A Remark on Almost-Quaternion Substructures on the Sphere

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By

Hideaki ŌSHIMA*

In [4] T. Önder has solved the existence problem of almostquaternion k-substructures on the n-sphere S^{n} for all n and k except for $n \equiv 1(\bmod 4) \geqq 5$ and $k=(n-1) / 4$. The purpose of this note is to solve it for this exceptional case.

Theorem 1. Let $n \equiv 1(\bmod 4) \geqq 5$ and $k=(n-1) / 4$. Then S^{n} has an almost-quaternion k-substructure if and only if $n=5$.

We use natural embeddings for the classical groups (see [2]): $S p(m) \longrightarrow S U(2 m)$ and $S U(m) \longrightarrow U(m) \longrightarrow S O(2 m)$. We embed, respectively, $S U(m)$ and $S O(m)$ in $S U(m+1)$ and $S O(m+1)$ as the upper left hand blocks. We embed also $S O(m) \times S O(n)$ in $S O(m+$ n) by

$$
(A, B) \longrightarrow\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

Let n and k be positive integers with $4 k \leqq n$. An almost-quaternion k-substructure on an orientable n-manifold M is defined to be a reduction of the structural group of the tangent bundle $T(M)$ from $S O(n)$ to the subgroup $S p(k) \times S O(n-4 k)$. Since the principal $S O(n)$-bundle associated with $T\left(S^{n}\right)$ is

$$
S O(n) \longrightarrow S O(n+1) \longrightarrow S O(n+1) / S O(n)=S^{n},
$$

it follows that S^{n} has an almost-quaternion k-substructure if and only if the associated fibration

$$
S O(n) / S p(k) \times S O(n-4 k) \longrightarrow S O(n+1) / S p(k) \times S O(n-4 k) \xrightarrow{p} S^{n}
$$

[^0]has a cross section. Hence Theorem 1 is equivalent to

Theorem 2. Let $n \equiv 1(\bmod 4) \geqq 5$ and $k=(n-1) / 4$. Then p has a cross section if and only if $n=5$.

Proof of Theorem 2. In our case the fibration takes the form:

$$
S O(n) / S p(k) \longrightarrow S O(n+1) / S p(k) \xrightarrow{p} S^{n} .
$$

We have an inclusion map $j: S^{5}=S U(3) / S U(2) \longrightarrow S O(6) / S p(1)$ induced by the embeddings $S p(1)=S U(2) \longrightarrow S U(3) \longrightarrow S O(6)$. It is easily seen that j is a cross section of p for $n=5$.

Thus we will always assume that $n \geqq 9$. By the covering homotopy property of p, the fibration has a cross section if and only if

$$
p_{*}: \pi_{n}(S O(n+1) / S p(k)) \longrightarrow \pi_{n}\left(S^{n}\right)=Z
$$

is an epimorphism. We will prove that

$$
\text { Image }\left(p_{*}\right)=2 \pi_{n}\left(S^{n}\right)
$$

so that p does not have a cross section.
Consider the commutative diagram of the fibrations:

Applying the homotopy functor $\pi_{*}(-)$ to this, we obtain a commutative diagram with exact columns and rows:

We use the following known results (see [1] and [3]):
(1) $\quad \pi_{n-1}(U(2 k))=Z_{(2 k)!} ;$
(2) $\quad \pi_{n-1}(S p(k))=\pi_{n-1}(S p(\infty))= \begin{cases}0 & \text { if } n \equiv 1(\bmod 8) \\ Z_{2} & \text { if } n \equiv 5(\bmod 8) ;\end{cases}$
(3) $\pi_{n}(S p(k))=\pi_{n}(S p(\infty))= \begin{cases}0 & \text { if } n \equiv 1(\bmod 8) \\ Z_{2} & \text { if } n \equiv 5(\bmod 8) ;\end{cases}$
(4) $\quad \pi_{n-1}(S O(n+1))=\pi_{n-1}(S O(\infty))=\left\{\begin{array}{ll}Z_{2} & \text { if } n \equiv 1(\bmod 8) \\ 0 & \text { if } n \equiv 5(\bmod 8)\end{array} ;\right.$
(5) $\quad \pi_{n-1}(S O(n))= \begin{cases}Z_{2} \oplus Z_{2} & \text { if } n \equiv 1(\bmod 8) \\ Z_{2} & \text { if } n \equiv 5(\bmod 8) ;\end{cases}$
(6) $\pi_{n}(S O(n))= \begin{cases}Z_{2} \oplus Z_{2} & \text { if } n \equiv 1(\bmod 8) \\ Z_{2} & \text { if } n \equiv 5(\bmod 8) ;\end{cases}$
(7) $\pi_{n}(S O(n+1))= \begin{cases}Z \oplus Z_{2} & \text { if } n \equiv 1(\bmod 8) \\ Z & \text { if } n \equiv 5(\bmod 8) .\end{cases}$

By (4) and (5), we have
(8) Image $\left(p_{2 *}\right)=2 \pi_{n}\left(S^{n}\right)$.

By (2) and (3), $p_{1 *}$ is an isomorphism if $n \equiv 1(\bmod 8)$. It follows that Image $\left(p_{*}\right)=\operatorname{Image}\left(p_{2 *}\right)=2 \pi_{n}\left(S^{n}\right)$ and so p does not have a cross section if $n \equiv 1(\bmod 8)$.

Let $n \equiv 5(\bmod 8)$. Note that i_{*} is the composition of the canonical homomorphisms:

$$
\pi_{n-1}(S p(k)) \longrightarrow \pi_{n-1}(U(2 k)) \longrightarrow \pi_{n-1}(S O(n-1)) \longrightarrow \pi_{n-1}(S O(n)) .
$$

It follows from (1), (2), (5) and an equation $(2 k)!\equiv 0(\bmod 4)$ that $i_{*}=0$. Hence, by (2), (3), (4), (6) and (7), we have a commutative diagram with exact columns:

Choose $x \in \pi_{n}(S O(n) / S p(k))$ such that $\partial(x)$ is the generator. Then $t_{*}(x)$ is of finite order and $\Delta\left(t_{*}(x)\right)=\partial(x)$. Hence the order of $t_{*}(x)$ is two, so Δ splits and $p_{1 *}$ maps Z isomorphically onto a free summand. Therefore $\operatorname{Image}\left(p_{*}\right)=\operatorname{Image}\left(p_{2 *}\right)$ which equals to $2 \pi_{n}\left(S^{n}\right)$ by (8), so p does not have a cross section. This completes the proof.

References

[1] Bott, R., The stable homotopy of the classical groups, Ann. of Math., (2) 70 (1959), 313-337.
[2] Harris, B., Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc., 106 (1963), 174-184.
[3] Kervaire, M, A., Some nonstable homotopy groups of Lie groups, Illinois J. Math., 4 (1960), 161-169.
[4] Önder, T., On quaternionic James numbers and almost-quaternion substructures on the sphere, Proc. Amer. Math. Soc., 86 (1982), 535-540.
[5] , Almost-quaternion substructures on the canonical C^{n-1}-bundle over $S^{2 n-1}$, preprint.

Added in proof. I was informed from T. Önder that he also obtained Theorem 1 by using his methods [5].

[^0]: Communicated by N. Shimada, February 1, 1983.

 * Department of Mathematics, Osaka City University, Osaka 558, Japan.

