a)=a \text { or } \Theta(b)=b .} \tag{5.2}\\
& {[a, b]_{\Theta}=a b+b a \text { if } \Theta(a)=-a \text { and } \Theta(b)=-b .}
\end{align*}
$$

A general element b is decomposed into a sum $b=b_{+}+b_{-}$of even and odd elements $b_{ \pm}=(b \pm \Theta(b)) / 2$ and the above formula is applied, i, e.

$$
\begin{equation*}
[a, b]_{\Theta}=\left(a b_{+}-b_{+} a\right)+\left(a b_{-}-b_{-} \Theta(a)\right) \tag{5.4}
\end{equation*}
$$

The proof is based on the following spectral property of K :

Lemma 3. K_{r} has a Lebesgue spectrum on the union of closed intervals $[-2,-2 \gamma]$ and $[2 \gamma, 2]$ with a uniform multiplicity 4.

Proof of Lemma 3. By the Fourier expansion

$$
\begin{equation*}
\tilde{f}(\theta) \equiv \sum_{l \in \mathbf{Z}} f_{l} e^{i l \theta}, \quad f_{l}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{f}(\theta) e^{-i l \theta} d \theta \tag{5.5}
\end{equation*}
$$

U and U^{*} become multiplication operators

$$
\begin{equation*}
(U f) \sim(\theta)=e^{-i \theta} \tilde{f}(\theta), \quad\left(U^{*} f\right) \sim(\theta)=e^{i \theta} \tilde{f}(\theta) \tag{5.6}
\end{equation*}
$$

and hence K_{T} reduces to the matrix

$$
\left(K_{r} h\right)^{\sim}(\theta)=\tilde{K}_{r}(\theta) \tilde{h}(\theta), \quad \tilde{K}_{r}(\theta)=2\left[\begin{array}{ll}
\cos \theta & -i \gamma \sin \theta \tag{5.7}\\
i \gamma \sin \theta & -\cos \theta
\end{array}\right]
$$

From its eigenvalues $\pm 2\left(\cos ^{2} \theta+\gamma^{2} \sin ^{2} \theta\right)^{1 / 2}$, we obtain Lemma 3 .

Proof of Theorem 2. By the absolute continuity of the spectrum of K_{r}, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[B\left(h_{1}\right)^{*}, \alpha_{t}\left(B\left(h_{2}\right)\right)\right]_{\theta}=\lim _{t \rightarrow \infty}\left(h_{1}, e^{2 J i K_{r} t} h_{2}\right)=0 \tag{5.8}
\end{equation*}
$$

due to the Riemann-Lebesgue Lemma.
By Lemma 2 of [4], we have the following consequence:

Corollary 4. For $a \in \mathfrak{R}^{\text {CAR }}$,

$$
\begin{equation*}
\mathrm{w}-\lim _{t \rightarrow \infty} \hat{\pi}_{\beta}\left(\alpha_{t}(a)\right)=\hat{\varphi}_{\beta}(a) \mathbb{1} \tag{5.9}
\end{equation*}
$$

In fact, $\varphi_{\beta}^{\mathrm{CAR}}$ being a unique KMS state, $\pi_{\beta}\left(\mathfrak{H}^{\mathrm{CAR}}\right)$ is a factor and φ_{β} is Θ-invariant. Hence Lemma 2 of [4] implies (5.9) on $\mathscr{H}_{\beta}^{\text {CAR }}$. The same holds for $\varphi_{\beta, \theta_{-}}$by the unitary equivalence of π_{β} and $\pi_{\beta, \theta_{-}}$ (Θ_{-}commutes with Θ) and hence (5.9) holds also on $\mathscr{H}_{\beta, \theta_{-}}^{\mathrm{CAR}}$ and
hence on the whole space $\mathscr{\mathscr { H }}_{\beta}^{\mathrm{CAR}}$.

§6. Asymptotic Behavior of $T \mathfrak{Y}^{C A R}$

We first obtain the asymptotic behavior of V_{l} in the following form:

Lemma 5. The following limit exists (in norm topology) for any $a \in \mathfrak{H}^{\mathrm{CAR}}$ and defines automorphisms $\tilde{\Theta}_{ \pm}$of $\mathfrak{H}^{\mathrm{CAR}}$:

$$
\begin{equation*}
\tilde{\Theta}_{ \pm}(a)=\lim _{t \rightarrow \pm \infty} V_{t} a V_{t}^{*} \tag{6.1}
\end{equation*}
$$

The automorphisms so defined satisfy the following relations:

$$
\begin{equation*}
\left(\Theta_{-} \tilde{\Theta}_{ \pm}\right)^{2}=\mathrm{id} ., \quad \tilde{\Theta}_{ \pm} \Theta=\Theta \tilde{\Theta}_{ \pm} \tag{6.2}
\end{equation*}
$$

Proof. By (3.15) and (2.6), we have

$$
\begin{equation*}
V_{t} a V_{t}^{*}=\Theta_{-} \alpha_{t} \Theta_{-} \alpha_{-t}(a) \tag{6.3}
\end{equation*}
$$

Hence it is enough to prove the norm convergence of $\alpha_{t} \Theta_{-} \alpha_{-t}$ on the generating elements $B(h)$ for the existence of (6.1), for the automorphism properties of $\tilde{\Theta}_{ \pm}$and for (6.2). We have

$$
\begin{align*}
\alpha_{t} \Theta_{-} \alpha_{-t}(B(h)) & =B\left(e^{2 J i K_{\gamma} t} \theta_{-} e^{-2 J i K_{r} t} h\right) \tag{6.4}\\
& =B\left(e^{2 J i K_{r}^{t}} e^{-2 J i\left(\theta_{-} K_{\gamma} \theta_{-}\right) t} \theta_{-} h\right)
\end{align*}
$$

where

$$
\theta_{-}\left[\begin{array}{l}
f \tag{6.5}\\
g
\end{array}\right]=\left[\begin{array}{c}
\theta_{-} f \\
\theta_{-} g
\end{array}\right], \quad\left(\theta_{-} f\right)_{j}=\left\{\begin{array}{r}
f_{j} \\
\text { if } j \geqq 1, \\
-f_{j}
\end{array} \text { if } j \leqq 0 .\right.
$$

We have

$$
\left(\theta_{-} U \theta_{-} f\right)_{j}=\left\{\begin{array}{rll}
(U f)_{j} & \text { if } & j \neq 0 \tag{6.6}\\
-(U f)_{j} & \text { if } & j=0
\end{array}\right.
$$

$$
\left(\theta_{-} U^{*} \theta_{-} f\right)_{j}=\left\{\begin{array}{rll}
\left(U^{*} f\right)_{j} & \text { if } & j \neq 1 \tag{6.7}\\
-\left(U^{*} f\right)_{j} & \text { if } & j=1
\end{array}\right.
$$

