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Vanishing Theorems on Complete
Kahler Manifolds

By

Takeo OHSAWA*

§ 0. Introduction

Let X be a complex manifold of dimension n and let E be a
holomorphic vector bundle over X. We shall here try to continue
the study on the vanishment of the sheaf cohomology groups H?(X3

0(E)) which has been performed by Kodaira [10], [11], Grauert-
Riemenschneider [5], Andreotti-Vesentini [1], [2], Nakano [14],
[15], Kazama [9], and others.

The purpose of the present paper is to study the cohomology
groups on complete Kahler manifolds. Although the spirit is the
same as in [1] and [14], we restrict ourselves to CL2-cohomology
groups' and aim at finding a proper subspace of L2-forms for which
8-equation is solvable. We shall prove the following theorem.

L2-vanishing theorem (cf. Theorem 2.8). Let X be a complete
Kahler manifold of dimension n, let (E, h) be a hermitian bundle
over X, and let a be a d-closed semipositive (1, \}-form on X. As-
sume that the curvature form for h is equal to or greater than a.
Then, for any d-closed ^-valued (n, q)-form f which is square inte-
grable with respect to a (for the definition see Section 2), we can
find an ^-valued (n, q-V)-form g which is square integrable with
respect to a satisfying dg—f. Here q^l,

This is a generalization of theorem 1.5 in [16]. We apply it here
to obtain the following two vanishing theorems.
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Theorem (cf. Theorem 3. 1). Let X be a compact Kdhler manifold,
let Y be an analytic space, let /: X^Y be a holomorphic map, and
let (E, h) be a hermitian bundle over X. Assume that the curvature
form for h is equal to or greater than the pull-back of a Kdhler
metric on Y. Then,

H«(Y, /*0(KX®E))=0, for q^l.

Here Kx denotes the canonical bundle of X and f* 0 (KX(X)E) denotes
the direct image sheaf of 0(KX(X)E).

Theorem (cf. Theorem 4.5). Let X be a l-convex manifold with
maximal compact analytic set A, and let E-^X be a holomorphic vector
bundle. Assume that the restriction of E to A is Nakano-semipositive.
Then

H?(X, 0(Kx(g)E))=0, for q^l.

Fortunately these theorems have applications. Namely, Theorem
3. 1 provides a simple proof of Fujita's semipositivity theorem [3] for
relative canonical sheaves, and Theorem 4. 5 establishes the converse
statement to Laufer's theorem P1 as an exceptional set [13].

The author is very grateful to Prof. K. Diederich who let him
work at Gesamthochschule Wuppertal during the preparation of this
paper. Sections 4 and 5 were added in Wuppertal. He also thanks
the referee for pointing out several mistakes.

§ 1. Preliminaries

Let X be a complex manifold of dimension n with a hermitian
metric a), and let E-^-X be a holomorphic vector bundle with a
hermitian metric h along the fibers. We say (E, h) a hermitian
bundle over X. We shall regard co as a (1, l)-form on X, and h as
a C00 section of Hom(E, E*). We denote by Q*(X, E) the space
of E-valued (p, q) -forms on X whose supports are compact. The
length of /eQ'HX, E) with respect to co and h is denoted by |/|.
Let dv be the volume form on X with respect to co and set

ff W2

|:= \ \f\*dv\ ,
Ux J
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which is the usual L2-norm. The L2-norm ||/|] determines a hermitian

inner product in C£'9(X, E) which we denote by ( f 9 g ) . Let </, #>
be the pointwise inner product with respect to o) and h. Then,

(/,*)=\ <f,g>dv.Jx

When we need to be more precise, we write h and o) explicitly, e. g.

</3 g>h or </? g>fc,o>. Let L*-fl(X, E, <w, A) be the completion of
Qi9(X, E) with respect to the above norm. Then, by the theorem of

Riesz-Fischer, L^9(X, E, o>, h) is naturally identified with the space

of E-valued integrable (p9 q) -forms.

