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Microlocal Analysis

By

Masaki KASHIWARA(*> and Takahiro KAWAI(*}

Since much of the development of microlocal analysis was achieved at

Research Institute for Mathematical Sciences, Kyoto University, we want to

present a survey on microlocal analysis in celebration of the twentieth birthday

of the Institute. As several expositions on microfunctions are now available

([18], [8], [26]), we want to minimize the explanation on microfunctions and

concentrate our attention primarily on the theory of microdifferential equations,

in particular, on the theory of holonomic systems.(**}

In this article we restrict our attention to the microlocal analysis in analytic

category, and concerning the microlocal analysis in C°°-category, we refer the

reader to [10], [5], [11] and [27]. We also refer the reader to [20] and the

references cited there for the interrelation between the microlocal analysis in

C^-category and that in C°°-category.
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§ 1. Microfunctions

In order to fix the notations used in later sections, we first recall the defi-
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(**> jn tke earjy stage of the development, another terminology "maximally overdetermined
system" was used to mean a holonomic system. As it will be explained later, the old
terminology manifests the character of the system in question. However, it is somewhat
too lengthy, and the new one, which indicates its relation to integrable connections, is
now more commonly used in literature.



1004 MASAKI KASHIWARA AND TAKAHIRO KAWAI

nition and some basic properties of the sheaf ^ of microfunctions. See S-K-K

[24] and [18] for the details. Note, however, that the sheaf ^ defined in

S-K-K [24] corresponds to the sheaf y^ in the notations used here.

In general, for a real analytic manifold N and its submanifold M, let T&N

and MN* ( = (N — M)\_\T$fN) denote the conormal bundle supported by M and

the comonoidal transform of N with center M, respectively. (Cf. S-K-K [24],

Chap. I, §1.2.) We denote by n the canonical projection from MJV* to N or

its restriction to T&N. To define the sheaf &M of microf unctions, we choose a

complexification X of M as N. In this case, T^X is canonically isomorphic

to yf^lT*M. Now, tfM is, by definition, 3?T^x(n~l®xY®u>M\x where n
denotes dim M, Ox denotes the sheaf of holomophic functions on X, a denotes

the antipodal mapping, i.e., a(x, -v/ — l£) = (x, —j — lg), and COM\X denotes the

orientation sheaf of M in X, i.e., J^M(CX). Here we note that 3$?J
T*x(n~ 1@x)= 0

holds for j ^ n. In what follows, we denote T*M — TffM by T*M and n \ %*M

by TT. We also denote by y the projection from ^/ —1T*M to ^/ —15*M, the

pure imaginary co-spherical bundle of M.

We now list up some basic properties of the sheaf ^M.

(1.1) <&M\M = &M> tne sheaf of hyperfunctions.

(1.2) VM\j=ii*M = y~*y*(VM\j=iT*M)-

(1.3) For any point (x0, ^/ — 1 <^0) in «J~^IT*M there exists a canonical

surjective homomorphism

sp: &M}XQ > ^M.CXO.V^I^O) •

(1.4) The following sequence is exact:

0 >J*M > ^M -^ «*(«M!^T**M) > 0 •
Here J/M denotes the sheaf of real analytic functions on M.

The exact sequence (1.4) means that the sheaf ^M\^F\T*M describes the detailed

structure of singularities of a hyperfunction by dispersing it over the (pure

imaginary) cotangent bundle. This fact is really the starting point of microlocal

analysis, namely, local analysis on the cotangent bundle.

As we scarcely need any further concrete expression for a section of the sheaf

of microfunctions in later sections, at least in an explicit manner, we do not

discuss it here. See [18] and [8] for it.
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§ 2. Mtcrodifferentlal Operators

Let M be a real analytic manifold of dimension n and X its complexification.

Then the sheaf ^£ of linear differential operators on X is, by definition,

^Sx(&xx J})> where Ax denotes the diagonal subset of X x X and Q<°.n) denotes

the sheaf of w-forms in the second variable. It immediately follows from the

definition that &% acts upon the sheaf g$M of hyperfunctions. It is then natural

to consider the sheaf 3?M defined by «^/=iTi(MxM)(^MxM ® ^M) so that
•&MXM

we may find a sheaf acting upon the sheaf ^M of micr of unctions. Here VM

denotes the sheaf of volume element on the second factor of M x M. One can

verify that ^M is really a left j£?M-Module, and this sheaf J£?M, called the sheaf

of microlocal operators, plays an important role in the study of (non-)solvability

of linear partial differential equations (e.g. S-K-K [24], Chap. Ill, § 2.3). How-

ever, the sheaf £?M is too large and not amenable to algebraic manipulations.

Hence we introduce another sheaf $x of operators much smaller than £?M

and amenable to algebraic manipulations. Actually we can associate the so-

called symbol sequence to each section of £"x and important operations on

sections of <jf£ such as the composition can be expressed in terms of the as-

sociated symbol sequences. (See (2.6) and (2.7) below.)

To define <f£, we introduce a complex analogue ^\x of the sheaf ^M for

a pair (X, Y) of a complex manifold X and its complex submanifold Y. Let d

denote the (complex) codimension of Y in X. Then, in parallel with § 1, we find

&T$x(n~*Gx) = Q for J^d and define ^f lx by Jffaxfr'^x)"- Here n denotes
the projection from YX* to X. A section of &Y\X *s called a real holomorphic
micr of unction ^ supported by y.(**) Let us now consider the sheaf ^f of

integral operators whose kernel functions are sections of ^5x|xxx5 that is,

&x=:e£*x\xxx ® ^jpxx' wnere dx is the diagonal set of XxX and n =
GX*X

dim X. A section of <ff is called a holomorphic microlocal operator. Note

that ^f \T$X==@X holds. It is also easy to see that, if X is a complexification

of a real analytic manifold M, then there exists an injection from «ff |r*x to

&M. Hence a holomorphic microlocal operator defines a microlocal operator.

A recent result of Aoki [1], [2] enables us to do the symbol calculus for holo-

morphic microlocal operators. Although his result is important and interesting,

(H° Although this terminology is not very euphonious, we want to keep the terminology
"holomorphic microfunction" for a section of the sheaf ^f\x introduced later ((2.2)).

(**) "Supported by r*X "might be more appropriate.
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here we discuss the symbol calculus only for a more restricted class of operators,

that is? microdifferential operators. To define it we introduce the cotangential

projective bundle P*X = (T*X-T$X)IC*. We denote by yc the projection

from t*X ( = T*X-T$X) to P*X. Then the sheaf <f£ of the required

operators — which we call microdifferential operators (of infinite order) — is

given by

| (a) <?x\t*x~fy

As we will need it later, we define, in parallel with the definition of £ J,

the sheaf &Y\X of holomorphic microfunctions supported by a submanifold 7

o fZby

f (a) V?}

\ ' &><*>

where yc denotes the projection from f $X(=T$X- Y x T$X) to P$X =

The sheaf ^ f thus defined satisfies

(2.3) ***?^#?

if dimX>l. (If dimX=l, ^J is a subsheaf of n*<?%.) This means that

@x is dispersed over T*X, that is, £ f is the microlocalization of ^f, and hence

we call it the sheaf of microdifferential operators of infinite order. Here we note

that S-K-K [24] uses another symbol &x to denote #$ and calls it the sheaf

of pseudo-differential operators. Actually, the correspondence between a

microdifferential operator and a symbol sequence stated below shows that,

essentially speaking, a section of <^f determines an analytic pseudo-differential

operator. (Cf. [3], [4].)