Hence $\theta_{-} K_{r} \theta_{-}-K_{r}$ is at most rank 4. Since K_{r} and its unitary transform $\theta_{-} K_{r} \theta_{-}$have absolutely continuous spectrum by Lemma 3,

$$
\begin{equation*}
\omega_{ \pm}=\lim _{t \rightarrow \pm \infty} e^{2 J K_{\gamma} K^{t}} e^{-2 J i\left(\theta_{-} K_{\gamma} \theta_{-}\right) l} \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{ \pm}^{*}=\lim _{t \rightarrow \pm \infty} e^{2 j i\left(\theta_{-} K_{\gamma} \theta_{-}\right) t} e^{-2 J i K_{\gamma} t} \tag{6.9}
\end{equation*}
$$

both exist (in the strong topology) by Theorem X. 4.4 (and Theorem
X. 3. 5) of [9]. Thus we have the norm convergence

$$
\begin{equation*}
\tilde{\Theta}_{ \pm}(B(h))=\lim _{t \rightarrow \infty} \theta_{-} \alpha_{t} \Theta_{-} \alpha_{-t}(B(h))=B\left(\theta_{-} \omega_{ \pm} \theta_{-} h\right) . \tag{6.10}
\end{equation*}
$$

We easily see the relation $\theta_{-} \omega_{ \pm} \theta_{-}=\omega_{ \pm}^{*}$ from (6.8) and (6.9) so that $\left(\omega_{ \pm} \theta_{-}\right)^{2}=1$.

A key point in the subsequent discussion is the following lemma.
Lemma 6. There are no non-ze ro operator $x \in \pi_{\beta}^{\mathrm{CAR}}\left(\mathfrak{H}_{+}^{\mathrm{CAR}}\right)^{\prime \prime}$ satisfying

$$
\begin{equation*}
x \pi_{\beta}^{\mathrm{CAR}}(a)=\pi_{\beta}^{\mathrm{CAR}}\left(\tilde{\Theta}_{+}(a)\right) x \tag{6.11}
\end{equation*}
$$

for all $a \in \mathfrak{Y}^{\text {CAR }}$. The same holds if $\tilde{\Theta}_{+}$is replaced by $\tilde{\Theta}_{-}$. Furthermore there are no non-zero $x \in \pi_{\beta}^{\mathrm{CAR}}\left(\mathfrak{R}_{-}^{\mathrm{CAR}}\right)^{-w}$ ($-w$ denotes the weak closure) if $\tilde{\Theta}_{+}$is re $\hat{P}^{\text {laced }}$ by $\tilde{\Theta}_{ \pm} \Theta$. (The same statements hold also for $\pi_{\beta, \theta_{-}}^{\mathrm{CAR}} \sim$ $\pi_{\beta}^{\mathrm{CAR}}$.)

The proof of this Lemma is given in the next section. In the rest of this section, we apply this Lemma to obtain the asymptotic behavior of $\hat{\pi}_{\beta}\left\{\alpha_{t}(T a)\right\}$ for $a \in \mathfrak{A}^{C A R}$.

Lemma 7. For any $a \in \mathfrak{A}^{C A R}$,

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\mathrm{w}-\lim _{\beta}} \hat{\pi}_{\beta}\left(\alpha_{t}(T a)\right)=\mathbf{0}=\hat{\varphi}_{\beta}(T a) \mathbf{1 .} \tag{6.12}
\end{equation*}
$$

Proof. We consider two cases $\Theta(a)= \pm a$ separately. We have

$$
\begin{equation*}
\hat{\pi}_{\beta}\left(\alpha_{t}(T a)\right)=\hat{\pi}_{\beta}(T) \hat{\pi}_{\beta}\left(V_{t} \alpha_{t}(a)\right) . \tag{6.13}
\end{equation*}
$$

Let $\approx_{ \pm}$be the weak accumulation point of $\hat{\pi}_{\beta}\left(V_{t} \alpha_{t}(a)\right)$ as $t \rightarrow \pm \infty$. Then

$$
\begin{equation*}
z_{ \pm} \hat{\pi}_{\beta}(b)=\hat{\pi}_{\beta}\left(\tilde{\Theta}_{ \pm} b\right) z_{ \pm} \tag{6.14}
\end{equation*}
$$

for all $b \in \mathfrak{Q}^{\text {CAR }}$ if $\Theta(a)=a$ whilst

$$
\begin{equation*}
z_{ \pm} \hat{\pi}_{\beta}(b)=\hat{\pi}_{\beta}\left(\tilde{\Theta}_{ \pm} \Theta b\right) z_{ \pm} \tag{6.15}
\end{equation*}
$$

for all $b \in \mathfrak{A}^{\text {CAR }}$ if $\Theta(a)=-a$. We apply Lemma 6 for $x=z_{ \pm} \in \hat{\pi}_{\beta}\left(\mathfrak{Y}_{+}^{\mathrm{CAR}}\right)^{\prime \prime}$ if $\Theta a=a$ and for $x=z_{ \pm} \in \hat{\pi}_{\beta}\left(\mathfrak{U}_{-}^{\mathrm{CAR}}\right)^{-w}$ if $\Theta a=-a$ on $\mathscr{H}_{\beta}^{\mathrm{CAR}}$ and on $\mathscr{H}_{\beta, \theta_{-}}^{\mathrm{CAR}}$ separately (the restriction of $\hat{\pi}_{\beta}\left(\mathfrak{H}^{\mathrm{CAR}}\right)^{\prime \prime}$ to $\mathscr{H}_{\beta}^{\mathrm{CAR}}$ is $\pi_{\beta}\left(\mathfrak{H}^{\text {CAR }}\right)^{\prime \prime}$ and the restriction of $\hat{\pi}_{\beta}\left(\mathfrak{R}^{\mathrm{CAR}}\right)$ " to $\mathscr{H}_{\beta, \Theta_{-}}^{\mathrm{CAR}}$ is unitarily equivalent to it, so that Lemma 6 is applicable to each restriction) and obtain the conclusion $z_{ \pm}=\mathbf{0}$. Hence

$$
\begin{equation*}
\underset{t \rightarrow \pm \infty}{\mathrm{w}-\lim _{\beta}} \hat{\pi}_{\beta}\left(V_{t} \alpha_{t}(a)\right)=\mathbf{0} \tag{6.16}
\end{equation*}
$$

Thus (6.12) holds. (The second equality is due to the definition of $\hat{\varphi}_{\beta}$.)