Proposition 1. 1. Let o^ and a)2 be two hermitian metrics satisfying

0)^0)2. Then,

(1) ll/IU^II/llv for /eCS-«(X, E).

Proof. Let ^:^X be any point, and represent co1 and o)2 at x as

follows :

(2)

i^l

Let fx denote the value of / at x. We set

(<Z\ f — y f. . - - a. A /\ff. A
\°) Jx— . L-L _ Jxi,...ihj,. .]n°iJ V * • / W z , /

Then,

(4)
If. .

*! 'lpJl "3

2

q

Since
1

(5) dva =—^ ^-dva at
1 /!.../„ 2

we have

;if... ^- ̂ - . . ij
1 ! «!<...<»^ ^i- . . ^n r'
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Thus, if p = n, then 2^. . e 2{ and ^...4 cancel each other so that

(7) \fx\dv» = Z . . \ --/ dv

Since k^>l, we obtain from (7),

(8) \fMdva^\fx\ldva2.

Therefore,

(9) i l / ! i / I U 2 . Q.E.D.

As usual we denote by 5 the exterior differentiation with respect
to the conjugate of the local coordinates of X and by 0( — 6a}Jl} the
adjoint of 3 with respect to the inner product of L/>9(X, E, a), h).
We denote by L(=LQ)) the multiplication of V —l<o from the left
and by A(=AQ)') the adjoint to L. Let &h be the curvature form for
h. Recall that 9h = dh~ldh and that 6h is a Hom(E, E) -valued (1,
l)-form. Thus the left multiplication by ®h} which we denote by
e(®&)5 operates on I/i(Z(X, E, a), h). The following facts are basic
for our purpose.

Proposition 1.2 (cf. [17]). If a) is a Kahler metric on X, then

(10)
for any /<EQ'9(X, E), where q^l.

Proposition 1.3 (cf. Theorem 1.1 in [18]). // w is a complete
hermitian metric on X, then QI?(X, E) is dense in the space

{/eEl>9(X, E, w, A); a/EEl/?+1(X, E, 01, A), fl/el/'-^X, E, 01, A)}

with respect to the norm ||/||+||3/|| + ||0/||.

§2. L2- Vanishing Theorem

Let X, CD, E and h be as in Section 1.

Definition 2. 1. Let 0 be a Hom(E, E) -valued (1, 1) -form on X.

0 is said to be semipositive (positive) if 0 satisfies

(11)
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for any wE=E and fGETX with u^Q and f^O. Here TX denotes
the holomorphic tangent bundle of X.

Given two Hom(E, E) -valued (1, 1) -forms 9l and <923 we denote
0^02 if 0l—02 is semipositive. A scalar (1, l)-form is identified
with a Hom(E, E) -valued (1, l)-form when we compare it with
Hom(E, E) -valued forms.

Proposition 2.2. Let 6 be a semipositive Hom(B, ^-valued C°°
(1, I) -form. Then,

(12) <f=^(e)4/;/>*^o,
Jbr any /G=Q-'(X, E).

Proof. The reader is referred to [17],

Definition 2.3. Given a C°° semipositive (1, 1) -form a on X, we
set

"-*(X, E3 cj, A)

(13) :={/eL«-«CX, E, fl> + <j, A); lim||/|U+
' e\0

/ll,: =lim!|/|L+ff, /or /SL"-«(X, E, ff,

Proposition 2.4 L"'?(X, E, a, h) and ||/||ff Jo not depend on the
choice of the metric a).

Proof. Let a) be another hermitian metric on X and let K be
any compact subset of X. Then, for any £>0, we can find <5>0 so
that £0)+ff^da) + a on K. Hence, in virtue of Proposition 1.1, we

have

(14) \ \f\L>+odvea},+0^\ \f\2
da+ffdv8<0+a.

