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Abstract Twisted Duality for Quantum
Free Fermi Fields

By

Jerzy J. FOIT*

Abstract

Using the properties of standard subspaces of the 1-particle space for the free Fermi
field we prove the twisted duality for the von Neumann algebras associated with real
closed subspaces. This is done by application of the Tomita-Takesaki theory.

Introduction

Locality is one of the fundamental principles of quantum field theory.

It means that observables which are localized in spacelike separated

regions must commute. Duality strengthens this by claiming that observ-

ables commuting with all observables localized in the spacelike comple-

ment 0' of 0 must themselves be localized in 0. Expressing this in

terms of local von Neumann algebras 31(0) generated by the observables

localized in 0, we have §1(0) =21(0')'- §1(0')' denotes the commutant

of 21(0')- Duality plays an important role in the theory of superselec-

tion rule [1], [2], so that it is important to know for which models

duality holds.

The first step is to check this property for free field theories.

Indeed, the results for interacting theories [13], [14] are restricted to

two space-time dimensions and rely on the corresponding properties for

free fields. The proof of duality for free Bose fields was first given by

Araki and falls naturally into two parts. Araki showed in [3] that

the commutant of the von Neumann algebra R(M) generated by the

Weyl operators based on a closed real subspace M of the 1-particle space

is R(Mf) where M' denotes the symplectic complement of M. This
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proof was later simplified by Eckmann and Osterwalder [5] using Tomita-

Takesaki theory. They identified the antiunitary involution J associated

with the faithful vacuum state of R(M) as the second quantization of an

antiunitary involution j on 1-particle space. It was simplified further in

[6] by identifying the antilinear involution S as the second quantization

of an antilinear involution s on 1-particle space. Other versions of this

part of the proof were given by Dell'Antonio [8] using infinite tensor

products and by Rieffel [7] using an abstract commutation theorem.

The second part of Araki's proof [4] identified the closed real sub-

space M(0) associated with the space-time region 0 for the free Bose

scalar field and showed for a suitably large class of regions that M(0) '

This paper is concerned with the analogue for Fermi fields of the

abstract first part of Araki's proof. Of course, the concept of duality

has to be modified to allow for the anticommuting nature of the under-

lying Fermi fields. The appropriate concept, twisted duality, was intro-

duced in [1] where it was shown to imply duality for the underlying

algebra of observables and proved for free Fermi fields on the basis of

the results of [8].

Here we use the ideas of [6] to show that if R(M) is the von

Neumann algebra generated by the Fermi fields based on a closed real

subspace M of the 1-particle space then

where R(M)t results from R(M) by applying a Klein transformation.

§ 18 Real Subspaces of a Complex Hilbert Space

M. Rieffel and A. van Daele [9] study the properties of standard

subspaces and their canonical involution in connection with Tomita-Take-

saki theory. This was exploited in [6] to simplify the proof of duality

for free Bose fields. For the reader's convenience, this section gives

some definitions and propositions of [6] which are used later in this

paper.
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Definition 1. 1. Let H be a complex Hilbert space with h, k-> (h, k)

as scalar product, M a subset of H.

M'=ik^H:Im(h,k) = 0, h^M}

is the symplectic complement of M.

Proposition 1. 20 Let M be a subset of H. Then:

i) M' is a closed real subspace of H.

ii) // MdN, then JV'cM'.

iii) M" is the closed real subspace generated by M.

iv) ( M + zM) ' - M' n *M' - M-1.

v) M' = {0} z/ M is dense in H.

vi) For M a closed real subspace of H and P an orthogonal

projection in H, the following are equivalent:

PMdM,

PM'C-M' ,

T/* one of these conditions is true, then

PM'=(PM)'nPH.

Definition I. 3. A real closed subspace M in H is said to be stan-

dard if MfU°M= {0} and M-\-iM=H. If Mis standard, the map

is said to be the canonical involution of M.

The following proposition gives a relationship between the properties

of the operator s and some structures of real subspaces. This connection

is important for the proof of twisted duality.

