Classical Lie Group Actions on π-Manifolds

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

By
Hiromichi Matsunaga*

§ 1. Introduction

The purpose of this paper is to prove some non existence theorems of large group actions on certain π-manifolds. We write G for the classical group $S U(m+1)$ or $S p(m+1)$, and accordingly denote by d the integer 2 or 4 . Let $M^{2 d m-1}$ be a ($2 d m-1$)-dimensional compact connected π-manifold, $m \geqq 8$. Suppose that the first Pontrjagin class vanishes and its ($d m-1$)-dimensional integral homology group has a nontrivial cyclic subgroup of even or infinite order. Then we shall prove that the manifold $M^{2 d m-1}$ can not admit a nontrivial G-action (Theorem 3 in Section 3).

Next, let $M^{2 n-1}$ be a compact simply connected ($2 n-1$)-dimensional π-manifold. Suppose that $n \geqq 10$ and its ($n-1$)-dimensional homology group is nonzero. Then we shall prove that the manifold $M^{2 n-1}$ can not admit a nontrivial $S O(n+1)$-action with exceptions of the real Stiefel manifold $V_{n+1,2}$ and a product manifold $S^{n} \times X^{n-1}$, where X^{n-1} is an ($n-1$)-dimensional simply connected π-manifold without boundary (Theorem 4 in Section 3).

Further we shall apply these results to study group actions on sphere bundies over spheres (Corollaries to Theorems).

§ 2. Preliminaries

We write G for $S U(m+1)$ or $S p(m+1)$, and denote by d the integer 2 or 4 in case of $G=S U(m+1)$ or $S p(m+1)$ respectively. Let M be a smooth G-manifold. Write G_{x} for the isotropy group of $x \in M$ and $\left(G_{x}\right)_{0}$ for the identity component of G_{x}. First we have

[^0]Proposition 1 (cf. Remark 2.2 in [3]). Let $M^{2 d m-1}$ be a (2dm-1)-dimensional smooth π-manifold, where $m \geqq 8$. Suppose that the first Pontrjagin class of $M^{2 d m-1}, P_{1}\left(M^{2 d m-1}\right)$ vanishes. If G acts non trivially on $M^{2 d m-1}$, then any quotient $G_{x} /\left(G_{x}\right)_{0}, x \in M^{2 d m-1}$ contains no element of order 2 .

Proof. By Theorems 2.2 and 2.3 in [3], any $\left(G_{x}\right)_{0}$ is conjugate to a standard subgroup $S F(k)$ for some $k \geqq \frac{2}{3}(m+1)$, where $S F(k)$ denotes $S U(k)$ or $S p(k)$ respectively. On the other hand we have $\operatorname{dim} S F(m+1) / S F(k) \leqq 2 d m-1$, then $k=m$ or $m+1$. Suppose that $G_{x} /\left(G_{x}\right)_{0}$ contains an element g_{0} of order 2 , then we have a group extension $1 \longrightarrow\left(G_{x}\right)_{0} \longrightarrow H \longrightarrow Z_{2}\left(g_{0}\right) \longrightarrow 1$ with $H \subset G_{x}$. We write $\tau(M)$ and ν for the tangent vector bundle of a manifold M and the normal bundle of the embedding $G / G_{x} \subset M$. We have a covering map $p: G / H=P^{d(m+1)-1} \longrightarrow G /\left(G_{x}\right)$, where $P^{d(m+1)-1}$ denotes the $(d(m+1)-1)$-dimensional real projective space. Consider the commutative diagram