JK JK

From (14) we observe that if lim I!/IU+a exists, then ||/|lE<D/+a is bound-
e\0

ed by lim ||/|U+c;. Therefore, lim ||/||ea,/+ff^lim I|/||ea,+ff5 which implies
B\Q e\0 e\0

independence of L"'9(X, E, o1, h) and ||/|jff from the metric CD.
Q. E. D.

Clearly L"-9(X, E, a, h) is a Hilbert space with norm H/IJ , which
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we write ||/|| when there is no fear of confusion.

Definition 2. 5.

N"-*(X3 B3 *, A) : = {/eL»-'(X, E3 a, A) ; 3/-0}3

Rn-?(X3 E3 <73 A) : = {/6ELW'*(X3 E3 a, h) ; there exist

geL^-HX, E3 <73 A) satisfying 3g=f\,
»'«(X, E, <73 A ) :=N n - 9 (X 3 B3 a, A)/RW '*(X3 E, (7, A).

Definition 2. 68 X z's called a complete Kdhler manifold if there
exists a complete Kdhler metric on X.

Proposition 2. 78 Let w be a complete Kdhler metric on X. Then,

/or awy /eL"'3(X5 E, ft>3 A) ^McA that 3/<ELni(?+1(X3 E, w, A) and 0/

L-'^CX, E3 ^ A).

Proof is immediate from Proposition 1. 2 a nJ Proposition 1. 3.

Theorem 2.8. Let H be a complete Kdhler manifold, let (E, /z)
&e a hermitian bundle over X, anJ let a be a d-closed semipositive

(1, V)-form on X. If 0h^a, then

HM'*(X3 E5 a, A)=0, /or ^^L

Proo/ Let /eN"'?(X3 E5 a, A). We have to find g-eL^CX, E,
(7, A) satisfying dg=f. We first fix a complete Kahler metric ft> on X
and prove that for each e>0 there exists g-gGl/'^CX, E3 a + say, h)
such that %e— /and ||^£||^Qj]/]]3 where Q is a constant depending
only on q. In virtue of Hahn-Banach's theorem3 the existence of
such ge is assured by the following estimate:

(16) ] (/, ^)£^|2^C/!i/]]2(||3^|i2 + ]]^]|2)3

for any w^Ln '3(X3 E3 ew + a, h) belonging
to the domains of 9 and 6.

Let ^^Co>s(X3 E) and let d be a positive number less than e. By
Cauchy-Schwarz' inequality we have

(17)
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Let .rEiX be any point. We express (p, a + ea) and ff+da) at x as
follows:

(9=

(18)
t=l

Then we have
I I 2

(19) <e(ea) + a}A8ca+a(p, <p>e(a+adve(a+a = £ — V'g dvB<0+0
'

and

(20)

Comparing (19) and (20) we have

(21) <

Therefore,

(22)
x

Hence,

(23) i (/, u^«+

Letting ^->0, we have

(24) | (/, u)B

By Proposition 2.2 and the assumption that 6^0-, we have

(25) ~

Note that ea)+a is a complete Kahler metric on X so that by Pro-
position 2. 7 we have

(26) (V

Combining (26) with (24) and (25) we obtain (16).
Thus, there exists ^EeLn's""1(X, E, sw + a, h) satisfying 5ge=f and

- Note that H ^ e l U + f f ^ l l ^ e l i for e<l so that we can choose
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a subsequence of {ge}B>0 converging weakly in I/'^CX, E, ct)+as h).
Let the weak limit be g. Then we have 3g=f, Moreover,

(27)
8\0 £\0

Therefore g^Ln'q~1(X9 E, a, h). Q. E. D.

Let us show several examples of (noncompact) complete Kahler
manifolds.

Example 1. Cn is a complete Kahler manifold.

Example 2. Every Stein manifold is a complete Kahler manifold.
More generally, a Kahler manifold provided with a C°° exhaustive
plurisubharmonic function is a complete Kahler manifold.

Example 3. Given a complete Kahler manifold X,
i) every closed submanifold is a complete Kahler manifold,
ii) Complements of discrete sets are complete Kahlerian.