In order to define the notion of the symbol sequence of a microdifferential

operator, we consider a conic^) open subset Q of T*X and suppose that a

coordinate system (x, c) is given there. A sequence {p/x, £)}jez of holomorphic

functions defined on Q is called a symbol sequence (of a microdifferential oper-

ators) if it satisfies the following conditions (2.4.a)~(2.4.c):

(*} A subset Q of T*X is called conic if it is stable under the action of multiplying cotangent
vectors by a non-zero complex number. For a subset of a real cotangent bundle T*M,
multiplication of strictly positive real number is used to define the notion "conic".
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' (a) PJ(X, c) is homogeneous of degree j with respect to t, that is,

Z £i gf' =;P/x> 0 holds.

(b) For every g>0 and every compact subset X of O, there exists a

constant CEiK such that

(2.4)

holds.

(c) For every compact subset K of Q, there exists a constant RK such

that

sup |p,(x, £)\^RKJ(- /)! 0'<°)
K

holds.

The most important property of a symbol sequence is that there exists a one-

to-one correspondence between the spaces of symbol sequences and the space of

sections of £ % over Q. Although the way of assigning a mierodifferential

operator to a symbol sequence is not unique, we usually assign the Wick product

P(x, Dx) = :£ PJ(X, £): (the notation used in [2] after the notation used in

literature in physics) to a symbol sequence {p/x, <!;)}, namely, all the multi-

plication operators appear to the left of all the differential operators in P(x, Dx).

The notation £ Pj(x9 Dx) is also used to denote :]£ p/x, <!;):. This assignment

of a mierodifferential operator is consistent with the assignment (2.5) below of a

microlocal operator JT to a symbol sequence. Note also that, if Q contains a

point (x, <f) = (.v, 0), (2.4.a) entails p; = 0 for j<0. This fact corresponds to
(2.t.b).

We now list up some basic properties of symbol sequences.

(2.5) Let <Pv(z) (v^O, -1, -2,...) denote T(v)/(-z)v, where its branch is

chosen so that $v( — l) = r(v) and define $_m(z) (m=0, 1, 2,...) by

-z'"(log(-z)- f; l// + y)/m!, where y = 0.57721 ••• denotes the Euler
7=1

constant. Let Q be a conic complex neighborhood of a point (x0,

x/ —f£0) in -v/ — 1 T*M and define a multi-valued holomorphic function

K(z9 w, 0 by £ p/z, £)4>B+/<z-w, C» for each symbol sequence

{jPjjjez °n ^- ^et ^(x, y, £) denote the microfunction obtained by taking
the boundary value of K(z9 w, Q from the domain Re<z — w, C><0.

(See S-K-K [24], Chap. I, § 1 or [18], Chap. 2 for the precise meaning

of "taking the boundary value".) Then
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determines a microlocal operator JT in a neighborhood of (x0, -N/ —

Here

atf) = (- l)1'1^! A - A d^.i A d&+1 A .- A df,.
1=1

Note that the origin of the above representation is the celebrated result

of John [12] on the plane wave decomposition of the (5-function.

(2.6) Let P= :£ Pj(x, £)•* and Q= :]T qk(x, £): be microdifferential operators

defined in a neighborhood of (x0, £0). Then their composite P°Q is a

well-defined microdifferential operator and it has the form :£ rz(x, 0:,
z

where {rjtez is the symbol sequence defined by

r{x, f) = S -jrDipfa QDZq^x, {) ,
l=j+k-|a | a"

where a = (a lv..,an)eZ^(*),a! = a1!.-.an!5 |a|=a1 + .--+aB,

(2.7) Let P be a microdifFerential operator and [pj(x, Z)}JeZ
 tne corresponding

symbol sequence in a coordinate system (x). Let (jc) be another

coordinate system and denote by (Jc, J) the corresponding coordinate

system on T*Z, i.e., ?,-= ̂  (dxk/dxj)£k. Let {p7-(x, ?)}7-eZ be the symbol
fe=i

sequence corresponding to P in the coordinate system (x, c). Then we

have

where /= {(j, v,^,..., av, a)e Zx Z+ x(Z^)vx Zj; |a

fe = j + v-|a1| ----- |av| and a = a1 + ---+av}. Here <?, D£X> is, by
n ~definition, X! l/^c*/- In particular, if p/x, (^) = 0 (j>m), then we have

j=i

p/x, |) = 0 (j>m), pm(^5 Z) = pm(x, 0 and ^.^x, |)

/ K\ 1 xn K S2xk d2 , ~\
=Pm-l(X, 0+^ Z Ik fo Z* fit fit Pm(x, 0-

(2.8) It follows from (2.7) that the property (Fm) "a microdifferential operator

P has the form : X pfa, £):" is independent of the choice of a local
7 =

We denote by Z+ the set of non-negative integers.
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coordinate system. We denote by #x(
m) the subsheaf of S"x consisting

of sections satisfying the property (Fm). A section of &x(m) *s called a

microdifferential operator of order (at most) m. The union \J (*x(iri) *s

m

called the sheaf of microdifferential operators of finite order and we denote

it by <fx. We also denote #X\T*X (resp., <^x(m)lrjx) hy &x (resp.,
&x(mj). For a microdifferential operator P of order at most m, pm(x, £)

is well-defined by (2.7) (i.e., independent of the choice of a local coordinate

system) and we call it the principal symbol of P. We denote it by ffm(P).

By assigning crm(P) to P in £x(m), we obtain an isomorphism between

#x(m)/#x(m — 1) and 0T*x(m), the sheaf of holomorphic functions on

T*X which are homogeneous of degree m with respect to the fiber co-

ordinate £.

(2.9) If P in <fx(m)(jco>4o) satisfies

<7m(P)(x0, £o)^0,

then there exists its inverse P"1 in # —

§ 3. Quantized Contact Transformation

Egorov [6] observed that one can associate a transformation of pseudo-

differential operators to each homogeneous canonical transformation so that the

commutation relations and orders of pseudo-differential operators may be pre-

served and that their principal symbols may be transformed according to the

homogeneous canonical transformations. To formulate his observation in our

context, we employ holonomic systems of microdifferential equations. In

S-K-K [24], such a transformation of operators is called a quantized contact

transformation. Its counterpart in C°°-category is the theory of Fourier

integral operators which Hormander [10] developed.

Before beginning the discussion on the quantized contact transformation,

we review some elementary facts about the sheaf of microdifferential operators

and systems of microdifferential equations.

(3.1) The sheaf #x is Notherian (from the left and the right), namely,

(a) £x is coherent as a left ^-Module and as a right ^-Module.

(b) The stalk #X}X is a left (and right) Notherian ring for each point

x in X,
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(c) For each open subset U of X , a sum of left (and right) coherent

^rip-Ideals is also coherent.

(3.2) @x and #X(Q) are Notherian in the above sense.