Combining Corollary 4 and Lemma 7, we obtain

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\mathrm{w}-\lim } \hat{\pi}_{\beta}\left(\alpha_{t}(x)\right)=\hat{\varphi}_{\beta}(x) \mathbf{1} \tag{6.17}
\end{equation*}
$$

for all $x \in \hat{\mathfrak{K}}$. Restricting x to \mathfrak{U}^{s}, we have the proof of Theorem 1.

§ 7. Proof of Lemma 6

Assume that a non-zero $x \in \mathfrak{M}_{+} \equiv \pi_{\beta}^{\text {CAR }}\left(\mathfrak{X}_{+}^{\text {CAR }}\right)^{-w}$ satisfies (6.11). By substituting a^{*} into a and taking the adjoint of (6.11), we obtain

$$
\begin{equation*}
x^{*} \pi_{\beta}^{\mathrm{CAR}}\left(\tilde{\Theta}_{+}(a)\right)=\pi_{\beta}^{\mathrm{CAR}}(a) x^{*} . \tag{7.1}
\end{equation*}
$$

Combining with (6.11), we obtain

$$
\begin{equation*}
x^{*} x \pi_{\beta}^{\mathrm{CAR}}(a)=\pi_{\beta}^{\mathrm{CAR}}(a) x^{*} x . \tag{7.2}
\end{equation*}
$$

Therefore $x^{*} x \in \pi_{\beta}^{\mathrm{CAR}}(\mathfrak{H})^{\prime \prime} \cap \pi_{\beta}^{\mathrm{CAR}}(\mathfrak{H})^{\prime}$. Since $\pi_{\beta}^{\mathrm{CAR}}(\mathfrak{H})^{\prime \prime}$ is a factor, $x^{*} x=\lambda 1$ with $\lambda>0$. $(\lambda \neq 0$ due to $x \neq \mathbf{0})$ By considering $\lambda^{-1 / 2} x$ instead of x, we may assume that $x^{*} x=1$.

By a similar argument, we obtain $x x^{*}=c 1$ with $c>0$. Since $c^{2} \mathbf{1}=\left(x x^{*}\right)^{2}=x\left(x^{*} x\right) x^{*}=x x^{*}$ (by $x^{*} x=1$), we have $c=1$, namely x is unitary.

The KMS state $\varphi_{\beta}^{\mathrm{CAR}}$ of the quasifree motion (3.8) is a quasifree state φ_{S} with $S=\left(1+e^{-2 J K_{r}{ }^{\beta}}\right)^{-1}$ where

$$
\begin{equation*}
\varphi_{S}\left(B\left(h_{1}\right) * B\left(h_{2}\right)\right)=\left(h_{1}, S h_{2}\right) \tag{7.3}
\end{equation*}
$$

(Theorem 3 of [10].)
Let \& denote the space of all $h=\binom{f}{g}$ (the test function space for $B(\cdot)$ of the CAR algebra $\left.\mathfrak{A}^{\mathrm{CAR}}\right): \hbar=l_{2} \oplus l_{2}$. Then the cyclic representation $\pi_{\beta}^{\text {CAR }}$ of $\mathfrak{A}^{\text {CAR }}$ on $\mathscr{H}_{\beta}^{\text {CAR }}$ associated with the quasifree state $\varphi_{S}\left(=\varphi_{\beta}^{\mathrm{CAR}}\right)$ can be viewed as the restriction of an irreducible representation $\pi_{P_{S}}^{1}$ of a CAR algebra $\mathfrak{A}_{1}^{\mathrm{CAR}}$ with the test function space $\hbar \oplus \notin$ of twice size for $B(\cdot)$ on the same representation space $\mathscr{H}_{\beta}^{\mathrm{CAR}}$, where $B(h \oplus 0)$ of $\mathfrak{U}_{1}^{\text {CAR }}$ identified with $B(h)$ of $\mathfrak{Q}^{\text {CAR }}$ and $\pi_{P_{S}}^{1}(B(0 \oplus h))$ of $\mathfrak{Y}_{1}^{\mathrm{CAR}}$ identified with $U(\Theta)$ times an element of the commutant of $\pi_{\beta}^{\mathrm{CAR}}\left(\mathfrak{R}^{\mathrm{CAR}}\right)$ of the form $J \pi_{\beta}^{\mathrm{CAR}}\left(B\left(h_{1}\right)\right) J$ with J denoting the modular conjugation and h_{1} depending on h. The cyclic vector Φ_{β} giving rise to the state $\varphi_{S}\left(=\varphi_{\beta}^{\text {CAR }}\right)$ yield a pure state $\varphi_{P_{S}}^{1}$ of $\mathfrak{A}_{1}^{\text {CAR }}$ characterized by the following (basis) projection operator P_{S} on $\hbar \oplus \notin$:

$$
P_{S}=\left[\begin{array}{cc}
S & \{S(1-S)\}^{1 / 2} \tag{7.4}\\
\{S(1-S)\}^{1 / 2} & 1-S
\end{array}\right]
$$

(Lemma 4.5 and proof of Theorem 3 of [10].)
By (6.11), the unitary transformation $\operatorname{Ad} x$ on $\mathscr{U}_{1}^{\text {CAR }}$ will give rise to a Bogolubov automorphism through the following Bogolubov transformation on $\hbar \oplus \notin$ because $x \in \pi_{\beta}^{\text {CAR }}\left(\mathfrak{U}_{+}^{\text {CAR }}\right)^{\prime \prime}$ commutes with both $\pi_{\beta}^{\mathrm{CAR}}\left(\mathfrak{H}^{\mathrm{CAR}}\right)^{\prime}$ and $U(\Theta)$:

$$
U_{+}=\left[\begin{array}{cc}
\omega_{+}^{*} & \mathbf{0} \tag{7.5}\\
\mathbf{0} & \mathbf{1}
\end{array}\right] .
$$

A necessary and sufficient condition for the Bogolubov automorphism of $\mathscr{Y}_{1}^{C A R}$ by U_{+}to be implementable in a Fock representation given by a pure state $\varphi_{P_{S}}^{1}$ is that $\left(1-P_{S}\right) U_{+} P_{S}$ is in the Hilbert Schmidt class (Theorem 7 of [10]) or equivalently (Proof of Theorem 7 of [10])

$$
\begin{equation*}
\left\|P_{s}-U_{+} P_{s} U_{+}^{*}\right\|_{\text {H.s. }}<\infty \tag{7.6}
\end{equation*}
$$

where H. S. denotes the Hilbert Schmidt norm.
In the present situation, the Bogolubov automorphism is actually implemented by a unitary operator x on $\mathscr{H}_{\beta}^{\text {CAR }}$. We derive a contradiction by disproving (7.6), thereby showing non-existence of x.