The author does not know whether complements of closed analytic
subsets of complete Kahler manifolds are complete Kahlerian or not.

Example 4. Let D be a bounded domain with a smooth pseudo-
convex boundary in a Kahler manifold. Then, D is a complete
Kahler manifold.

§3. A Generalization of Kodaira's Vanishing Theorem

Let Y be a paracompact analytic space over C. By a hermitian
metric on Y, we mean a hermitian metric G defined on the regular
points of Y satisfying the following property: for any point 3>£=Y,
there exist a neighbourhood [7, a holomorphic embedding c: U->CN

for some N9 and a C°° positive (1, l)-form a defined on a neighbour-
hood of c (IT) for which 0 = 1*0 on the regular points of U. We say
a is a Kahler metric if we can choose a to be ^-closed. For any
holomorphic map /: X->Y from a complex manifold X, f*a is extend-
ed uniquely to a C°° semipositive (1, l)-form on X. We shall not
distinguish f*0 from its extension.
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Theorem 3. 1. Let X be a compact Kdhler manifold, let f: X->Y
be a holomorphic map to an analytic space Y with a Kdhler metric a,
and let (B, h) be a hermitian bundle over X. Assume that 9h^f*a,
then

H*(Y, /*0(Kx(g)E))=0, for q^l.

Before going into the proof we note the following

Lemma 3.2. Let n: X->Y be a holomorphic map between complex
manifolds X and Y provided with hermitian metrics <% and a>Y3

respectively. Then, for any form g on Y,

i (**#)* LX+**»Y^ l&rooLy ,
#£ a^ point ^^X.

Proof is trivial.

Proof of Theorem 3.1. Let f" = { V{} £e/ be a finite system of
Stein open subsets covering of Y and let {cz- {} be a g-co cycle of
/*0(Kx(g)E) associated to 'T(g^l). We set

Then {c,*...,- } is a g-cocycle of (^ (Kx^E) associated to the covering
{y-i(y.)}.ej. \A/e regard c^.. ; as holomorphic n-forms on /"H^ H. ..
D ^- ) with values in E. Let {/>,-} be a partition of unity associated
to TT. We define E-valued (w, g-*) -forms ^•O..^_1 on Vi o n . . . H T'Vi
in such a way that

Then we have

(30)

and in particular we can define an E-valued 5-closed (n, g)-form b
on X by b—dbi. By Lemma 3.2 \Spi\a are bounded above. Let co
be a Kahler metric on X. Then, again by Lemma 3. 2, for any £>0,

\&Q)^f*a are bounded above by \Spi\a. Since c,*..<; are (ny 0)-
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forms with values in E, c*Qmmmi \L+/>cr<^W/*a are independent of e.
Therefore,

•0 . . .fjeLB i*"*+ 1(V'i0n... nv i j t 9 E, /*#, A).
Thus, in virtue of Theorem 2.8, there exists a^Ln'q~l(X, E, /%, /i)
satisfying 5a=b. Let c f — b { — a . Then we have

^i), E, /*<?, A),

(32)

Since Vt are Stein open sets, f~1(Vi) are complete Kahler manifolds.
Hence we can apply Theorem 2.8 to f~l(Vi) and find ai^Ul>q~2(f~l

(Vi)9 E, /%, h) such that c* =da{. Let c*j = bij—ai—aj. Then we

have

(33)

We can continue this process until we obtain E-valued holomorphic
n-forms c*0...i?_, on /^(V^n. . . D Vj^) satisfying

We put

where Q0...^_1 are sections of /* 0 (Kx(x)E) over V ^ n . . . H Vi^. (34)
implies that

CV-^a?0
(~irQo-v-V Q.E.D.

Corollary 3.3 (cf. Fujita [3]). Let K: X->Y be a surjective holo-
morphic map with connected fibers from a compact Kahler manifold
X to a nonsingular curve Y. Then, every quotient invertible sheaf of

is of nonnegative degree. Here we put wx/Y = 0 (Kx(X)7r*KY).