By the proof of Theorem 10 in [1], we can conclude that any principal isotropy subgroup is conjugate to $S F(m)$, because any principal orbit must be a π-manifold, where we notice that since $\left(G_{x}\right)_{0}$ is conjugate to $S F(m)$, the dimensional restriction in the theorem above is not necessary. Since $M^{2 d m-1}$ is a π-manifold, we have $\tau\left(G / G_{x}\right) \oplus \nu \oplus \theta_{R}=2 d m \theta_{R}$, where θ_{R} denotes the trivial real line bundle. Then we have $\tau\left(P^{d(m+1)-1}\right) \oplus p^{\prime} \nu \oplus \theta_{R}=2 d m \theta_{R}$. We have $G /\left(G_{x}\right)_{0}=S^{d(m+1)-1}$. The principal isotropy representation $\left(G_{x}\right)_{0} \longrightarrow$ $D^{d(m-1)}$ is trivial, then by the differentiable slice theorem, we have $\nu \approx G \times{ }_{G_{x}} D^{d(m-1)} \approx\left(G /\left(G_{x}\right)_{0}\right) \times{ }_{K} D^{d(n-1)}$, where K denotes $G_{x} /\left(G_{x}\right)_{0}$. Since $H /\left(G_{x}\right)_{0}=Z_{2}$, we have a commutative diagram

Let the representation $Z_{2} \longrightarrow O(d(m-1))$ in $p^{\prime} \nu$ be given by $\left(-I_{a}\right) \times$
$\left(I_{b}\right)$, then $p^{\prime} \nu=a \xi \oplus b \theta_{R}$ and $\tau\left(P^{d(m+1)-1}\right) \oplus p^{\prime} \nu \oplus \theta_{R}=(d(m+1)+a) \xi \oplus$ $b \theta_{R}=2 d m \theta_{R}$, where ξ denotes the canonical line bundle over $P^{d(m+1)-1}$. Therefore $(d(m+1)+a)(\xi-1)=0$ in $\widetilde{K O}\left(P^{d(m+1)-1}\right)=Z_{2} \ell$, where $\ell \geqq$ $d(m+1) / 2-1$. On the other hand $d(m+1)+a \leqq 2 d m<2^{\ell}$ for $d=2,4$ and $m \geqq 8$, which is a contradiction. Thus we have proved the proposition.

For an abelian group M, we say that M holds the property (P) if M does not contain $Z_{2 k}(k=0,1, \cdots)$ as a subgroup, where Z_{0} denotes the infinite cyclic group Z. we have

Lemma. Let $M_{1} \xrightarrow{\alpha} M_{2} \xrightarrow{\beta} M_{3}$ be an exact sequence of finitely generated abelian groups. Suppose that M_{1} and M_{3} hold the property (P), then M_{2} holds the property (P).

Proof. Evidently, M_{2} does not contain the group Z as a subgroup. Suppose that $M_{2} \supset Z_{2 k}$ for some k. We restrict β on $Z_{2 k}$, say $\beta \mid Z_{2 k}$ and write H for the kernel of $\beta \mid Z_{2 k}$. Then $Z_{2 k} / H$ is isomorphic to a subgroup of M_{3}. Since M_{3} holds the property (P), H is isomorphic to $Z_{2 \ell}$ for some ℓ. By the exactness, M_{1} admits a finite cyclic subgroup K such that $\alpha(K)=H$. Then K is isomorphic to $Z_{2 n}$ for some n which contradicts to the assumption.

Next we have

Proposition 2. Let $M^{2 d m-1}$ be a (2dm-1)-dimensional compact G-manifold such that $H_{d m-1}\left(M^{2 d m-1}, Z\right)$ contains a cyclic subgroup $Z_{2 k}$, where k is an integer. Suppose that $\left(G_{x}\right)_{0}$ is conjugate to $\operatorname{SF}(m)$ or $S F(m+1)$ and $G_{x} /\left(G_{x}\right)_{0}$ is a cyclic group of odd order for each $x \in M^{2 d m-1}$. Then G_{x} is connected for each $x \in M^{2 d m-1}$.