By (7.3) and (7.4), we have

$$
P_{s}=\left[\begin{array}{ll}
\left(1+e^{-2 J K_{r} \beta}\right)^{-1} & \left(2 \cosh J K_{r} \beta\right)^{-1} \tag{7.7}\\
\left(2 \cosh J K_{r} \beta\right)^{-1} & \left(1+e^{2 J K_{r} \beta}\right)^{-1}
\end{array}\right]
$$

and

$$
P_{s}-U_{+} P_{S} U_{+}^{*}=\left[\begin{array}{cc}
B & s_{+}^{*}\left(\cosh J K_{r} \beta\right)^{-1} \tag{7.8}\\
\left(\cosh J K_{r} \beta\right)^{-1} s_{+} & \mathbf{0}
\end{array}\right],
$$

where

$$
\begin{align*}
& B=\left(1+e^{-2 J K_{\gamma} \beta}\right)^{-1}-\left(\mathbf{1}+e^{-2 J \omega_{+}^{*} K_{\gamma} \omega_{+} \beta}\right)^{-1} \tag{7.9}\\
& s_{+}=\left(\mathbf{1}-\omega_{+}\right) . \tag{7.10}
\end{align*}
$$

We now have

$$
\begin{equation*}
\left\|P_{S}-U_{+} P_{S} U_{+}^{*}\right\|_{\text {H.s. }}^{2}=\operatorname{tr} B^{2}+2 \operatorname{tr}\left(s_{+}^{*}\left(\cosh J K_{r} \beta\right)^{-2} s_{+}\right) . \tag{7.11}
\end{equation*}
$$

Since $\left\|K_{r}\right\| \leqq 2$, the second term is larger than

$$
\begin{equation*}
2(\cosh 2 J \beta)^{-1} \operatorname{tr} s_{+}^{*} s_{+} . \tag{7.12}
\end{equation*}
$$

We shall show that this is infinite in the next Lemma, completing the
proof for the case of $\tilde{\Theta}_{+}$. The proof for $\tilde{\Theta}_{-}$is obtained exactly in the same manner, using

$$
\begin{equation*}
s_{-}=\left(1-\omega_{-}\right) \tag{7.13}
\end{equation*}
$$

instead of s_{+}and U_{-}instead of U_{+}, where U_{-}is defined by (7.5) with ω_{+}replaced by ω_{-}.

In the case of $x \in \pi_{\beta}^{\mathrm{CAR}}\left(\mathfrak{Z}_{-}^{\mathrm{CAR}}\right)^{\prime \prime}, x$ anticommutes with $U(\Theta)$ and hence

$$
\begin{align*}
x \pi_{P_{S}}^{1}(B(\mathbf{0} \oplus h)) x^{*} & =-\pi_{P_{S}}^{1}(B(\mathbf{0} \oplus h)) \tag{7.14}\\
& =U(\Theta) \pi_{P_{S}}^{1}(B(\mathbf{0} \oplus h)) U(\Theta)^{*}
\end{align*}
$$

Here the second equality is due to the circumstance that $\pi_{P_{S}}^{1}(B(0 \oplus h))$ is the product of $U(\Theta)$ with $J \pi_{\beta}^{\mathrm{CAR}}\left(B\left(h_{1}\right)\right) J$ and $U(\Theta)$ commutes with the modular conjugation J. Since

$$
\begin{align*}
x \pi_{P_{S}}^{1}(B(h \oplus \mathbf{0})) x^{*} & =\pi_{\beta}^{\mathrm{CAR}}\left(\tilde{\Theta}_{ \pm} \Theta(B(h))\right) \tag{7.15}\\
& =U(\Theta) \pi_{P_{S}}^{1}\left(B\left(\omega_{ \pm}^{*} h \oplus \mathbf{0}\right)\right) U(\Theta)^{*}
\end{align*}
$$

we have the situation that $\operatorname{Ad}(U(\Theta) x)$ induces the Bogolubov automorphism of $\mathfrak{Y}_{1}^{\text {CAR }}$ given by $U_{ \pm}$. Therefore the same contradiction arises also in this case and the proof is complete, once we prove the following:

Lemma 8. $\operatorname{tr} s_{+}^{*} s_{+}=\operatorname{tr} s_{-}^{*} s_{-}=\infty$.
Proof. Let $\tilde{f}(\theta)$ be defined as before and $\tilde{h}(\theta)=\binom{\tilde{f}(\theta)}{\tilde{g}(\theta)} . \quad$ Let $r_{ \pm}^{\gamma}(\theta)$ and $k_{r}(\theta)$ be defined as follows:
(7.18) $\quad k_{r}(\theta)=\left(\cos ^{2} \theta+\gamma^{2} \sin ^{2} \theta\right)^{1 / 2} . \quad(\gamma \neq 0)$

The two operators $r_{ \pm}^{\gamma}(\theta)$ are spectral projections of $\tilde{K}_{r}(\theta)$ satisfying

$$
\begin{align*}
& r_{+}^{r}(\theta)+r_{-}^{r}(\theta)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \tag{7.19}\\
& \tilde{K}_{r}(\theta) r_{ \pm}^{r}(\theta)= \pm 2 k_{r}(\theta) r_{ \pm}^{r}(\theta) . \tag{7.20}
\end{align*}
$$

Let $h_{j}(j=1,2)$ have only finite number of non-zero components. Then $\tilde{h}_{j}(\theta)$ consists of polynomials of $e^{i \theta}$ and $e^{-i \theta}$ and hence is an
entire function with a period 2π. The operators $r_{ \pm}^{r}(\theta)$ as well as $k_{r}(\theta)$ are holomorphic near the real axis and have a period 2π. We shall compute the limit of

$$
\begin{align*}
& \left(h_{1}, e^{i 2 J K_{r^{t}}} \frac{1-\theta_{-}}{2} e^{-i 2 J K_{r^{t}}} h_{2}\right) \tag{7.21}\\
& \quad=\lim _{\varepsilon \rightarrow+0} \sum_{\sigma, \sigma^{\prime}} \int_{0}^{2 \pi} \overline{\left(r_{\sigma}^{\tau} \tilde{h}_{1}\right)}\left(\theta_{1}\right) I_{r_{\varepsilon}}^{\sigma \sigma^{\prime}}\left(\theta_{1}, t\right) \frac{d \theta_{1}}{2 \pi} \\
& I_{\gamma \varepsilon}^{\sigma \sigma^{\prime}}\left(\theta_{1}, t\right)=\int_{0}^{2 \pi} e^{4 J i\left(\left(k_{r}\left(\theta_{1}\right)-\sigma^{\prime} k_{r}\left(\theta_{2}\right)\right) t\right.} F_{\varepsilon}\left(\theta_{2}-\theta_{1}\right) r_{\sigma^{\prime}}^{\tau}\left(\theta_{2}\right) \tilde{h}_{2}\left(\theta_{2}\right) \frac{d \theta_{2}}{2 \pi} \tag{7.22}
\end{align*}
$$

as $t \rightarrow \pm \infty$ (which will be (7.27)), where σ and σ^{\prime} are + or - and

$$
\begin{equation*}
F_{\varepsilon}\left(\theta_{2}-\theta_{1}\right)=\left(1-e^{i\left(\theta_{2}-\theta_{1}\right)-\varepsilon}\right)^{-1}=\sum_{l=0}^{-\infty} e^{i \theta_{1} l} e^{-i \theta_{2} l} e^{\varepsilon l} \tag{7.23}
\end{equation*}
$$