(3.3) £x is flat over $x(®) and it is fiat also over n~l@x-

(3.4) #x(&x, %, resp.) is faithfully flat over gx (%, ®x, resp.).

(3.5) Let

(3.5.a) Jt' -*-» JZ -JU uf"

be a complex of coherent ^-Modules defined on an open subset of

t*X. Let j?'Q, ^0 and „#% be coherent sub-<fx(0)-Modules of Jt' ,

^ and ,^f " which generate them as ̂ -Modules respectively, and suppose

that (p(~//'o) is contained in Jt§ and that *K^0) is contained in ,/fo-

Define the associated symbol sequence

(3.5.b) Jtf -?-> Jt -i* uf"

by denoting by Jt (resp.5 u?' and uf") the ^^^-Module uf0/^y( — I)^f0

(resp., ^f
0/^x( — l)ufo an^ ^S/^(~l)^o)- If the symbol sequence

(3.5.b) is exact, then (3.5.a) is exact. Furthermore,

(I <: r\ ^" _ v // _ v ^^
\j.J,\s) tstt o ^ cxjSfo * «-"» o

is then also exact.

These algebraic properties of the sheaf £x etc. are basic in our treatment of

systems of (micro)difTerential equations.

In what follows, a system of microdifferential (resp., linear differential)

equations of finite order(*> means, by definition, a left(**} coherent <fx-Module

(resp., ^-Module) ^. The support of (^-Module JK (or £x ® n'1^ if
TT-l^X

J% is a ^-Module) is called the characteristic variety of Jit and denoted by

Ch (^). A very important and fundamental result on the geometric structure

of Ch MO is:

(3.6) ChMO is an involutory subvariety of T*Z. (S-K-K [24], Chap. II,

§ 5.3. See also [9], [21] and [7].)

(*5 In this article we do not discuss general systems of (micro)diflerential equations of
infinite order, but restrict ourselves to the study of the so-called admissible system, i.e.,
an ^y-Module of the form ^ (x) ^[ for some left coherent ^-Module uf.

Sx
(**} If there is no fear of confusion, we omit the adjective "left".
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It immediately follows from (3.6) that

(3.7) codim Ch (.$) g dim X .

If the equality in (3.7) holds (and hence Ch (^) is Lagrangian), we call ^// a

holonomic system (or a maximally overdetermined system). One important

property of a holonomic system is that its solution space is finite-dimensional

even locally. ([13], [15]) This suggests that one might study the structure of a

function by the holonomic system that it satisfies, if such a system exists. This

viewpoint was first advocated by Sato in 1960 (and probably also by Gel'fand

around the same time). In later sections we show some typical examples where

such "holonomic approach1' is successful.

We first prepare some terminologies: Let ~/S be a system with one

unknown function, namely Jt = $xi\ for a generator u with a defining relation

e/w=0(*). Then, the symbol Ideal'***,/ is, by definition, the coherent Ideal

0r*x(^n AO)A*"nA-l)) of 0r*x- When Jf is reduced, we say that ^ is
simple, and we call u a non-degenerate section of the simple system J*t .

Now, using the notion of a simple holonomic system, we obtain the following

TheoremS.l. Let X and Y are complex manifolds of the same dimension

and let A be a locally closed non-singular homogeneous Lagrangian sub-

manifold of T*(X x Y). Suppose that

(3.8)

and that the natural projections p: A-»f*X and q: A-*f*Y are open

embedding. Let ^f = S'XxYK be a simple holonomic system whose characteri-

stic variety is A. Then, by assigning PK(resp., QK) to P (resp., Q) for P in

&x (resp., Q in £y), we find an isomorphism from £% to P*(#XXY ® ^)
<?xx y

(resp. from ff™ to q*(#x*Y ® ^))- Furthermore, if we denote by cp the map

we find an anti-isomorphism 0 from the C-Algebra (p~1(#Y\q(A)} to tne C-

Algebra *$\P(A} by assigning P(x, Dv) in <?%\P(A) to Q(y, Dy) in ^\q(A} so

that P(x, Dx)K(x, y) = Q(y, Dy)K(x., y) may hold. This anti-isomorphism

preserves the order of microdifferential operators, namely,

w That is, urs^jr/^.
(**) Using (2.9) we can easily verify that the characteristic variety of the system ~% coincides

with the set of zeros of the symbol Ideal,/:.
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coincides with ^>
x(

m)\P(A) for every integer m. In particular,

coincides with #x \p(A}.

Since $ in Theorem 3.1 is anti-isomorphism (i.e., $(226i) =

we make a composition of $ with another special anti-isomorphism * defined

below so that we may find a C-Algebra isomorphism. To define the anti-

isomorphism * , we assume that X is an open subset of Cn and choose

1=1

as ^ in Theorem 3.1. In this case the map (p reduces to the antipodal map

a, i.e., cp(x, c) = (x, — £). In this situation <3>(Q) is denoted by Q*, and g* is

called the adjoint operator of Q.

Now, returning to the general situation discussed in Theorem 3.1, we define

\l/ by aocp and V: ^-1(^y L-i«(^))-*^?lPu) by #° *. Then it is clear that \j/
is a homogeneous canonical transformation and W is a C- Algebra isomorphism.

We call *F (or the pair (^, !F)) a quantized contact transformation (with kernel

function K). Note that, for Q in <fy(ra), ffm(¥(Q)) = Gm(G)°ll' holds, namely,
?P preserves the principal symbol. We can further prove the following

Theorem 3.2. For any homogeneous canonical transformation \/s, we can

locally find a quantized contact transform (\jj, *F).

We have so far discussed the quantized contact transformation in the

complex domain. If we further suppose that X (resp., 7) is a complexification

of a real analytic manifold M (resp., N) and that A is real, then making use of a

microfunction solution K(x, y) of the system ^, we can define an integral

transformation Jf: (W \^IT^M}~IC^N-^^M by \ K(x, y)u(y)dy. This transfor-

mation tf is an isomorphism if K(x, y) never vanishes on A n ^/ — 1T*(M x N).

Therefore we obtain

Theorem 3.3. For any real homogeneous canonical transformation !F,

we can locally find a quantized contact transformation (i/f, !P) and an isomor-

phism tf\ (y\J=lT*M)~~le£N^&M S0 tnat

holds for Q in $™ and u in
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§ 4. Simple Holonomic Systems

Before beginning the discussion on general holonomic systems, we study

the structure of simple holonomic systems. Let us first fix a non-degenerate

section u of a simple holonomic system ^ = gx\S and denote Ch (Jt ) by A.

We will first define some invariants associated with the section u on the generic

points of A, so that they may determine the structure of ^-Module Jt there.