Proof. Let

(37)
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be an exact sequence of coherent analytic sheaves over Y. Let £8
be an invertible sheaf of positive degree over Y, then we have the
following exact sequence:

(38) ff(Y, 0(

- >H2(Y,

Since dimY=l, we have H2(Y? ^(Ky)®^®^) =0. On the other
hand, by Theorem 3. 3,

(39) H'(Y,

Here we used the assumption that the fibers of TT are connected.
Hence H^Y, 0(KY)(x)J2?(x),^) also vanishes. Therefore & cannot be
an invertible sheaf of negative degree. Otherwise H^Y, 0(KY)(X)
Jg?®J?*)=0, which contradicts that IP(Y, 0(KY))=H°(Y, 0T)sC.

Q.E.D.

§ 4e A Vanishing Theorem on 1-Convex Manifolds

Let X be a 1-convex manifold, L e. X is connected and there
exists a C°° exhaustive function which is strictly plurisub harmonic
outside a compact subset of X. The following fact is first due to
Grauert [4]: there is a compact analytic subset AcX and a proper
holomorphic map x from X onto a Stein space X such that TTX_A is
biholomorphic. If A is everywhere of positive dimension, A is called
the maximal compact analytic set- By the fundamental work of
Hironaka [6], [7], there is a complex manifold X obtained from X
by a succession of blowing up along nonsingular centers, such that
the induced bimeromorphic map ri : X->X is holomorphic, X can
be chosen so that
(I) TTOTT' is biholomorphic on X—Tr'"1 (A).
(II) 7r /~1(A) is a divisor with normal crossings whose irreducible

components {Aj}^ are nonsingular,
(III) There exist v tuple of positive integers (pl9. . . , pv) so that

the line bundle 2 PJ\_&J\* is very ample.

Set A = fipjAj and denote the support of A by |A . Since [A]* is
j = l

very ample there is a metric a along the fibers of [A]* such that
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the curvature form <9fl~ gives a Kahler metric on X. On X— |A|, a
is given by a positive C°° function <[) satisfying

(40) 93(-log^)=<9a-

and that

(41) log^+log|s|2 is C°° on X, where s is a canonical section
of [A].

Via n we shall identify <f> with a function on X — A. Let <p be a C°°
plurisubharmonic exhaustive function on X which is strictly plurisub-
harmonic outside A.

Proposition 4.1. X— A is a complete Kahler manifold.

Proof. Let V: = {x<=X-A; log^(^)>0}. Then, FU A is a neigh-
bourhood of A in X. Let p be a C°° function on X such that 0^
p^ 1 on X, p = 0 on X — V and /o=l on a neighbourhood of A.
Then, for sufficiently large K, dd(K(p2— log(l + |01og ̂ )) is a complete
Kahler metric on X -A. Q. E. D.

Definition 4. 2. Let ^f be an analytic space which is isomorphic
to an analytic subset of a domain Q in Cn and let h be a C°° matrix-
valued function on Y with values in rxr positive definite hermitian
matrices. We say that h has semipositive curvature if there is a C°°
extension h of h to a neighbourhood of Y in Q such that 6H: =d(h~l

dh) is semipositive (cf. Definition 2.1).

Proposition 4.3. Let n: YX-^Y be a holomorphic map between
analytic spaces and let h be a matrix-valued function on Y with
semipositive curvature. Then, x*h has semipositive curvature, too.

Proof is trivial.

Definition 4.4. Let Y be an analytic space and let (E, h) be a
hermitian bundle over Y. (E, h} is said to be Nakano -semipositive
if for any local representation h{ of h as a C°° matrix-valued function,
hi has semipositive curvature.

Theorem 4. 5. Let X be a 1- convex manifold with maximal com-
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pact analytic subset A and let (E, h) be a hermitian bundle over X.
Assume that (E|A, A|A ) is Nakano-semipositive. Then,

H*(X, 0(Kx(g)E))=0, for q^l.