(We have used the fact that $\left(1-\theta_{-}\right) / 2$ is the multiplication of the characteristic function $\chi_{-}(l)$ for $(-\infty, 0]$ and is a limit of the multiplication operator θ_{-}^{ε} of $e^{\varepsilon l} \chi_{-}(l)$ as $\varepsilon \rightarrow+0$.)

First, note that L_{2} norm of $I_{\gamma \varepsilon}^{o \sigma_{\varepsilon}^{\prime}}$ is bounded by $\left\|h_{2}\right\|$ due to $\left\|\theta_{-}^{\varepsilon}\right\|=1$ and $\left\|r_{\sigma}^{r},\right\|=1$. Hence a small interval of θ_{1} gives only a small correction which tends to 0 as the relevant interval vanishes.

Second, by the periodicity, we may shift the range of θ_{2} integration so that it is centered around $\theta_{1} . \quad F_{\varepsilon}$ is then smooth and bounded even in the limit of $\varepsilon \rightarrow 0$ except for a neighbourhood (of any desired small length) of $\theta_{2}=\theta_{1}$. Hence the contribution from outside a small neighbourhood of $\theta_{2}=\theta_{1}$ tends to 0 as $t \rightarrow \pm \infty$ by the RiemannLebesgue Lemma. This will then imply that the contribution to (7.21) also tends to 0 by the dominated convergence theorem.

By the holomorphy, we may shift the θ_{2}-integration by $\pm i \eta\left(\theta_{2}\right)$ $\left(\eta\left(\theta_{2}\right) \geqq 0\right)$ in the neighbourhood of $\theta_{2}=\theta_{1}$. The shift by $+i \eta\left(\theta_{2}\right)$ does not cause any change to the integral, whilst the shift by $-i \eta\left(\theta_{2}\right)$ yields an additional term (for $\varepsilon<\eta\left(\theta_{2}\right)$), which is in the limit of $\varepsilon \rightarrow 0$ given by

$$
\begin{equation*}
e^{4 J i o k_{r}^{\left(\theta_{1}\right)\left(1-\delta_{\sigma \sigma^{\prime}}\right) t}} r_{\sigma^{\prime}}^{r}\left(\theta_{1}\right) \tilde{h}_{2}\left(\theta_{1}\right) \equiv A_{t}^{\sigma \sigma^{\prime}}\left(\theta_{1}\right) \tag{7.24}
\end{equation*}
$$

Let

$$
\begin{equation*}
\bar{\sigma}=\bar{\sigma}_{I t}(\theta) \equiv \operatorname{sign}\left(J t(d / d \theta) k_{r}(\theta)\right) \tag{7.25}
\end{equation*}
$$

Then the θ_{2}-integral after the shift by $-i \sigma^{\prime} \bar{\sigma} \eta(\eta>0)$ tends to 0 as $\varepsilon \rightarrow+0$ and $t \rightarrow \infty$ (with a definite sign of t) due to the large t exponential damping. The set of θ_{1} for which $(d / d \theta) k_{r}(\theta)=0$ at
$\theta=\theta_{1}$ is of measure 0 and can be neglected. Therefore we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left\{I_{\gamma \varepsilon}^{\sigma \sigma^{\prime}}\left(\theta_{1}, t\right)-\delta_{\sigma^{\prime}, \tilde{\sigma}_{J t}\left(\theta_{1}\right)} A_{t}^{\sigma \sigma^{\prime}}\left(\theta_{1}\right)\right\}=0 . \tag{7.26}
\end{equation*}
$$

Since terms in (7.26) have uniformly bounded L_{2} norms, we can use these estimates of $I_{\tau \varepsilon}^{\sigma \sigma^{\prime}}$ in evaluating (7.21).

If $\sigma \neq \sigma^{\prime}$, then the exponential oscillation of $A_{t}^{\sigma \sigma^{\prime}}$ makes (7.21) vanish in the limit of $t \rightarrow \infty$. Hence we obtain

$$
\begin{equation*}
\left(h_{1}, q_{ \pm} h_{2}\right)=\sum_{\sigma}\left(r_{\sigma}^{\tau} \tilde{h}_{1}, \tilde{q}_{ \pm \sigma}^{J} r_{\sigma}^{\tau} \tilde{h}_{2}\right), \tag{7.27}
\end{equation*}
$$

where $q_{ \pm}=\left(1-\omega_{ \pm} \theta_{-}\right) / 2$ and

$$
\left(\tilde{q}_{ \pm}^{J} h\right) \sim(\theta)= \begin{cases}\tilde{h}(\theta) & \text { if } \pm J(d / d \theta) k_{r}(\theta)>0 \tag{7.28}\\ 0 & \text { otherwise }\end{cases}
$$

The sign function $\sigma_{r}(\theta)=\operatorname{sign} k_{r}^{\prime}(\theta)$ is given by

$$
\begin{align*}
\sigma_{\tau}(\theta) & =-\operatorname{sign}(\cos \theta \sin \theta) \tag{7.29}\\
& =\left\{\begin{array}{llll}
+ & \text { if } & -\pi / 2<\theta<0 & (\bmod \pi), \\
- & \text { if } & 0<\theta<\pi / 2 & (\bmod \pi)
\end{array}\right.
\end{align*}
$$

if $\gamma \neq 0$ and

$$
\begin{align*}
\sigma_{r}(\theta) & =-\operatorname{sign}(\sin \theta) \tag{7.30}\\
& =\left\{\begin{array}{ccc}
+ & \text { if } & -\pi<\theta<0 \\
- & \text { if } & 0<\theta<\pi
\end{array} \quad(\bmod 2 \pi),\right.
\end{align*}
$$

if $\gamma=0$. For each $\theta, q_{ \pm}$selects either r_{+}^{γ} or r_{-}^{τ} and hence

$$
\begin{equation*}
\left(h_{1}, q_{ \pm} h_{2}\right)=\int\left(\tilde{h}_{1}(\theta), r_{ \pm \sigma(J) \sigma_{T}(\theta)}^{r}(\theta) \tilde{h}_{2}(\theta)\right) d \theta /(2 \pi) \tag{7.31}
\end{equation*}
$$

where $\sigma(J)=\operatorname{sign} J$.
We can now compute

$$
\begin{equation*}
\operatorname{tr} s_{+}^{*} s_{+}=\operatorname{tr}\left(2-\omega_{+}-\omega_{+}^{*}\right) . \tag{7.32}
\end{equation*}
$$