Since we consider the problem microloeally, we assume from the first that A

is non-singular. An important invariant GA(U) of w, called the principal symbol

of u along A, is defined as follows :

For P= : £ Pj(x, £): m &x(m) satisfying pm\A = Q9 let Lj»m~1), or LP for short,

denotes the following first order linear differential operator on A :

(4.1) L^ = Hpm(

Here Hpm denotes the Hamiltonian vector field associated with pm, that is,

m what follows, let flf/'

(resp., Of 1/2®Of (-1/2)) denote a line bundle L such that L®2 is isomorphic

to QA (resp., QA®Q^~~1)), where QA and Qx denote the sheaf of n-forms on A

and X, respectively. As such a line bundle does not exist globally in general,

all the equations among the sections of Q® 1/2 or £2f1/2®Of (~1/2) are understood

up to a constant multiple. Now, let us define LP: Of 1/2->Of 1/2 by

(4.2) LP(s) = ̂ La(S*) + <ps (seflf1/2),

1 / it fl2p \
where v = HD , q> = pm-i — ̂ -( Z p ^ ) and Lv(s

2) denotes the Lie derivative2 \z=i oxloc)l j ^
of s2 along the vector field v. If we fix a non- vanishing section ^/A of

the action of LP is explicitly given by

v*-^/ •—'.rv./v ' " ' \ " \ j s ' <j

Using the simplicity assumption on «x^, we can then prove that the system of

differential equations

(4.4) LPs = 0 (PeJ^)

locally admits one and exactly one non-zero solution s0 in Of1/2, up to a constant

multiple. The principal symbol GA(U) of u is, by definition, s0®^/^x~1( e Q®1/2
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®Of(~1/2)). The factor ^/^fx~l is to make the notion of principal symbol in-

dependent of the choice of the local coordinate system in X. The principal

symbol of u thus defined is homogeneous with respect to the fiber coordinate £.

The homogeneous degree is called the order of u and denoted by ordA(u).

Here we note that the order is dependent on the choice of a generator u of Jit.

Actually, ord^ (u) may be shifted by an integer if we change u to another non-

degenerate section of ^. See Theorem 4.1 below. Although the definition of

ordA (u) requires to know the principal symbol, it can be readily calculated ac-

cording to the formula (4.5) below, if we can find(*) P= : X Pi' in J such that

.<**>

(4.5)

Now, the following Theorem 4. 1 shows how the order of a non-degenerate

section of a simple holonomic ^-Module ^ determines the structure of ̂  at

a generic point of

Theorem 4.1. Let A be a connected and homogeneous Lagrangian sub-

manifold (i.e., without singularities) of f*X.

(i) Let £xu and #xv denote simple holonomic systems with the same

characteristic variety A. Then

(0 if ord, w^ord, v modZ
(A £\ K^7 (J@ 11 JP ti\ /"v ) A. i /I
^T'.O) t^LO-ma \&XU, fn-viJj — <

I CA if ord^ u = ordA v mod Z.

That is, #xu and £xv are locally isomorphic if and only if ord^ u — ord^ v is

an integer.

(ii) Let £xu be a simple holonomic system with support A and let v be another

non-degenerate section of #xu. Then the difference m of ordAv and ordAu is

an integer and there exists an invertible microdifferential operator P of order

m such that v = Pu holds.

(iii) Let $xu be a simple holonomic system with support A. Then, through

a quantized contact transformation, ^xu is locally isomorphic to #Cnf, where

f satisfies the following system of differential equations considered near

(QldxJeT+C".

A general theory tells us that such an operator P really exists.
Here Ql denotes the sheaf of holomorphic 1-forms on T*X.
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(4.7)
-3^=0 (i = -> n)QY —u \J — . £ , . • • » ' * / •

Here a denotes ord^ w.

Remark 4.2. As the canonical form (4.7) in the above indicates, the order

of u describes, so to speak, the "microlocal monodromic structure".

Thus the microlocal structure of a simple holonomic system is fairly simple

at non-singular points of its characteristic variety. On the other hand, a

Hartogs' type result for systems of microdifferential equations ([17], Chap. I,

§ 2) entails that the structure of a holonomic system ^ is determined by

^lch(^)-z> ^ co<Umch(ar) Z = 2- In particular, if Ch(uf) has the form A± U A2

with Lagrangian submanifolds A1 and A2 such that codim^.^ fM2) = 2 (j =

1, 2), then there exist holonomic systems ^ (j = l, 2) such that Ch(^j) = Aj

(j = l, 2) and that ^ is isomorphic to the direct sum t^l®^2. Hence it is an

important and interesting problem to study the structure of a holonomic system

Jt whose characteristic variety is reducible and some of whose irreducible com-

ponents intersect along sub varieties of codimension 1 in Ch(^). We have a

satisfactory answer to this problem when ^ satisfies the following condition

(4.8).

(4.8) ^ is a simple holonomic system and Ch(^) has the form A± U A2 with

Lagrangian submanifolds Aj (j = l, 2) of T*Jf, where A± (}A2 is also a

(non-singular) manifold with dim(^!1nyl2) being equal to dimX— 1

and Tp(A± n A2) = TPA1 n TPA2
W holds for every point p in A1 n A2.

When condition (4.8) is satisfied, a suitable quantized contact transfor-

mation (cp, <f>) brings ^ to the form #cnf with / satisfying the following system

of equations considered near (0; dxj) e T*C":

(4.9)

-3 »>•
Here a^ord^ii (7 = 1,2) with cp(/L1) = {x1 = 0, ^2 = -- = cw = 0} and <p(A2)

(*} Here Tp(/f i n ^2) etc. denote the tangent space of AI n A2 etc. at /?.
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Using the above canonical form (4.9), we can prove the following

Theorem 4.3B Let Jt and Aj(j = l.> 2) be as above. Then the following

three conditions are mutually equivalent:

(4.10) There exists a non-zero coherent #x-sub-Module ^ of Jt which is

supported by A±.

(4.11) There exists a coherent (?x-Module Jt2 supported by A2 and an &x-

homomorphism (/): Jt-*Jt2 that is surjective.

(4.12) a2-a1-^eZ+ ( = {0,1,2,...})

This theorem is most effectively used in calculating b-functions for a relative

invariant of a prehomogeneous vector space. See [25] for details.

§ 50 Operations on Systems

As we have emphasized in § 3, we want to analyze a function by studying

the structure of the holonomic system that it solves. It is then important to

know how such an operation as restriction etc. is defined for a holonomic system.

We formulate them as some functorial properties associated with a holomorphic

map/: Y-*X. We present the formulation for the general case, that is, without

restricting ourselves to holonomic systems. The formulation is based on some

auxiliary sheaves ^y-^x e*c-> which will be defined below.
Let us first suppose that Y is a submanifold of X with codimension d and

that /is the imbedding map. Let us denote by / the defining Ideal of 7. Then

holds, and the remaining cohomology group Imj $x>flx (OxjP, (9X) can be
V

endowed with a natural structure of left %-Module. We denote it by &Y\x-

There exists a canonical injective 0r-homomorphism from QY®Q<
x~

l to
0y

&Y\x> which we denote by c. Let 6YiX denote c(dy®(dxdy)~l). If X is an open

subset of C" and 7 is defined by {x e X c Cn ; x1 = - • • = xd = 0}, then we can verify

that dY^x is the modulo class [1] (up to a non-vanishing constant multiple) of the

left %-Module

®xxj+ __Z i
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Furthermore we find

In view of the relation (5.1), we define another sheaf ^Y\x by &X$Y\X'

Now, using these sheaves ^Y^x and &Y\X> we define the required sheaves
<f y-4x etc. First let us identify Y with the graph Af of/ in Yx X, and, accordingly