Proof. If the fixed point set F is not empty, we choose a closed invariant tublar neighborhood $U(F)$ of F. We put $L(q)=\left\{x \in M^{2 d m-1}\right.$; $\left.G_{x} /\left(G_{x}\right)_{0}=Z_{q}, q>1\right\}$. Let $Z_{q_{i}}, i=1,2, \cdots, s$ be all of nontrivial cyclic groups $G_{x} /\left(G_{x}\right)_{0}$, and assume that $q_{1}>q_{2}>\cdots>q_{s}$. We write M_{0} for $M^{2 d m-1}-$ Int $U(F)$, then $L_{1}\left(q_{1}\right)=M_{0} \cap L\left(q_{1}\right)$ is an invariant closed submanifold of M_{0}, and we can choose a closed invariant tublar
neighborhood $U\left(L_{1}\left(q_{1}\right)\right)$ of $L_{1}\left(q_{1}\right)$. Inductively we have an invariant closed submanifold $L_{i+1}\left(q_{i+1}\right)=M_{i} \cap L\left(q_{i+1}\right)$ of M_{i} and a closed invariant tublar neighborhood $U\left(L_{i+1}\left(q_{i+1}\right)\right)$ with $M_{i+1}=M_{i}-\operatorname{Int}\left(U\left(L_{i+1}\left(q_{i+1}\right)\right)\right)$, $i=0,1, \cdots, s-1$. We shall begin by proving that $H_{d m-1}\left(M_{s}\right)$ holds the property (P) and finally prove that $H_{d m-1}\left(M^{2 d m-1}\right)$ holds the property (P). We have a fibre space $L^{d(m+1)-1}\left(q_{i}\right) \longrightarrow L_{i}\left(q_{i}\right) \longrightarrow \pi\left(L_{i}\left(q_{i}\right)\right)$, where $L^{d(m+1)-1}\left(q_{i}\right)$ is the lens space $S^{d(m+1)-1} / Z_{q_{i}}$ and π denotes the orbit $\operatorname{map} M^{2 d m-1} \longrightarrow M^{2 d m-1} / G$. Since $\operatorname{dim} L_{i}\left(q_{i}\right) \leqq 2 d m-1-1$ ([6]), we have $\operatorname{dim} \pi\left(L_{i}\left(q_{i}\right)\right) \leqq 2 d m-2-(d(m+1)-1)=d m-d-1$. We have the homology spectral sequence

$$
\begin{aligned}
& E_{a, b}^{2}=H_{a}\left(\pi\left(L_{i}\left(q_{i}\right)\right), H_{b}\left(L^{d(m+1)-1}\left(q_{i}\right)\right) \Longrightarrow E_{a, b}^{\infty}, \quad\right. \text { and } \\
& H_{c}\left(L_{i}\left(q_{i}\right)\right)=D_{c, 0} \supset D_{c-1,1} \supset \cdots \supset D_{0, c}, \\
& E_{a, b}^{\infty}=D_{a, b} / D_{a-1, b+1} .
\end{aligned}
$$

It is known that

$$
H_{b}\left(L^{d(m+1)-1}\left(q_{i}\right)\right)= \begin{cases}Z_{q_{i}} & \text { for } b=1,3, \cdots, d(m+1)-3 \\ Z & \text { for } b=0, d(m+1)-1 \\ 0 & \text { otherwise }\end{cases}
$$

Since $E_{a, b}^{2}=H_{a}\left(C_{*}\left(\pi\left(L_{i}\left(q_{i}\right)\right) \otimes H_{b}\left(L^{d(m+1)-1}\left(q_{i}\right)\right)\right)\right.$, we can see that $H_{t}\left(L_{i}\left(q_{i}\right)\right)$ holds the property (P) for $d m-d \leqq t \leqq d m+d-2$. Consider the exact sequence

$$
(*) \longrightarrow H_{d m-1}\left(U\left(L_{i}\left(q_{i}\right)\right), \quad \partial U\left(L_{i}\left(q_{i}\right)\right)\right) \xrightarrow{\stackrel{\partial}{\longrightarrow}} H_{d m-2}\left(\partial U\left(L_{i}\left(q_{i}\right)\right)\right) \longrightarrow
$$