Let $t_{ \pm}=\left(1 \pm \theta_{-}\right) / 2$. Since $\omega_{+}^{*}=\theta_{-} \omega_{+} \theta_{-}$

$$
\begin{align*}
\operatorname{tr} s_{+}^{*} s_{+} & =2 \operatorname{tr}\left\{t_{+}\left(1-\omega_{+} \theta_{-}\right) t_{+}+t_{-}\left(1+\omega_{+} \theta_{-}\right) t_{-}\right\} \tag{7.33}\\
& =4 \operatorname{tr}\left\{t_{+} q_{+} t_{+}+t_{-}\left(1-q_{+}\right) t_{-}\right\} .
\end{align*}
$$

The trace can be split into the trace of the 2×2 matrices and the trace on l_{2}. Since the matrix traces of r_{+}^{r} and $1-r_{+}^{r}=r_{-}^{r}$ are both 1 , the trace in (7.33) is equal to the trace of $t_{+}+t_{-}=\mathbf{1}$ on l_{2}, which is infinite. This completes the proof of Lemma 8.

Corollary 9. $q_{+}+q_{-}=1, \omega_{-}=-\omega_{+}, \tilde{\Theta}_{+}=\tilde{\Theta}_{-} \Theta$.

Remark 10. By $\Gamma K_{r} \Gamma=-K_{r}$, we have $\Gamma r_{ \pm}^{r} \Gamma=r_{\mp}^{\gamma}$ for the multiplication operator $r_{ \pm}^{r}$ of $r_{ \pm}^{r}(\theta)$. Since Γ changes θ to $-\theta$ (due to $\Gamma(f \oplus g)=\bar{g} \oplus \bar{f}$ and $\tilde{f}(\theta)=\tilde{f}(-\theta))$, we have $\Gamma q_{ \pm} \Gamma=q_{ \pm}$. Actually this is required in order that $\omega_{ \pm} \theta_{-}=1-2 q_{ \pm}$induces Bogolubov automorphisms.

§8. Twisted Asymptotic Abelian Property

The weak asymptotic property (6.17) implies

$$
\mathrm{w}-\lim \left[y, \hat{\pi}_{\beta}\left(\alpha_{t}(x)\right)\right]=\mathbf{0}
$$

for any $x \in \hat{\mathscr{A}}$ and any operator y on the representation space $\widehat{\mathscr{H}}_{\beta}$. On the other hand, such an asymptotic property has been derived in the case of one-sided $X Y$-model from a twisted asymptotic abelian property (in norm) on the level of C^{*}-algebra \mathfrak{A}^{s}. We now discuss this problem for the two-sided $X Y$-model.

Theorem 11. For $Q_{1}, Q_{2} \in \mathscr{U}^{s}$, the following holds:

$$
\begin{gather*}
\lim _{t \rightarrow \infty}\left\|\left[Q_{1}, \alpha_{t}\left(Q_{2}\right)\right]\right\|=0 \text { if } \Theta\left(Q_{1}\right)=Q_{1}, \Theta\left(Q_{2}\right)=Q_{2} . \tag{8.1}\\
\lim _{t \rightarrow \pm \infty}\left\|Q_{1} \alpha_{t}\left(Q_{2}\right)-\Theta_{-} \tilde{\Theta}_{+}\left(\alpha_{t}\left(Q_{2}\right)\right) Q_{1}\right\|=0 \\
\text { if } \Theta\left(Q_{1}\right)=-Q_{1}, \Theta\left(Q_{2}\right)=Q_{2} \\
\lim _{t \rightarrow \pm \infty}\left\|Q_{1} \alpha_{t}\left(Q_{2}\right)-\alpha_{t}\left(Q_{2}\right) \Theta_{-} \tilde{\Theta}_{+}\left(Q_{1}\right)\right\|=0 \\
\text { if } \Theta\left(Q_{1}\right)=Q_{1}, \Theta\left(Q_{2}\right)=-Q_{2} .
\end{gather*}
$$

Proof. This is an immediate consequence of Theorem 2, Corollary 9, (3.14) and Lemma 5. For (8.2), note that $\Theta_{-} \alpha_{t}=\alpha_{t} \alpha_{-t} \Theta_{-} \alpha_{t}$, $\alpha_{-t} \Theta_{-} \alpha_{t} \rightarrow \Theta_{-} \tilde{\Theta}_{ \pm}$as $t \rightarrow \mp \infty$ and $\tilde{\Theta}_{-} a=\tilde{\Theta}_{+} a$ for $a \in \mathfrak{X}_{+}^{s}=\mathfrak{Y}_{+}^{\mathrm{CAR}}$ due to Corollary 9.

Note that $\Theta_{-} \tilde{\Theta}_{ \pm}=\lim _{t \rightarrow \pm \infty} \alpha_{t} \Theta_{-} \alpha_{-t}$ implies the commutativity of $\Theta_{-} \tilde{\Theta}_{ \pm}$ with α_{t}.

Remark 12. (6.17) may be viewed as a consequence of (8.1), (8.3) and Lemma 6.

Remark 13. Since α_{t} commutes with Θ as well as $\Theta_{-} \Theta_{ \pm}$, both of which commute with each other, it might be thought that Theorem 13 has an extension to Θ-odd Q 's and possibly the result could be formulated in terms of a $\mathbb{Z}_{4}\left(=\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$-graded commutator (two \mathbb{Z}_{2} refering to Θ and $\Theta_{-} \tilde{\Theta}_{ \pm}$). However it is impossible to extend $\Theta_{-} \tilde{\Theta}_{ \pm}$ to a *-automorphism of $\widehat{\mathfrak{U}}$ due to the following reason:

Let ψ be an extension of $\Theta_{-} \tilde{\Theta}_{+}$(or $\Theta_{-} \tilde{\Theta}_{-}$) to $\widehat{\mathfrak{A}}$. First we prove that $\psi^{2} \equiv \gamma$ is either an identity or $\hat{\Theta}_{-}$on the basis of $\gamma(a)=a$ for all $a \in \mathfrak{Z}^{\text {CAR }}$. Let

$$
\begin{equation*}
r(T)=s+T t, s, t \in \mathfrak{A}^{\text {CAR }} . \tag{8.4}
\end{equation*}
$$

