
Orthogonality of generalized eigenfunctions
in WeyFs expansion theorem

By

Michihiko MATSUDA

§ 0. Introduction

Let us consider an ordinary differential equation of the second order

(0. 1) —-q(x)u(x) + \u(x) = 0 , (0^*<oo) .
ax

Here q(x) is a real-valued function which is locally summable and x = 0 is

a regular point of the equation. Let <p(x\\) be the solution of the equa-

tion which satisfies

9>(0;\) = sin (9, -®£(0;\) = cos 0 ,
dx

where 9 is a real constant.

H. Weyl proved that there exists a spectral measure P0(X) which satisfies

the following two conditions (A) and (B) (Weyl [14]):

(A) The transformation

from L2(0, oo ; dx) into L2( — oo , 4- oo ; <f p0) is isometric, namely

(0. 2) p| £FPo/(X) | Vp0(X) = f" | /(*) \'dx.
J -oo U Jo

(B) £FP() transforms L2(0, oo;rf^) onto Z/2(— oo, +o

Such a spectral measure is unique03 and is called the Weyl spectral

measure.

Let us call a spectral measure p(X) which only satisfies (A) a pseudo-

spectral measure.
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I. M. Gelfand and B. M. Levitan succeeded in determining the

potential function q(x) from a given spectral measure p(X). In general,

however, p(X) turns out to be a pseudo-spectral measure for the equation
with the q(x) thus determined. They gave a sufficient condition for p(X) to

be the Weyl spectral measure. In particular, if p(X) vanishes for large

— X, p(X) will be the Weyl spectral measure (Gelfand-Levitan [4]).
Also M. G. Krein gave a sufficient and necessary condition for a

pseudo-spectral measure to be the Weyl spectral measure (Krein [7]).

Previous to them V. A. Marcenko proved that q(x) is uniquely determined

by p(X) (Marcenko [9]).

We are interested in the condition which q(x) should satisfy in order

that every pseudo-spectral measure of the equation be the Weyl spectral
measure.

We shall prove in § 1 that, in the limit-point case at infinity, a pseudo-
spectral measure is the Weyl spectral measure and that, in the limit-circle
case at infinity, there always exists a pseudo-spectral measure which is not
the Weyl spectral measure.

Combining this theorem with the result of Gelfand-Levitan, we see that

the spectrum in the limit-circle case at infinity is always unbounded below

(§2).
K. O. Friedrichs stated that the following theorem was a result of Rellich

(Friedrichs [3]):

Let q(x) be continuous and negative on [0, oo]. Then, if q(x)-> — oo
as x -» oo and if

(0.3) r\q(x)\-v2dx<oo,
the spectrum is discrete and unbounded below.

Also D. B. Sears and E. C. Titchmarsh obtained the following result:
if the inequality (0. 3) holds, the equation is of the limit-circle type at infinity

and hence the spectrum is discrete (Sears-Titchmarsh [11], Titchmarsh

[13]). Our theorem gave a proof of lower unboundedness of the spectrum.

Proposition 3 in § 2 is due to Y. Saito.

(1) In the limit-circle case at infinity we set a boundary condition at infinity.
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§ 1. Properties of the pseudo-spectral measure

Let 3)^ be the class of all functions f(x) which satisfy the following

four conditions (i). . (iv):

( i) f(x) has a compact carrier,

(ii) f(x) is expressed in the form

/(*)= ( dy\*g(z)dz + c
Jo Jo

where g(z) is a locally summable function and c is a constant.

(iii) — g(x) + q(x)f(x) belongs to L2(0, oo\dx).

(iv) /(O) cos 6 -/'(()) sin 9 = 0.