Proof. First we shall prove that the hermitian bundle (E|X-A3

h(\ +plog <fi)e~~L</>} is Nakano-semipositive for sufficiently large L. Note
that by Proposition 4.3 (7r'*E|iA |, rc'*A||A|) is Nakano-semipositive.
Since |A| is a divisor with normal crossings, it is clear that

(42) <0,,.*(«), w>.-*(f, ?)^0,

for any f e (£ TAy), and weE, at any point :re|A|. Here,

are regarded as subspaces of TX and

(43) (STAyX^frelVX; there exist vj
3 = 1

such that v=

We put ZTA,.:= w(
j = l _ ^e|A| y=l ^

Let ^^ | A| be any point, let (^13 . . . , zn) be a local coordinate on
a neighbourhood C7 of j: such that zl ..... zk = Q is a local equation
of | A! 3 and let t] denote an element of TX. Then, J^TAj is locally
defined by the following two equations:

(44)

Hence we infer from (42) that
(45)

on [/, where ^ depends on 0fl-, A and the choice of (zl9 . . , , 2;ra).
We compare the right hand terms of (45) with 0(1+10 log #) (cf. Proposi-
tion 4.1). Since log^^00 on |A| , there is a neighbourhood W of
|A| such that

(46) -33

> — dd log (f)

on W— |A|. We can find a C°° function X on U and negative

integers w,- such that ^ = | % x ..... ^?|2^. Shrinking W if necessary we

obtain
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-ddlog</>
log <P

Hence

(48) *«*u+, log <

From (48) it is easy to see that

(49) <6Wi+, iog0(tt), ">«/•* (37,

on Wfl C/— | A|, where we possibly shrink Z7 and PF. Thus, by com-
pactness argument (E|X_A 3 h(l+plog0)e~L(p) is Nakano-semipositive

for sufficiently large L. We set <P= (1 +p]og^e-Ltp. Then, by The-

orem 2. 8, we have

(50) H"-«(X-A, E, 60, A<2>2)=0, /or ^1.

We are going to deduce from (50) that W(K, 0(Kx(g)E))=0 for

^^1. Let /be any C°° E-valued 3-closed (n, q)-form on X. Since

any power of log ̂  is locally square integrable on X, we may assume
that /^Ln 'HX— A, E, 00, /z$2), if necessary replacing <p by a more

rapidly increasing function. Hence we can find g^Ul'q~~l(^K— A, E,

00, /i$2) such that dg=f. If g = l we are done, since g is then

locally square integrable on X and in view of the equality dg=f on

X —A, g is extended to a C°° n-form with values in E. Let g^2=

Then we choose a locally finite covering [Ui}iGl of X by Stein open

sets and define {/r..^}5 {gir..ik} and 1^...^} inductively as follows.
Let HI be a C°° (E-valued) (n, g-l)-form on Ut such that 3ui=f.

We set fi=g-ui. Since 5/-0 and /eEL^-1^ -A, E, 00, A^2),

(where we possibly shrink U{ and replace <p again), we can find
-2(t/z--A, E, 00, h®2) such that %,--/-. Assume that {/...,-},

1 K
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and (ui ...ik] are already determined in such a way that

M!r..,-s are C°° on t / ^D. . . 0 ^

c^n. . . nt/^-A, E, e,,
-*-1(yin. . . n t / - A , E, e

(51)

If k^q-2, we set { .̂...-^h fcr..'j+1}
 and (V-''t-nJ as follows. First

we take «....,-. to be C°° and that
zl KT 1

Jfe + 1

(52) ^v..,+1 = S(-l)^,r..V.W

Then we set
k+i

(53) A...',+1 = S1(-
1)"+X-^-'m + ̂ -'.+i-

We have ^.,-^^0 and may assume that 4....-t+1
eLBt4~*~1(t/,-1 R. . . 0

U;4+1-A, E, ©,, A02). Hence we can find «-*1.--'*+ieL"lt"*"2(t7'i n* ' '
nUim-A, E, 0,, h&) such that %,r..!Wl=4..,J+1. By the inductive
assumption we have