By Poincaré Lefschetz duality and universal coefficient theorem, we have

$$
H_{d m-1}\left(U\left(L_{i}\left(q_{i}\right)\right), \partial U\left(L_{i}\left(q_{i}\right)\right)\right) \approx H^{d m}\left(U\left(L_{i}\left(q_{i}\right)\right)\right) \approx H^{d m}\left(L_{i}\left(q_{i}\right)\right)
$$

and a short exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Ext}\left(H_{d m-1}\left(L_{i}\left(q_{i}\right)\right), Z\right) \longrightarrow H^{d m}\left(L_{i}\left(q_{i}\right)\right) \longrightarrow \\
& \operatorname{Hom}\left(H_{d m}\left(L_{i}\left(q_{i}\right)\right), Z\right) \longrightarrow 0 .
\end{aligned}
$$

Since $H_{d m-1}\left(L_{i}\left(q_{i}\right)\right)$ and $H_{d m}\left(L_{i}\left(q_{i}\right)\right)$ hold the property (P), Hom $\left(H_{d m}\left(L_{i}\left(q_{i}\right)\right), Z\right)=0$, and $\operatorname{Ext}\left(H_{d m-1}\left(L_{i}\left(q_{i}\right)\right), Z\right)$ holds the property (P), where we use the relation $\operatorname{Ext}\left(Z_{n}, Z\right) \approx Z_{n}, n=1,2, \cdots$. Therefore by the lemma and the exact sequence $\left(^{*}\right)$ above, $H_{d m-2}\left(\partial U\left(L_{i}\left(q_{i}\right)\right)\right.$ holds the property (P). Next consider the fibre space $S^{d(m+1)-1} \longrightarrow$ $M_{s} \longrightarrow \pi\left(M_{s}\right)$, then $\operatorname{dim} \pi\left(M_{s}\right)=2 d m-1-(d(m+1)-1)=d(m-1)$.

Therefore the associated homology spectral sequence shows that $H_{d m-1}\left(\pi\left(M_{s}\right)\right)=H_{d m-1}\left(M_{s}\right)=0$. Consider the Mayer-Vietoris exact sequence for the couple $\left(M_{s}, U\left(L_{s}\left(q_{s}\right)\right)\right.$),

$$
\begin{gathered}
\longrightarrow H_{d m-1}\left(M_{s}\right)+H_{d m-1}\left(U\left(L_{s}\left(q_{s}\right)\right)\right) \longrightarrow H_{d m-1}\left(M_{s-1}\right) \longrightarrow \\
H_{d m-2}\left(\partial U\left(L_{s}\left(q_{s}\right)\right)\right) \longrightarrow
\end{gathered}
$$

then by the lemma we see that the property (P) holds for $H_{d m-1}\left(M_{s-1}\right)$. Inductively, we see that the property (P) holds for $H_{d m-1}\left(M_{0}\right)$. We have a fibre space $S^{N} \longrightarrow \partial U(F) \longrightarrow F$ for some $N \geqq d(m+1)-1$, then $\operatorname{dim} F \leqq d(m-1)-1$ and $H_{d m-2}(F)=0$, therefore $H_{d m-2}(\partial U(F))=$ 0 . Thus the property (P) holds for $H_{d m-1}\left(M^{2 d m-1}\right)$, which contradicts to the assumption $Z_{2 k} \subset H_{d m-1}\left(M^{2 d m-1}\right)$.

§3. Non Existence Theorems

In this section we use the same notations $G, d, S F(n)$ and $Z_{2 k}$ as ones in Section 2. First we have

Theorem 3. Let $M^{2 d m-1}$ be a ($2 d m-1$)-dimensional compact connected π-manifold, $m \geqq 8$. Suppose that $P_{1}\left(M^{2 d m-1}\right)=0$ and $H_{d m-1}\left(M^{2 d m-1}\right)$ contains a subgroup $Z_{2 k}$, then $M^{2 d m-1}$ can not admit a nontrivial G action.