We shall define a symmetric operator L0 with the domain <DQ by

(1.1) LJ(x)= -*(*) + «(*)/(*)•

Let us define a pseudo-spectral measure as a spectral measure

which satisfies the following identity for every f(x) in the class C0 of all con-

tinuous functions each of which has a compact carrier,

(1.2) ("|/(*)l'«k= PI ("/(*) p(*;x)<fc'«/p(x).
JO J+oo| Jo

Let us denote \ f(x)<p(x;\)dx by 3?of(\) for f(x) in C0. Then we
Jo

have an isometric transformation £?0 from C0 into L2( — oo , +00; dp). Since

C0 is dense in L2(0, oo \dx\ we can extend £?„ to the isometric transforma-

tion 3p which is defined on L2(0, oo;^). £Fp is expressed for every

function h(x) in L2(0, oo ; &) in the form

(1. 3) 2y*(X) = 1. i. m. ( h(x)<p(x\\)dx .
N->°° Jo

We shall define a bounded linear transformation £F* from L2(—oo,
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+ oo ; dp) onto L2(0, oo ; dx) by

(1.4) <3'*|)/> = <f)£FP/>P.

Here < , > and < , >p are the inner products in £2(0, oo ;dx) and L2(— oo,

-f- oo ; rfp), respectively.

Wehave||ffp*f||i£||f| |p.

Putting % = 3ph in (1. 4), we have

Hence it follows that £F* SFp is the identity operator.

Proposition 1. Let p(X) be a pseudo-spectral measure. Then £F*

expressed in the form

(I. 5) ff*f(«)

continuous function £(X) which has a compact carrier.

Proof. By the definition we have

Suppose that f(x) belongs to CQ . Then we get

o

Hence we obtain

- 0.

Since this identity holds for every f(x) in CQ, we have the proposition.

Corollary. Let p(X) 6e « pseudo-spectral measure. Then for every

h(x) in L2(0, oo ; dx) we have

(1. 6) h(x) = 1. i. m. [N 39h(\)q>(x;\}dp(\} .
jyr+°o J _jv
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The following three conditions are equivalent:

(i) 3r
p3'? = identity,

(ii) 3?f is injective.

(iii) £?p is surjective.

Theorem 1. In the limit-circle case at infinity there always exists

a pseudo-spectral measure which is not the Weyl spectral measure. In the

limit-point case at infinity any pseudo-spectral measure p(X) is the Weyl

spectral measure.

Proof. In the limit-circle case at infinity we can set two different

boundary conditions at infinity. According to these boundary conditions

we have two different PlancherePs identities

00

I|A||'= ii I<A. *>(•;*•-)>I'<£•

Hence we have

CO /"
111 I I O <k. V i / 7 / _ \ V I Q t y l ' 2

Let p(X) be the measure defined by

f
J

Then p(X) is a pseudo-spectral measure.

However, no function h(x) in L2(0, oo ; d.%) can satisfy <A, ^>( • ; X1)>

= 1 and <A, <^( • ; XQ> = 0 (for every m) simultaneously, because {<p(x ; A4)} ̂ =1

is a complete system. Hence p(X) is not the Weyl spectral measure.

In the limit-point case at infinity the operator L0 is essentially self-

adjoint. The class Sip of all functions which can be expressed in the form

h(x) = (fj,—L0)f(x) with/(#) in S)^ is dense in L2(0, oo \dx) for every complex

number JJL that is not real.
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Let p(X) be a pseudo-spectral measure. Then for h(x) in jR^ we get

Put LlJl = (fjL — L0)~
1. Then, by the identity L^h(x)=f(x) we have

„.„
This identity holds for every h(x) in L2(0, oo;Ac), because jR^ is dense

in L2(0, oo;<&).

For every finite interval A = («, i), let us define the bounded symmetric

operator £A by

(1.8) <EJi, hy = lim _L f
s^o 2^ Jcg

where cs is the following path of integration.

1
ft•f

n if 6 w

cj " ' » -

I

4

O L ;_

Then E± proves to be a projection in L2(0, oo-dx)™

Let PA denote the projection defined by

0 ,

First we shall prove the identity

(1.9) £FP£A = PA£?P.

For every f(x) in C0 we have by (1. 7) and (1 .8)

(1. 10) <EJ, /> =

Writing this as

we get

(i. ii)
(1) Stone [12], Theorem 5.6.
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for every pair off^x) andf2(x) in C0.