TY(Yx X) with Yx T*X. Then <fy-4x and ^?<£.y are, by definition, sheaves

on YxT*X given by VS/IYXX®BX = VY\YXX®OX and ^yxx® Qr =
A <9X OX 0Y

#y |yxx®&y, respectively. Note that &x^-*x
 is nothing but <ff. In exactly

0 y

the same manner we define #Y-+x and #X*£Y by using ^y|yxx in place of

^y |yxx- Jn wnat follows, we often abbreviate «fy-4A- etc- to <£"Y->X etc-
also use the notation 1Y^X or, symbolically, S(x—f(y))dy to denote

Now, denoting by pf and ti7/
(*) the projections from T$(YxX) to T*Y

and T*Z, respectively, we find that the sheaf &f^x is (p"1^?, tn-^^-bi-

Module, and that the sheaf ^f«_y is a (tn"VSP, p~1^y)-bi-Module. In parti-

cular, when Yis a submanifold of X=Cn defined by {xe C"; x1 = -~=xd = Q}9
d

then ^y_>x is isomorphic to ^J/( J) x.-^f ) as a right ^f -Module, and ^J_y is
d j=i

isomorphic to «f f/( X ^xxj) as a l6^ ^f -Module. These properties hold
/=i

without any change if we replace <f y->x etc- by ^y->x etc- Using these notions,
we formulate the non-characteristic condition as follows :

(5.2) Let JH be a coherent ^-Module defined on an open subset U of T*X

and let Wbe an open subset of T*Y. If pf restricted to tnj1(Supp^)

n pJl(W) is a finite map, i.e., a proper map with finite fiber, then / is

said to be non-characteristic with respect to Jt (over W).

If /is non-characteristic with respect to Jt over W, then

(5.3) ^f

holds on p~\W).

The surviving object p*(#Y->x ® m"1^) is a coherent <fy-Module on
-

W, and it is denoted by f*JP. Furthermore ^y ® /**<# is isomorphic to

P*(<?Y->X ® tn-Vx®-^))- when 7is a submanifold of X and / is the
ro-Vf «^x

imbedding, we sometimes denote /*^ by ^y and call it a tangential system of

Jt (along Y). When ^ is a coherent right ^-Module, f*JV is defined by

(*} If there is no fear of confusions, we omit the suffix /.
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replacing ^Y^x®w~1^ etc. by w~lJ£®$x^ etc.

In parallel with the above definition, we define /"vT for a coherent right

^-Module JV* by w*(p~lj¥* ® #Y-*X)- It *s a coherent ^-Module on
-

(5.4) wf restricted to /^(Supp ̂ T) n w~f
l(U) is a finite map.

The condition (5.4) is a reasonable and convenient one outside the zero-

section TXX. It is, however, too restrictive at the zero-section in that the

finiteness assumption is seldom satisfied there. The following result resolves

this trouble:

(5.5) Let Jf be a coherent ^y-Module. Suppose that / is projective and

that there exists a coherent 0y-sub-Module */T0 of ^ which generates
JV as a ^-Module. Then

f L

(5.5.a) \ ̂  = Rlf*(@x+_Y ® ̂ T) is a coherent %-Module for every i,
J def ®Y

and

(5.5.b)

In application, the conditions in (5.5) are usually easy to verify.

Using the notion of induced systems, we obtain the following

Theorem 5.1. Let X be Cn and let Jt and rf be coherent ^-Modules

whose characteristic varieties are contained in {(x, f)e T*X'9 ^=0}. Then

we have the following isomorphism for every j:

(5.6)

where Y={xeX; xl=Q}.

We want to emphasize that the use of mierodifferential operators of infinite
order is crucial in Theorem 5.1; similar results cannot be expected if only oper-
ators of finite order are used.

We note that the involutory character of Ch(^) (see (3.6)) immediately
follows from Theorem 5.1.

Now, the classical theory of Jacobi tells us that an involutory manifold can

be microlocally brought to a simple canonical form by a contact transformation.

With the aid of this classical result, Theorem 5.1 entails the following decisive
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result on the structure of systems of microdifferential equations :

Theorem 5.2. Let Jt be a coherent #x-Module satisfying the following

conditions:

(5.7) &*s*fx(Jt, *?x) = 0 for

(5.8) Ch(uf) is regular at p in Ch(uf), that is,

(5. 8. a) Ch(^) is non-singular near p

and

(5.8.b) (co\Ch(Jf))(p)^Ofor the canonical 1-form co.

Then, through a quantized contact transformation (<p, <P), £x®JK is
<?x

isomorphic to a direct summand of a direct sum of finite copies of partial de

Rham system ^b = ̂ »Z ^ir- with <p(p) = (Q', 0,..., 0, l)e T*C". In
\j=i oxj /

particular, J£ is isomorphic to <t>(^0)
m at generic points o/Ch(^f), where m

is a non-negative integer.

Note that (5.8.b) implies d<dimX, thus eliminating the possibility that

Ch (Jf) is Lagrangian. This is one of the reasons why the study of holonomic
systems requires special attention.

We end this section by presenting the rule how the order behaves when we

apply the functors /* and /*.

Theorem 5.3. Let f: Y-+X be a holomorphic map. Let Jt be a simple

holonomic system with characteristic variety Aaf*X and let u be a non-

degenerate section of ^ . Assume that p is transversal to A and w \p-i(A) IS an

imbedding. Then f*^ is a simple holonomic $y-Module, and !Y-+x®u Z5

a non-degenerate section of f**^, and its order is equal to the order of u.

Theorem 5.4. Let f: Y-+X be a holomorphic map. Let ^ be a right

holonomic ^-Module with characteristic variety Ac:f*Y, and let u be a

non-degenerate section of J*f . Assume that w is transversal to A and that

p \ w - i ( A ) is an imbedding. Then f^ is a simple holonomic #Y-Module,
and (dx)~l®u®ly-»x is a non-degenerate section of f*JV. Its order is

(*) Here dx and dy denote the nowhere vanishing section of QxjffQximX and £?r=fJ2rimy,
respectively. The factors (dy)'1 and (dx)'1 make (dy)~l®u etc. a section of a left-
Module, anti-isomorphic to the corresponding right-Module.
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§ 6. Regular Holonomic Systems

As indicated by the canonical form (4.7), a simple holonomic system con-

sidered at a generic point of its characteristic variety is, essentially speaking, an

ordinary differential equation with regular singularites. In view of the fact that

linear ordinary differential equations with regular singularities was one of the

central subjects in classical analysis, establishing a solid basis of the theory of

holonomic systems with regular singularities is crucially important for making

use of holonomic systems in application. This is done most neatly in the

framework of microlocal analysis. We refer the reader to [17] for the details

of the subject given here. Although we have used the terminology "holonomic

systems with R.S." in [17], we use in this article another terminology "regular

holonomic systems (or ^-Modules or ^-Modules, if we need to specify)".