(54)

Therefore, for any k with l^S&^g — 1, we have inductively deter-
mined {^r.z-J5 kz^.^1 and {M^...^} satisfying (51). Note that in
particular g{ .,- _ are square integrable forms on U^ n. . . fl L/i _i such

that SCSC-l)"^..^....-,) are C°° on ^n... nC/,y Hence there exist
C°° forms t;,- t- on L/i . . . L/i such thatI"1 g-l 1 2-1

(55) S(-l)X-^-', = ?(-1)BV^-V

Taking 5 of the both sides in (55) we have

(56) L(-l)a(VV-'?+H -'a • • • « ) =°-

Therefore, we can find vt t _2 such that

(57) «ir ,._1+av.it_1=Z(-i)-V.y,...f_1,
whence we obtain

(58) SZ, i.. l9_ i = ?(-l)^,i..,a..w

Continuing this process we arrive at the equality
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(59) Ui — Uj =3uij =5vi —dvj.

Thus we obtain a C°° form g = Ui-~dVi on X such that 5g=f.

Q, E. D.

Corollary 4. 6 (Laufer [12], Kato [8]), Let X be a l-convex
manifold of dimension 2 with maximal compact analytic set A, and
let L-»X be a line bundle. Assume that Kx(X)LIA. is of nonnegative
degree for every irreducible component A{ of A. Then H^X, 0(L))

§ 5. A Sufficient Condition for Rationality of
Isolated Singularities

Let (X, x) be a germ of an analytic space X for which x is an
isolated singular point. (X, x) is said to be rational if for any resolu-
tion of singularity TT: X— >X, Rq^0^ vanishes for q*tl. Here Rq^G^
denotes the higher direct image sheaves of d?x- Note that the pro-
perty that Rqx*@% = Q for q^l is independent of the choice of the
resolution, (cf. Hironaka [6]). We can state a condition for the
rationality of (X, x) in terms of the maximal compact analytic set
of X.

Theorem 5. 1. Let the notation be as above and let A be the
maximal compact analytic subset of X. Assume that KXJA has a metric
h along the fibers for which (KxjA? h) is Nakano-semipositive. Then
(X, x} is rational.

Proof is immediate from Theorem 4. 5.

As an application we obtain the following

Proposition 5.2. Let X be an analytic space of dimension 3
with an isolated singularity at x. Let TT: A->X be a resolution of
singularity. Suppose that A = 7r~l(x) is isomorphic to P1 and that the
normal bundle of A splits into line bundles whose chern classes are
either (-1, -1), (-2, 0), or (-3, 1). Then, (X, x) is a rational
singularity.



COMPLETE KAHLER MANIFOLDS 37

The following proposition was suggested by A8 Fujiki.

Proposition 5.3. Let X be an analytic space of dimension 3
with a rational isolated singularity at x. Let TT: X-»X be a resolution
of the singularity. Suppose that K = TI~I(X) is isomorphic to P1 and
that the degree of KXJA is zero8 Then there exist a neighbourhood
U of x and a nowhere-zero holomorphic 3-forrn defined on U- {x}.

Proof is standard.

Combining Proposition 5.2 with Proposition 5.3 we obtain the
converse of the following

Theorem 5.4 (Theorem 4. 1 in Laufer [13]). Let X be an analytic
space of dimension n^3 with an isolated singularity at x. Suppose
that there exists a nowhere zero holomorphic n-form co on X-.r. Let
TT: X-»X be a resolution. Suppose that A = K~I(X) is \-dimensional
and irreducible. Then A is isomorphic to P1 and n = 3e Also, the
normal bundle of A splits into line bundles whose chern classes are

(-1, -1), (-2, 0), or (-3, 1).
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5. 2 is strengthened so that we can conclude that (X, x) is a hypersurface singularity with
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