. Thenweget by (1. 11)

<P^f, SFp/^p = 0 .

Hence the identity

holds, because £(X) and 3?PE±f(\) are othhogonal. Since £"Ais a projection,

we have

(1.13) <

On the other hand, since PA is a projection, we have by (1. 10)

(1. 14) <EJ, /> = <PA£FP/, £?P/>p = ||PAffP/||; .

Comparing (1. 13) with (1. 14), we get

\\3fEj\\i = \\p^fm.
Hence we obtain from (1. 12) the identity

HfllS = o.
Since C0 is dense in L2(0, oo \dx), the identity (1. 9) is proved.

Suppose that a function ??(X) in L2( — cx> , + oo ; rfp) satisfies <^?, Stpfy?— 0

for every /(#) in L2(0, oo;rf^). We prove that 77 = 0 in L2(— oo, +oo;Jp).

It follows from (1. 9) that PA£?P/(X) belongs to the image of £FP for every

f(x) in C0 . Hence for every finite interval A we have

= 0
J A

Since the inequality

holds, we obtain

For every X0 in (— ex), +00) we can take such a function /0(#) in C0 that
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2r
p/0(X0)4

:0. Since 3r
p/0(X) is a continuous function of X, ??(X) vanishes

on a neighbourhood of X0. Hence we have ?? = 0 in L2(— oo, + oo ;dp) .

Remark 1. K. Yosida constructed a pseudo-spectral measure with

the classical method of Hilbert (Yosida [15], Hilbert [5]).

Remark 2. The second part of our theorem can be proved by the

method E. A. Coddington and N. Levinson used to prove WeyPs theorem

in the limit-point case at infinity. (Coddington-Levinson [1], 239-242).

See also Ikebe [6].

Remark 3. If we assume the existence of the Weyl spectral measure,

we can prove the second part of our theorem more easily using Lemma 2

in Saito [10] § 1. See Remark in Saito [10] § 1.

§ 20 Pseudo-spectral measures in the limit-circle case
at infinity

The spectrum in the limit-circle case at infinity is discrete (Weyl [14]).

Now we shall prove

Theorem 2. The spectrum in the limit-circle case at infinity is always

unbounded below.

Proof. We parametrize boundary conditions at infinity with a which

varies over [0, 2n}. Let pa(X) be the Weyl spectral measure under the

boundary condition parametrized with a.

First we shall prove that there exists at most one value of a for which

Pa,(X) vanishes for large —X. Suppose in contrary that there exist two

such values a± and a2. Then we could construct from p^X) and pa>2(X)

a pseudo-spectral measure p(X)which is not the Weyl spectral measure and

vanishes for large —X. But this is impossible, because by a result of

Gelfand-Levitan (Gelfand-Levitan [4], Levitan [8]) every pseudo-spectral
measure that vanishes for large — X is the Weyl spectral measure.

If there exists a parameter aQ such thatpQJO(X) vanishes for large — X,

we have for every f(x) in 3)Q
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where c is a real constant. Then every self-adjoint extension of L0 becomes

lower bounded. cl) Hence every pa(X) vanishes for large —X. This is a

contradiction.

Corollary. For every pseudo-spectral measure p(\) in the limit-circle

case at infinity } the support of the measure dp is unbounded below.

Remark 1. E. C. Titchmarsh and D. B. Sears proved the following

theorem:

Let (a) q(x)£Q, ?'(*)< 0,

q(x) — > — oo as x — > oo ,

<?'(*) = 0{ | ?(*)!<},

and let (b) q"(x) be ultimately of one sign. Then, if

(2.1) J" I ?(*) I -"*<&< oo,

the equation is of the limit-circle type at infinity and hence the spectrum is

discrete (Titchmarsh [13], Theorem 5. 11., Dunford- Schwartz [2], 1448.,
Sears-Titchmarsh [11]).