In order to define the notion of regular holonomic systems, we first introduce the

notion of a system with regular singularities along an involutory subvariety V

of f*X. We do not assume that V is non-singular, but we assume that V is

homogeneous with respect to the fiber coordinate of T*X. Let Iv denote the

sheaf of holomorphic functions on f *X which vanish on F, and Iv(m) denote

/Fn0f*x(m). Defining Sv by {Fe^(l); 0i(P)e /F(l)}, we define gv by the

sub-Algebra of #x generated by Jv. We denote by <fF(m) the sheaf gv$x(m)

( = ̂ x(m)^v). It is then easy to verify that &v is Notherian (in the sense of

(3.1)). Using the sheaf £v, we introduce the following

Definition 6.1. ([19], [17]). Let Fbe an involutory subvariety of f *X and

let Jit be a coherent ^-Module defined on an open subset Q of f*X. Then

Jt is said to be with regular singularities along V if Jt satisfies one of the fol-

lowing three mutually equivalent conditions:

(6.1) For each point p in Q, there exist an open neighborhood U of p and an

(£V-sub-Module ^0 of Jt which is defined on 17 so that the following

two conditions are satisfied:

(6.La) Jt§ is «f(0)-coherent,

(6.1.b) ^ = <f^0
 holds on u-

(6.2) For every open subset 17 of Q and every coherent <^(0)-sub-Module ££

of J£ that is defined on U, $vg is «f (0)-coherent.

(6.3) For every open subset U of Q and every coherent <fF-sub-Module rf of

^ that is defined on 17, rf is <f (O)-coherent.
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Definition 6.2. (i) Let ̂  be a holonomic ^-Module defined on an open

subset Q of T*Z. Then Jt is said to be a regular holonomic ^-Module, or,

for short, a regular holonomic system, if the following condition is satisfied:

(6.4) Jt is with regular singularities along Ch (Jg}.

(ii) For a holonomic ^-Module ^, we call ^ a regular holonomic system

if d?x®^ is a regular holonomic ^-Module on f*X.

Note that [17] starts with the definition that ^ is a regular holonomic

system if it satisfies the following condition :

(6.5) There exists an open subset Qr of Q such that Qr n Ch(^) is dense in

Ch (e^) and that Jt is with regular singularities along Ch (J£ ) in Q',

and later proves that it satisfies the stronger condition (6.4). Although the

reasoning of [17] is highly transcendental, we can prove the equivalence of (6.4)

and (6.5) in a more algebraic way by using the argument in [7]. Hence, here

we have presented the definition in a simpler form as above.

We know ([17], Chap. V) that f*~4f and f^ are regular holonomic

systems, if so is Jt and if /satisfies condition (5.2) and (5.4), respectively.
i

Also, in parallel with (5. 5), \ Jf is a regular holonomic ^-Module for every

/, if /: Y-+X is a projective map and rf is a regular holonomic ^y-Module.

(In this case the existence of 0y-sub-Module -^o follows from the assumption
that N is a regular holonomic system.)

Thus the notion of regular holonomic systems enjoys nice functorial pro-

perties. The following comparison theorem guarantees that this notion is

exactly what we want to have as the generalization to the higher dimension of

the notion of linear ordinary differential equations with regular singularities :

Theorem 6.3. ([17], Chap. VI.) Let Jt and JV be regular holonomic £x-

Modules. Then \ve have

and

where £x < k
The relation of the notion of regular holonomic systems to the classical

theory of ordinary differential equations with regular singularities may become
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clearer by the following

Theorem 6.4 ([17], Chap. VI.) Let ^ be a holonomic ^-Module.

Then the following two conditions are equivalent:

(6.6) ^ is a regular holonomic system.

(6.7) Extix (uf, 0,. J^Exti, (uf , 4,J

holds for every j and for every x in X. Here &XfX = lim&X}X/mk, where
k

m denotes the maximal ideal of the ring Ox^x of germs of holomorphic

functions at x.

Now, an important result proved in [17] is Theorem 6.6 to be stated below.

It may be regarded as a counterpart of Theorem 5.2 for holonomic systems.

In order to state the theorem, we first introduce the following

Definition 6.5. Let ^ be a holonomic ^-Module defined on an open

subset Q of T*Z. We then define the (pre-)sheaf Jfreg by assigning

to each open subset U of Q as follows :

for each point p in U, there exist a neigh-
<?x

borhood W of p and a coherent Ideal J of &x defined on W so that «/s = 0

holds and that £X\J is a regular holonomic system}.

A priori, it is not clear whether dtreg is a regular holonomic system or

not - actually, even the coherency of Jtreg is far from obvious. However,

we can show

Theorem 6.6. ([17], Chap. V, Theorem 5.2.1.) Let Jt be a holonomic
$x-Modu1e defined on a neighborhood of p0 in T*X. Then ~$reg is a regular

holonomic ^-Module, and

/aoo /OK // _ <POO /ov //
6 X <y *"* — & X ^9 <^reg

<?x £x

holds on a neighborhood of p0.

Furthermore, if there exists a regular holonomic ^-sub-Module Jf of

^®^ such that gx®Jt = g^®JT holds, then JT is isomorphic to ̂ rea
<?x #x #x

as an #x-Module.

Remark 6.7. If Ch (^ ) is non-singular near p0, we can discribe JVYeq

concretely as follows;
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In this case, by using a quantized contact transformation, we may assume

from the first

(6.8) Ch(uT) = {(x, 0eT*C»; x t=0, c2 = - = £n = 0, |x|<c,

(6.9) p0 = (0;(l,0,...,0))eT*C«.

Then, ^reg= © -<?./M!. holds near p0, where ^ (Ae C9 m e {1, 2,--})
finite sum J

denotes

Now, let us restrict our consideration to holonomic Sy-Modules so that

we may consider their 0x-solutions. Then, through the correspondence be-

tween systems and their solution sheaves, we can find an interesting interrelation

between an analytic object — (regular) holonomic ^-Modules — and a

geometric object — constructive sheaves. Let us first recall the definition of a

constructible sheaf.

Definition 6.8. A sheaf & of C- vector spaces defined on a complex manifold

X is called constructible^^ if it satisfies the following condition (6.10).

(6.10) There exists a decreasing family {Xj}jss0^t2t- °f closed analytic subsets
of X which satisfy the following two conditions :

(6.10.a) X =

(6.1 0.b) ^\Xj-xJ+i is a locally constant sheaf of finite rank, i.e.,

&\Xj-Xj+l is locally isomorphic to Cr
Xj-Xj+l (r<oo).

An important result on the structure of solution sheaves of a holonomic

%-Module Jt is that #*sJ
Sx(>,#9 Ox) is a constructible sheaf for every j ([13]).

Further we know ([17], Chap. I. § 4) thai

R^r^c (RjftM** (^', &x), &x) = &% ® Jf
Qx

holds for every bounded complex ^* of ^-Modules such that ^^(.Jf') is

holonomic. Thus we can assign constructible sheaves to a holonomic %-

Module by considering its solution sheaves, and, at the same time, reconstruct

the system from its solution sheaves, if we employ differential operators of in-

finite order. In order to formulate these correspondences in a more precise way,

we introduce several categories. In what follows, we call a SJ-Module ^ a

The terminology "finitistic" is used in [13].
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holonomic ^J-Module if there locally exists a holonomic ^-Module J£ such

that JV= &$ ® Jt holds. We denote by Mod (&x) (resp., Mod (0J), Mod (X))
2>X

the Abelian category of ^-Modules (resp., SJ-Modules, the sheaves of C-

vector spaces on X). We also denote by D(^) (resp., D(^£), D(J0) the
derived category of Mod (&x) (resp., Mod (@x\ Mod (X)}. Now the categories

in which we are interested are introduced by the following

Definition 6.9. (i) D*h(&x) is, by definition, the full subcategory of

D(%) which consists of Jt' in Ob(D(%)) such that jej(^') = Q holds except
for finitely many j's and that J^j(^m) is a regular holonomic ^-Module for

every j.