From $T^{*}=T$ and $T^{2}=1$, we obtain

$$
\begin{align*}
& s^{*}=s, t^{*}=T t T=\Theta_{-}(t) \tag{8.5}\\
& s^{2}+t^{*} t=\mathbf{1}, \Theta_{-}(s) t+t s=0 .
\end{align*}
$$

From $T a T=\Theta_{-}(a)$ and $\gamma(a)=a$ for $a \in \mathbb{Q}^{C A R}$, we have $\gamma(T) a \gamma(T)$ $=\gamma(T a T)=\Theta_{-}(a)$ and hence

$$
\begin{align*}
& s a s+t^{*} \Theta_{-}(a) t=\Theta_{-}(a) \tag{8.7}\\
& t a s+\Theta_{-}(s a) t=\mathbf{0} \tag{8.8}
\end{align*}
$$

By substituting sa into a of (8.7) and using (8.8) and (8.6), we obtain

$$
\begin{equation*}
\Theta_{-}(s a)=\left(s^{2}-t^{*} t\right) a s=\left(2 s^{2}-\mathbf{1}\right) a s . \tag{8.9}
\end{equation*}
$$

Setting $a=s^{n-1}$, we obtain

$$
\begin{equation*}
\Theta_{-}\left(s^{n}\right)=\left(2 s^{2}-\mathbb{1}\right) s^{n} . \tag{8.10}
\end{equation*}
$$

Substituting (8.10) for $n=1$ and 2 into $\Theta_{-}\left(s^{2}\right)=\Theta_{-}(s)^{2}$, we obtain $s^{2}\left(2 s^{2}-1\right)\left(\mathbb{1}-s^{2}\right)=\mathbf{0}$. Substituting $\left(\mathbb{1}-s^{2}\right)=t^{*} t$, we obtain $A^{*} A=\mathbb{0}$ for $A=t s^{2}\left(2 s^{2}-1\right)$ and hence $A=0$. It then implies $B B^{*}=0$ for $B=t s\left(2 s^{2}-\mathbb{1}\right)=t \Theta_{-}(s)$ and hence $B=\mathbf{0}$. This implies $t^{*} s=\Theta_{-}(B)=\mathbf{0}$ and hence $s t=\left(t^{*} s\right)^{*}=\mathbf{0}$. Substituting (8.10) with $n=1$ into the second equation of (8.6), we obtain $\left(2 s^{2}-\mathbb{1}\right) s t+t s=\mathbb{0}$ and hence $t s=\mathbf{0}$. Hence $\left(\mathbf{1}-s^{2}\right) s^{2}=t^{*} t s^{2}=\mathbf{0}$. Thus s^{2} is an orthogonal projection. By substituting sa into a of (8.8), using this result and applying Θ_{-}, we obtain

$$
\begin{equation*}
\mathbf{0}=s^{2} a \Theta_{-}(t)=s^{2} a t^{*} \tag{8.11}
\end{equation*}
$$

Since the UHF algebra $\mathscr{K}^{\text {CAR }}$ is simple, (8.11) implies $s=0$ or $t=\mathbf{0}$. If $t=\mathbf{0}$, (8.7) implies that Θ_{-}is an inner automorphism of
$\mathfrak{Y}^{\text {CAR }}$. Since Θ_{-}is a Bogolubov transformation given by θ_{-}, and since $1 \pm \theta_{-}$is not in the trace class (they are twice infinite projections), Θ_{-}is not inner (Theorem 5 and Definition 8.1 of [10]). Thus the alternative $t=\mathbf{0}$ is impossible.

The alternative $s=\mathbf{0}$ implies $t^{*} t=\mathbf{1}$. Since $\mathbf{1}=\Theta_{-}\left(t^{*} t\right)=t t^{*}, t$ is a unitary. (8.7) and (8.5) then imply that $t= \pm \mathbf{1}$ (since $\mathfrak{A}^{C A R}$ has a trivial center) and hence $\gamma=$ id or $\gamma=\hat{\Theta}_{-}$.

Next, we set $\psi(T)=s+T t$. We still have (8.5) and (8.6). Since $\psi^{2}=\gamma=\mathrm{id}$, or $\hat{\Theta}_{-}$and $\psi(a)=\Theta_{-} \tilde{\Theta}_{+}(a)$ for $a \in \mathfrak{X}^{\text {CAR }}$, we obtain

$$
\begin{equation*}
\Theta_{-} \tilde{\Theta}_{+}(s)+s \Theta_{-} \tilde{\Theta}_{+}(t)=\mathbf{0}, t \Theta_{-} \tilde{\Theta}_{+}(t)= \pm \mathbf{1} . \tag{8.12}
\end{equation*}
$$

From $\psi(T) a \psi(T)=\Theta_{-} \tilde{\Theta}_{+}^{2}(a)$ for $a \in \mathfrak{H}^{\mathrm{CAR}}$, we obtain

$$
\begin{align*}
& s a s+t^{*} \Theta_{-}(a) t=\Theta_{-} \tilde{\Theta}_{+}^{2}(a) \tag{8.13}\\
& t a s+\Theta_{-}(s a) t=\mathbf{0} \tag{8.14}
\end{align*}
$$

By (8.12), $\Theta_{-} \tilde{\Theta}_{+}(t) t=\Theta_{-} \tilde{\Theta}_{+}\left(t \Theta_{-} \tilde{\Theta}_{+}(t)\right)= \pm \mathbf{1}$ and hence t has an inverse $\pm \Theta_{-} \tilde{\Theta}_{+}(t)$. Substituting t^{-1} times (8.14) into as of (8.13) and dividing by t from the right, we obtain

$$
\begin{equation*}
\left(-s t^{-1} \Theta_{-}(s)+t^{*}\right) \Theta_{-}(a)=\Theta_{-} \tilde{\Theta}_{+}^{2}(a) t^{-1} . \tag{8.15}
\end{equation*}
$$

By setting $a=1$, and substituting the resulting expression into (8.15), we obtain

$$
\begin{equation*}
t^{-1} \Theta_{-}(a)=\Theta_{-} \tilde{\Theta}_{+}^{2}(a) t^{-1} \tag{8.16}
\end{equation*}
$$

Substituting $\Theta_{-}(a)$ into a, we see that $\Theta_{-} \tilde{\Theta}_{+}^{2} \Theta_{-}$must be inner. We now prove that this is impossible.