Combining our theorem with Sears-Titchmarsh's we have the follow-

ing result:

Under the conditions (a) and (b), if the inequality (2. 1) holds, then

the spectrum is discrete and unbounded below. C2)

Remark 2. By Weyl's classification theorem, Theorem 2 is equiva-

lent to the following: if the L0 in § 1 is bounded below, then the equation

is of the limit-point type at infinity. In higher-dimensional cases, it is

known that, if the operator LQ=— A + F(#) is lower bounded, then it is

essentially self -adjoint. However, in this case it is assumed that V(x) is

locally square summable, while in our case q(x) is assumed to be locally sum-

mable. See Saito [10] § 2.

(1) Dunford-Schwartz [2], 1454.
(2) To prove this fact only, it is unnecessary to use Theorem 2. The lower unboun-

dedness of the spectrum in the case where q(x)-+ — °° as #->oo, can be proved by an
elementary method, This remark was given by K. Asano,
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The following proposition explains why a spectral measure which

only satisfies (A) in § 0 is called here a pseudo-spectral measure.

Let 5l(p) be the range of EFP. Then jR(p) is the Hilbert space. If

both f(X) and X|(X) belong to 5i(p), we set AP£(\) = Xf(X). The image

of ^)0 by £?p is contained in the domain of Ap , because for every f(x) in <DQ

we have

X£FP/(X) =

Hence Ap is a closed symmetric operator in jR(p).

Proposition 2. Le£ p(X) be a pseudo-spectral measure which is not

the Weyl spectral measure. Then we have

Here f?"1 is the restriction of £?* ow jR(p).

Proof. We prove the following: if L = 3?^1A>P3?P is self-adjoint, then

p(X) is the Weyl spectral measure.

By virtue of a theorem of Stone (Stone [12], Theorem 10.17.) there

corresponds a boundary condition at infinity to the self-adjoint L, because

L is an extension of LQ . Hence we have a complete orthogonal system

of eignefunctions of L, {<p(x ; \n)} ~=1 . By the definition we get

where <pn(x) = cp(x] Xw).

Since 3r
p<pn(\) = (<pn, cp(- ;X)> vanishes only on \m (m^ri), we have

\ dp = Q for every / that does not contain an eigenvalue of L.
J i

Writing \ dp as cm, we have cn= \\<pn\\~
2> because

J l^ml

= 2

Hence £FP is surjective and Sl(p) = L2(— oo, 4- oo ;Jp).

Remark. V. A. Marcenko proved that for every increasing function
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p(X) there exists at most one equation of type (0. 1) which has p(X) as a

pseudo-spectral measure (Marcenko [9]). Hence if p(X) is a pseudo-

spectral measure which is not the Weyl spectral measure of an equation

of type (0. 1), then p(X) can not be the Weyl spectral measure of any equa-

tion of type (0. 1).

!

2-ff
dcr= 1. Then we have the

0
following identity for f(x) in C0

(2. 2) H/ l l 2 = dote) I £F0/(\) | *dPa(\) .
Jo J-°°

Hence we obtain a pseudo-spectral measure TT^X) defined by

(2.3)

As to the inverse of this statement we only have the following

Proposition 3.C1) Let {q>m}m=i and {</>„} ~=1 be the complete ortho-

normal systems of eigenfunctions which correspond to different boundary condi-

tions at infinity. If we have the identity for every h(x) in L2(Q, oo \dx)

(2.4) ||A||2 = fj |<A, <pmy\*am+ f] |<A, ^>|2i«,
m=i n=i

where am and bn are non-negative numbers, then we have am=a, bn=\ — a,

for all m and n.

Proof. By (2. 4) we have

(2- 5)

for every pair of f(x) and h(x) in L2(0, oo;^). Put f(x) = <p/g(x) and

h(x) = <pl(x) in (2. 5). Then we obtain

(2- 6) <<?*

Since ^93^, ^> does not vanish for any k and /, we get from (2. 6), l = ak

(1) This proposition is due to Y. Saito.
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+ 6/. Putting &=1, we have I = a1 + bl, and putting /=!, we have 1 = ^

+ b1. This proves our proposition.
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