Proof. For any isotropy group G_{x}, we have $\left(G_{x}\right)_{0} \subset G_{x} \subset N\left(\left(G_{x}\right)_{0}\right)$, the normalizer of $\left(G_{x}\right)_{0}$, and $G_{x} /\left(G_{x}\right)_{0} \subset S^{d-1}$. When $G=S p(m+1)$, up to conjugacy, a non cyclic finite subgroup of $S^{3}=S U(2)$ is one of

$$
\begin{array}{ll}
\text { (b. d.) } & D_{4 n}^{*}=\left\{x, y ; x^{2}=(x y)^{2}=y^{n}, n \geqq 2, x^{4}=1\right\}, \\
\text { (b. t.) } & T^{*}=\left\{x, y ; x^{2}=(x y)^{3}=y^{3}, x^{4}=1\right\}, \\
\text { (b. o.) } & O^{*}=\left\{x, y ; x^{2}=(x y)^{3}=y^{4}, x^{4}=1\right\}, \\
\text { (b. i.) } & I^{*}=\left\{x, y ; x^{2}=(x y)^{3}=y^{5}, x^{4}=1\right\} .
\end{array}
$$

Then each group above contains a normal subgroup $Z_{2}\left(x^{2}\right)$. Therefore by Proposition 1, these groups can not be contained in $G_{x} /\left(G_{x}\right)_{0}$. Hence by the proofs of propositions 1 and 2, we can assume that the orbit types are $S F(m+1) / S F(m)$ and possibly fixed points. By 2 of Chapter IV in [3], the orbit space $B=M^{2 d m-1} / G$ is a $d(m-1)$ dimensional manifold possibly with boundary $\partial B=F$ and we have a
sphere bundle $S^{d(m+1)-1} \longrightarrow E(\xi) \longrightarrow B$ with $N(S F(m)) / S F(m)$ as the structure group, further $M^{2 d m-1}=E(\xi) \cup U(F)$. From the homology spectral sequence associated with the sphere bundle above, we see that $H_{d m-1}(E(\xi))=0$. Consider the Mayer-Vietoris exact sequence

$$
\begin{array}{r}
\longrightarrow H_{d m-1}(E(\xi))+H_{d m-1}(U(F)) \longrightarrow \\
H_{d m-2}(\partial U(F)) \longrightarrow
\end{array}
$$

Since $H_{d m-1}(U(F))=H_{d m-1}(F)=0$ and $H_{d m-2}(\partial U(F))=0$ (cf. the proof of Proposition 2), we have $H_{d m-1}\left(M^{2 d m-1}\right)=0$, which contradicts to the assumption.

Corollary to Theorem 3. Let $S^{d m-1} \longrightarrow E \longrightarrow S^{d m}$ be a sphere bundle, where $m \geqq 8$ and the total space E is a π-manifold, then E can not admit a nontrivial G-action.

Proof. If the total space E is homotopically equivalent to $S^{d m} \times$ $S^{d m-1}$, then the assumption in the theorem 3 is satisfied and the corollary is obtained. Now we consider a nontrivial bundle E. Write τ for the class of the characteristic map for the tangent bundle of $S^{d m}$ and σ for a generator of $\pi_{4 t-1}(S O(4 t))$ which gives rise to a generator of the stable group $\pi_{4 t-1}(S O)$. For $\chi \in \pi_{d m-1}(S O(m))$, we denote by $E(\chi)$ the sphere bundle with χ as the class of characteristic maps. By 5.5 and 5.6 in [5], when m is odd and $d m \neq 2, E(\chi)$ is a π-manifold if and only if $\chi=k \tau$ for some integer k, further, when m is even and $d m \neq 4,8, E(\chi)$ is $a \pi$-manifold if and only if $\chi=k \tau+$ $2 k \ell \sigma$ for some integers k, ℓ. Let $p: S O(d m) \longrightarrow S^{d m-1}$ be the canonical projection. By 23.4 in [7], $p_{*}(\tau)=2 \iota_{d m-1}$, therefore by 3.4 in [4] $E(\chi)$ has a cell complex structure $S^{d m-1} \cup_{2 k k_{d m-1}} e^{d m} \cup e^{2 d m-1}$, and $H_{d m-1}(E(\chi))=$ $Z_{2 k}$. Thus by Theorem 3 we obtain the corollary.

Remark 1. When the bundle is trivial and $d=2$, the corollary is obtained from (a) of the theorem 2.1 in [8].

Remark 2. The referee has kindly pointed out that we can prove the corollary to Theorem 3 without the assumption that the total space $E(\chi)$ is a π-manifold.