(ii) Db
h(<&x ) is, by definition, the full subcategory of D(^f ) which consists

of ,/T in Ob(D(^SP)) such that jej(^') = b holds except for finitely many
j's and that j^J(j^m) is a holonomic ^f -Module for every j.

(iii) D*(X) is, by definition, the full subcategory of D(X) which consists of

^' in Ob (D (X)) such that ^j(^') is zero except for finitely many j's and that

Jf-/'(Jsr<) is a constructive sheaf for every j.

Then we have

Theorem 6.10. ([19], [22].) The three categories D?ft(%), Dg(^f) and

T>b
c(X) are mutually isomorphic.

In application, it is an important question how to characterize an object in
D*(X) when the corresponding object Jt' in DJA(^y) is a single complex.

The answer is given by using J^'d=Re^^x (Ox, ^') as follows.

Theorem 6.11. (i) The following two statements are equivalent:

(6.11) jr'(uf') = 0 (;>0)

(6.12) For every integer k, the codimension of each irreducible component of

Supp J^k(^m) is equal to or greater than k.

(ii) The following two statements are equivalent:

(6.13) ^(^0 = 0 0"<0)

(6.14) For every integer k, the codimension of each irreducible component of

J5"', Cx) is equal to or grater than k.

In what follows, we say that J5"' in Ob(D*!(X)) is perverse if it satisfies

conditions (6.12) and (6.14). Theorem 6.11 guarantees that the corresponding
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object Jt' in D^(^x) is then a single complex.

§ 7. Local Monodromies and the Asymptotic Expansion of Solutions

of Regular Holonomic Systems

One of the reasons why ordinary differential equations with regular sin-

gularities are important lies in the fact that its local monodromy can be calculated

in an algebraic manner. In this section we discuss how this important property

of ordinary differential equations with regular singularities can be generalized

to regular holonomic systems. Our method is based on the asymptotic

expansion in our sense (Theorem 7.2 below. See also [16].) of the solutions of

equations of a special type (7.4) given below. One important fact is that, for

any section u of any regular holonomic system, we can find an equation of that

type which u satisfies. (Theorem 7.3.)

Let us begin our discussion by recalling how the local monodromy is

calculated for ordinary differential equations with regular singularities. In

order to fix the notations, let us consider the following equation (7.1), which has

the origin as its regular singular point.

Let {A l5..., Am} be the set of roots of its indicial equation:

(7.2) A- + a1(0)A--1 + -.- + flm(0) = 0.

For the sake of simplicity, we suppose that Ay — Ak is not an integer if j

Then we know that there exist solutions of (7.1) of the form t*j x (holomorphic

function) (j = !,•••, m), and hence the local monodromy is the diagonal matrix

with exp (271^ — f Ay) as its eigenvalues.

In order to discuss how this fact can be generalized in the higher dimen-

sional case, we first introduce some notations.

Let X be a complex manifold and Y a submanifold of X. We denote by

IY the defining 0^-Ideal of Y. Let Fk(@) denote the subsheaf of &x given by

(7.3) {PE@xiPIJ
YczlY

+k@x holds for every j} .

Here and in what follows, l{ is, by definition, Ox for j^O.

Proposition 7.1. Fk(&)/Fk+i(@) is isomorphic to the sheaf of homo-

geneous differential operators on TYX of degree k. In particular,
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grF.(^)=f 0 Fft(^)/Ffc+1(^) is the sub-Ring of @TYX.

Let 6 be a vector field tangent to 7 such that the canonical action of 9 on

IY/I$ equals the identity. Thus vector field 0 is unique modulo F2(S). Note

that, if we take a local coordinate system (xl9~*9 xn) of X such that 7 is given by

xl = •-• =^d = 0, then we can take £ */~5 — as 0.
j^d JV*j

Letting ft(A) be a polynomial of degree m and P a section of Fl(&) D

we shall consider the following equation

(7.4) b(0)u = Pu.

Factorizing b(A) as

(7.5)
7 = 1

we suppose

(7.6) Ay-AjfcgEZ for

Then the local behavior of solutions of (7.4) is described by the following

theorem.

Theorem 7.2. Let X be an open subset of Cn and suppose that Y is given by

{(xl9-",x,t)eZ; x1 = -"=xd = Q}. Suppose further that (7.6) holds. Then

there exist AjtV inFv(&)(j=l9—, N and v = 0, 1, 2,--«) which have the following

properties (7.7), (7.8) and (7.9).

(7.7) AJtV = l for v = 0.

(7.8) [0,^iV] = v^iV for j = l,-,N and v = 0,l,2,-.

(7.9) Let U be a neighborhood of a point p of Y and let F and F' be open cones

in Cd with their apices at the origin. Assume that F contains F' — {0}.

Then we find the following:

(a) For any holomorphic solution u of (7.4) defined on (Fx Cn~d) fl U,

there exists an open neighborhood U' of p such that u can be ex-
N oo

panded on (F' x Cn~d) ft U' to a convergent series £ £ uj v(x)>
j=l v=o

where ujiV are holomorphic functions defined on (F x Cn~d) n V

satisfying (0-AJ.-v)'l^MJ.jV = 0 and ujiV = AJ!VujtQ.

(b) Conversely, if uji0 (j = !,••-, JV) are holomorphic functions defined

on (FxCn-d)xU with (0-AJ.)
njwJ.j0 = 0, then E Z ^j,v^j,o con-

j=l v=0
verges on (F'x C""d) n U' for some U' and it gives a holomorphic

solution of (7.4)
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Now, using this theorem as an analytic tool, we shall study the local struc-

ture of solutions of a regular holonomic ^-Module.

Let ^ be a coherent ^-Module. A filtration F'(^f) of ^ is called a

good filtration with respect to F'(@) if there locally exist sections Uj of J( and

integers rj (j = l , --- , ra) such that

7-1

holds for every k.

Let us denote by £% the category of coherent %-Modules ^ such that

there locally exist a coherent sub-^-Module ^ of ^ and a polynomial b(A)
of degree m which satisfy

(7.10) b(0)& c(@(m) n Fl(&))&

and

(7.11) e^=%jF.

Then ^ is a full abelian subcategory of the category of coherent ^-Modules.

The importance of the category ^ lies in the fact that it is ample enough for our

purpose (Theorem 7.3 below) while any object of & is amenable to the analysis

based on the asymptotic expansion in the sense of Theorem 7.2.

Theorem 7.3. Any regular holonomic @x-Module belongs to £%.

Theorem 7.4. Let ^ be an object of &. Then we have the following :

(i) There exist a good filtration F' of Jt and a non-zero polynomial b(A)

which have the following two properties:

(7.12) b(6-k}FkciFk+l.