The necessary and sufficient condition for $\Theta_{-} \tilde{\Theta}_{+}^{2} \Theta_{-}$to be inner is that $\omega_{+}^{2}-\mathbf{1}$ is in the trace class and $\operatorname{det} \omega_{+}^{2}=\mathbf{1}$ or $\omega_{+}^{2}+1$ is in the trace class and det $\left(-\omega_{+}^{2}\right)=-1$ by Theorem 5 of [10]. We shall exclude the first case by showing that $\left(\omega_{+}^{2}-1\right)$ or equivalently $\left(\omega_{+}^{2}-1\right) \theta_{-}$is not in the trace class and the second case by showing $\operatorname{det}\left(-\omega_{+}^{2}\right)=1$ if $\omega_{+}^{2}+1$ is in the trace class.

Since ($\omega_{-} \theta_{-}$) $q_{ \pm}=\mp q_{ \pm}$(also see Corollary 9), we have

$$
\begin{align*}
\left(\omega_{+}^{2}-1\right) \theta_{-} & =\left(\omega_{+} \theta_{-}\right) \theta_{-}\left(\omega_{+} \theta_{-}\right)-\theta_{-} \tag{8.17}\\
& =-2\left(q_{+} \theta_{-} q_{-}+q_{-} \theta_{-} q_{+}\right)
\end{align*}
$$

We shall prove that $\left(\omega_{+}^{2}-\mathbf{1}\right) \theta_{-}$is not in the trace class by proving that it is even not in the Hilbert-Schmidt class. By (8.17),

$$
\begin{align*}
\left\|\left(\omega_{+}^{2}-1\right) \theta_{-}\right\|_{\mathrm{Hs}}^{2} & =4\left(\left\|q_{+} \theta_{-} q_{-}\right\|_{\mathrm{H} . \mathrm{S} .}^{2}+\left\|q_{-} \theta_{-} q_{+}\right\|_{\mathrm{H}}^{2} \mathrm{~s}\right) \\
& =8\left\|q_{-} \theta_{-} q_{+}\right\|_{\mathrm{HS}}^{2} \\
& =\left(8 / \pi^{2}\right) \sum_{\sigma, \sigma^{\prime}} \lim _{\varepsilon \rightarrow 0} \int_{\Delta_{-0}} d \theta_{1} \int_{\Delta_{\sigma^{\prime}}} d \theta_{2}\left|F_{\varepsilon}\left(\theta_{2}-\theta_{1}\right)\right|^{2} G_{\sigma^{\prime} \sigma}\left(\theta_{2}, \theta_{1}\right),
\end{align*}
$$

$$
\begin{equation*}
G_{\sigma^{\prime} \sigma}\left(\theta_{2}, \theta_{1}\right) \equiv \operatorname{tr}\left(r_{\sigma^{\prime}}^{r}\left(\theta_{2}\right) r_{\sigma}^{r}\left(\theta_{1}\right)\right), \tag{8.19}
\end{equation*}
$$

where F_{ε} is given by (7.23), σ and σ^{\prime} are + or,$- J_{\sigma}$ is the set of all θ for which $\sigma_{\gamma}(\theta)=\sigma$ (cf. (7.29) and (7.30)) and $r_{\sigma}^{\gamma}(\theta)$ is defined by (7.16) and (7.17).

For $\sigma=\sigma^{\prime}$, (8.19) tends to 1 as $\theta_{2}-\theta_{1}$ tends to 0 . In this case, θ_{1} and θ_{2} belongs to disjoint regions Δ_{σ} and $\Delta_{-\sigma}$. Hence we may set $\varepsilon=0$. Since $\left|2 F_{0}\left(\theta_{2}-\theta_{1}\right)\right|^{2}=\left\{\sin \left(\theta_{2}-\theta_{1}\right) / 2\right\}^{-2}$ is not integrable (relative to $\left.d \theta_{1} d \theta_{2}\right)$ near $\theta_{1}=\theta_{2}\left(\theta_{1} \in J_{0}, \theta_{2} \in J_{-\sigma}\right)$, and each term in the sum of (8.18) is positive, we have

$$
\begin{equation*}
\left\|\left(\omega_{+}^{2}-1\right) \theta_{-}\right\|_{\text {H.s. }}^{2}=\infty . \tag{8.20}
\end{equation*}
$$

Finally we prove $\operatorname{det}\left(-\omega_{+}^{2}\right)=1$ if $\omega_{+}^{2}+1$ is in the trace class. By $\Gamma \omega_{+} \Gamma=\omega_{+}$, the multiplicity of the non-real eigenvalue α of ω_{+}is the same as that of $\bar{\alpha}$. Let J be the componentwise complex conjugation of $l_{2} \oplus l_{2}$. Then (3.12) shows $J K_{r}=K_{r} J$. Since $J \theta_{-}=\theta_{-} J$ we have $J \omega_{+} J=\omega_{-}=-\omega_{+}$by (6.8) and Corollary 9. Therefore the multiplicity of the eigenvalues ± 1 of ω_{+}is the same. Since ω_{+}is unitary, we obtain $\operatorname{det}\left(-\omega_{+}^{2}\right)=1$ if $\omega_{+}^{2}+1$ is in the trace class (so that ω_{+}has a pure point spectrum and $\operatorname{det}\left(-\omega_{+}^{2}\right)$ is definable). This proves the impossibility of extending $\Theta_{-} \tilde{\Theta}_{+}$to an automorphism of \mathfrak{Q}.

Since Θ is an automorphism of $\hat{\mathfrak{V}}$, the same conclusion holds for $\Theta_{-} \tilde{\Theta}_{-}=\Theta_{-} \tilde{\Theta}_{+} \Theta_{\text {. }}$

References

[1] Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics II, Springer, 1981.
[2] Emch, G. G. and Radin, C., Relaxation of local thermal deviations from equilibrium, J. Math. Phys., 12 (1971), 2043-2046.
[3] Robinson, D. W., Return to Equilibrium, Comm. Math. Phys., 31 (1973), 171-189.
[4] Araki, H. and Barouch, E., On the dynamics and ergodic properties of the $X Y$-model, J. Statist. Phys., 31 (1983), 327-345.
[5] Lieb, E., Schultz, T. and Mattis, D., Two soluble models of an antiferromagnetic chain, Annals of Phys., 16 (1961), 407-466.
[6] Kishimoto, A., Dissipations and derivations, Comm. Math. Phys., 47 (1976), 25-32.
[7] Araki, H., On uniqueness of KMS states of one-dimensional quantum lattice systems,

Comm. Math. Phys., 44 (1975), 1-7.
[8] Kishimoto, A., On uniqueness of KMS states of one-dimensional quantum lattice systems, Comm. Math. Phys., 47 (1976), 167-170.
[9] Kato, T., Perturbation theory for linear operators, Springer, 1966.
[10] Araki, H., On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ., 6 (1970), 385-442.

[^0]: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, JAPAN.

 * Received February 25, 1983.