Now we consider $S O(n+1)$-actions. Then we have

Theorem 4. Let $M^{2 n-1}$ be a compact simply connected (2n-1)dimensional π-manifold. Suppose that the integral homology group $H_{n-1}\left(M^{2 n-1}\right) \neq 0$ and $n \geqq 10$. Then $M^{2 n-1}$ can not admit a nontrivial $S O(n+1)$-action with exceptions of the real Stiefel manifold $V_{n+1,2}$ and a product manifold $S^{n} \times X^{n-1}$, where X^{n-1} is an ($n-1$)-dimensional simply connected manifold without boundary.

Proof. Assume that $M^{2 n-1}$ admits a nontrivial $S O(n+1)$-action. By the theorem II and the remark in [2], we have $M^{2 n-1}=\partial\left(D^{n+1} \times\right.$ X^{n-1}), where D^{n+1} is an $(n+1)$-disk and X^{n-1} is an ($n-1$)-dimensional simply connected manifold possibly with boundary.
(1) Suppose that $\partial X \neq \dot{\varphi}$. Consider the homology exact sequence

$$
\begin{aligned}
\longrightarrow H_{n}\left(D^{n+1} \times X^{n-1}, M^{2 n-1}\right) \longrightarrow & H_{n-1}\left(M^{2 n-1}\right) \longrightarrow \\
& H_{n-1}\left(D^{n+1} \times X^{n-1}\right) \longrightarrow .
\end{aligned}
$$

We have $H_{n}\left(D^{n+1} \times X^{n-1}, M^{2 n-1}\right) \approx H_{n}\left(S^{n+1} \wedge\left(X^{n-1} / \partial X^{n-1}\right)\right)=0$, and $H_{n-1}\left(D^{n+1} \times X^{n-1}\right) \approx H_{n-1}\left(X^{n-1}\right)=0$, then $H_{n-1}\left(M^{2 n-1}\right)=0$, which is a contradiction.
(2) Suppose that $\partial X=\phi$, then we have $M^{2 n-1}=S^{n} \times X^{n-1}$, which is an exceptional case.

Corollary to Theorem 4. Let $S^{n-1} \longrightarrow E \longrightarrow S^{n}$ be a sphere bundle, where $n \geqq 10$ and the total space E is a π-manifold. Then E can not admit a nontrivial $S O(n+1)$-action with exceptions of $V_{n+1,2}$ and a trivial bundle.

Proof. For even n, the corollary is obtained from the proof of the corollary to Theorem 3 and Theorem 4. Now we consider the case n is odd. By 5.4 in [5], E is a π-manifold only if E is the Stiefel manifold $V_{n+1,2}$, or a trivial bundle. Then we have the corollary.

References

[1] Hsiang, Wu-chung and Hsiang, Wu-yi, Classification of differentiable actions on S^{n}, R^{n} and D^{n} with S^{k} as the principal orbit type, Ann. of Math., 82 (1965), 421-433.
[2] Hsiang, Wu-yi, On the classification of differentiable $S O(n)$-actions on simply connected π-manifolds, Amer. J. Math., 88 (1966), 137-153.
[3] Hsiang, Wu-chung and Hsiang, Wu-yi, Differentiable actions of compact connected classical groups I, Amer. J. Math., 139 (1967), 705-786.
[4] James, I. M. and Whitehead, J. H. C., The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc., 4 (1954), 196-218.
[5] Kosinski, A., On the inertia group of π-manifolds, Amer. J. Math., 89 (1967), 227-248.
[6] Montgomery, D., Samelson H. and Yang, C. T., Exceptional orbits of highest dimensions, Ann. of Math., 63 (1965), 131-141.
[7] Steenrod, N., The topology of fibre bundles, Princeton, 1951.
[8] Uchida, F., $S U(n)$ actions on a product of spheres, Bull. Yamagata Univ. Nat. Sci., 10 (1981), 167-176.

[^0]: Communicated by N. Shimada, January 10, 1983. Revised March 2, 1983.

 * Department of Mathematics, Shimane University, Matsue 690, Japan.