(7.13) The difference of any pair of distinct roots of b(X) = Q is not an integer.

(ii) A (not graded) grF.(&)-Module grF.^= © Fk/Fk+1 does not depend on
def ^

the choice of a good filtlation F' which satisfies the condition (7. 12) for some

non-zero polynomial b(X) satisfying the condition (7.13).

Thanks to (ii) of Theorem 7.4, we may use the notation gr Jt instead of

grF. Jt. The local structure of multi-valued holomorphic solutions of Jt is

most neatly described by the aid of gr^f. To present the results (Theorem
""N ,̂

7.5 and Theorem 7.7 given below), we first introduce the real blowing up YX of
'"Ŝ

X with center at 7, that is, YX=X\_JTYX as a set with the suitable topology.



1028 MASAKI KASHIWARA AND TAKAHIRO KAWAI

Let j: X^->YX be the open embedding and define the sheaf 0 by J*(&X)\TYX-
Then our result is stated as follows :

Theorem 7.5. If a ^-Module Jt belongs to &, then

holds.

Remark 7.6. For a complex J5"' of sheaves on X, let us define Vy(c^"') and

/^y(^") by (Rj^Olry* and R/Vy^TTy^J5"')0* respectively. Here nY/x denotes
the projection from the comonoidal transform YX* of X to X and a denotes the
antipodal map. Then vy(J

5"1) and j^Y(^'} are related in the following manner:

Let Z be the closed subset {(v, &GTYXx T$X, <0, O^O} of TYX x T$X,

and let p and ^f denote the projections from TYX x T$X onto Ty^T and
x

respectively. Then we have

(7.14)

and

(7.15) Vy(^

Now, let 9 denote the endomorphism of gr Jit given by assigning (9 — k)u

(eFfc) to u in Fk. Then 9 is clearly grF- (^)-linear. Furthermore we im-

mediately see that b(9) = Q holds for b(fy satisfying (7.12). Hence we can define

a grF.(^)-linear automorphism G\p(2n^/ — \9) on gr^. On the other hand,

for any point v of TYX, JUjfo** 9 x (*# , S) is locally constant on Cxy, and hence

we can define the monodromy of Rj#**»Sx(Jir, &). Then Theorem 7.5 entails

the following

Theorem 7.7. For ^ in &, the monodromy on HLj#*»*Sx (^, 0) is given

by R^^grF.(^}(exp (2n^l9), 0TyX) on R^r^grjF>(^)(gr^9 0TyX).

We now microlocalize the discussion given so far. (Cf. [16] and [23].)

Let yd be a (non-singular) Lagrangian submanifold of T*X and let &A

denote the sub-Ring of &x introduced at the beginning of § 6. As was

stated there, £A(m) denotes the sheaf ^A^x(m)( = ̂ x(m)^A)' Let 9 =
:0i(x, £) + OQ(X, £,)-i — : be a section of <^y(l) which satisfies the following three
conditions :

(7.16) e^

(7.17) d91==-co
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Here 1A denotes the defining Ideal of A and w denotes the canonical 1-form

£ QjdXj. Such an operator 0 exists locally and it is unique modulo £A(—1).

Now we have the following

Theorem 7.8. Let ^ be a regular holonomic $x-Module defined on an

open subset of f*X. Then there exist a coherent sub-£A-Module <Jf0 of Jt

and a non-zero polynomial b(A) which satisfy the following three conditions:

(7.19) uf = ^fur0.

(7.20) &(0)uf0c:ufo(-l). Here and in what follows, ^Q(k) denotes £x(k)^f0

for an integer k.

(7.21) The difference of any pair of distinct roots of 6(/l) = 0 is not an integer.

Furthermore, if we denote © ^A(k)/(^A(k — 1) by grA# and define a gr^((f)-
k

Module grA^ by © ^0(k)/^0(k — 1), gryl(e^) is independent of the choice of
k

^0 satisfying the above conditions.

In order to microlocalize Theorem 7.5, we fix a simple holonomic £x-

Module 3? whose support is A. Let grk 0A denote the sheaf of homogeneous

functions on A of degree k. Then gr^ <£ is an invertible gr 0A-Module. Using

this system & instead of 0, we obtain the following theorem.

Theorem 7.9. Let Jt be a regular holonomic £x-Module defined on an

open subset of f*X. Then we have

(7.22) KjT*~fx (uf , J2?) =

and

(7.23) Rjf^/A. (uf ,

Remark 7.10. gr^ £ is isomorphic to the sheaf of differential operator endo-

morphisms of gr^ & which are homogeneous of degree k. Hence, if we denote by

grfe 3fA the sheaf of homogeneous differential operators on A of degree k and if

we set gr @A= © grk 2A, gr^ & is isomorphic to gr^ jg? ® gr QA ® (g^^)0'1-
fe grfi'yi gr^^i

Hence J5" = (grylj^)®~1 ® gr^^/f is a ^-Module. Further, it is a regular
grCU

holonomic ^-Module. Using this ^-Module J5", we can rewrite (7.23) to the

following form :

(7.24)
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Here and in what follows, ^R denotes £$ ® «£?, as usual.
sx

As a special case of Theorem 7.9, we find the following interesting result
(Theorem 7.11 below) for a pair of regular holonomic ^-Modules J£ and jV*

defined on an open subset of t*X. In order to obtain the result we choose
T$(XxX) as A and identify it with T*X by the first projection. Then

®x® &A(£X*X}®&®~I is canonically isomorphic to the sheaf @T*X of dif-
0x ®x

ferential operators on T*X.

Let us now denote by $(J!> Jf) the ^^-Module defined by

(dWOOf"1) ® gr^pf®^). (See S-K-K [24] p. 418 for the definition of
Cx grCU

the product system ^®Jr.) Then, by choosing *&x\x*x as & in Theorem
7.9, we can deduce the following Theorem 7.11 from Theorem 7.9 and Remark

7.10.

Theorem 7.11. (i) $(^ , */F) is a regular holonomic @T*x-Module. Its

characteristic variety is given by C(Supp^, (Supp^K*)fl), the normal cone of

Supp^ along (Supp^T)a, the antipodal set of Suppe/T, if we identify the

tangent bundle and the cotangent bundle of T*X by using the sympletic

structure of T*X.

(ii) $(^, ^) is an exact functor with respect to the first and the second

variable.

(iii) $(^,^t) = $(J£, JT)a and 3>(JT* , Jt*} = $(Jt , Jf}* hold. Here jf*

etc. denote the dual system of JV* etc.

(iv) Rjr»»»,x C/T, ^KR) =Rjr+i~9T,x (<P(^?, ^T*), 0T*x)[dim X}.

In particular, Re^^^,x (Jf , J£R) [ — dim X~] is a perverse complex on T*X.

As an immediate consequence of (iii) and (iv) in the above, we obtain the
following

Corollary 7.12.

Cr*x)[2 dim X}.

Remark 7.13. Here we have presented Theorem 7.11 restricting ourselves to

the complement of the zero section of the cotangent bundle. However, we can

obtain the same result also at the zero section, if we define $( ,̂ Jf} using
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