Proposition 1. 4e Let M be standard. Then:

i) The canonical involution s of M is a densely defined, closed
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antilinear involution.

ii) M' is standard and the canonical involution of M' is s*.

iii) If s=jdl/z is the polar decomposition of s, then j2 = I., jd1/z

= S~1/2j and j(M) = M'.

iv) Let P be an orthogonal projection in H such that PMdM,

then PM (resp. (I-P)M) is standard in PH(resp. (\-F)H).

The following proposition shows that it suffices to study standard

real subspaces.

Proposition 1. 58 Let M be a real closed sub space of H. Let

PI (resp. PZ) be the orthogonal projections on the complex subspaces

orthogonal to M (resp. to M') . Then:

i) PiP2 = Q and, consequently, P3 = H — P1 — P2 is an orthogonal

projection in H.

ii) P1M= {0} , PM' = PiH.

iii) PM' = {0} , P2M= PZH.

iv) P3M is standard in PSH.

v) PM' = (PM) ' n PSH.

§ 2. The von Neumann Algebras Associated

with Real Subspaces

Definition 2. 1. Let MdH be a real closed subspace of H. Let

be the Fermi field on the Fock space F (H) defined in the ap-

pendix. R(M) = {(/>(/i) : h^M}" is the von Neumann algebra generated

by

The generators </>(/0 of R(M) satisfy anticommutation relations in

contrast to Bose fields. Therefore, we must modify the notion of duality

for the field algebra. That is why we define a transformation called twist

[i]-
First we consider an automorphism on R(M) separating Fermi and

Bose structure in R(M). The transformation 0 (h) — > — 0 (K) extends to

a unique automorphism T on R(M) :
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T(F)=F for

T(F)=-F for

R+ (M) is generated by even products of 0 (h) , R~ (M) is generated by

odd products of 0(/i).

Because of the invariance of the Fock state under 7* there exists a

unitary operator U on F (H) ([10], 2.12.11) having the following

properties:

For the free field considered here we can choose U=e™N, where N is

the particle number operator.

By using f each F^R(M) can be written as

F=F+ + F_.

F+, F- are defined as follows:

Definition 2. 28 For the ^-invariant algebras the twisted algebra

R(M)1 is given by:

Proposition 2.3. i) F-^F+ + iF-U defines an Isomorphism of

R(M) on R(My -which is implemented by the unitary operator

ii)

iii)

iv) R (zMO c R (M) '' (twisted locality) .

R(MY denotes the commutant of R(M) .
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Proof, i) is proved by a simple calculation.

ii) follows from the equation VZFV*2 = F+ — F-.

ni) is a conseqence of the unitary of V.

iv) Let F = F+ + F-^R(M) and F' = F' ̂  + F' -^R(iM') . The

terms of the sums fulfill the following relations:

i.e. \_F',

and therefore, we have

Theorem 2.4. Let MadH, a^I, be real closed sub spaces of

H. Let R(Ma) be the von Neumann algebra associated -with Ma.

R(M) gives an isomorphism between the lattice of real subspaces and

the sublattice of von Neumann algebras. Namely.

i) £(MO D#(MO iff M^Mz.

ii) R (M) - R (MO iff MX - M2.

iii) Let \/Ma = ̂ Ma be the closure of the set of all finite real
a a.

linear combinations. Then we have-.

iv) R(ftMa)
a a

Our main thesis is

v) R(MYt = R(iM/) (twisted duality).

Proof, i) If MI Z> M2 we see immediately that R (MO D R (M2) .

Let R(Mi)"DR(M2) and Mi3t>M8. From Proposition 1. 2. ii) we have

iM£~f)iMi9 i.e. there exists /^GEz'Mi and hi&iM'z. Moreover there is a

vector hz^Mz such that

Consequently, we have:
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and

From this we get the relation R(M1)
t' <£R(M2')

t' which gives R(M2)

ii) follows from i) .

iii) is a consequence of i), the linearity and the continuity with

respect to the norm of A-^(/> (/z.).

iv) follows from iii) and v).

v) remains to be proven and we first reduce to the case that M

is standard.

By Proposition 1. 5 we have the following decomposition for H:

3
TT ST\ ~p T_T

1=1

This decomposition induces an isomorphism between the von Neumann
3

algebras on F (H) and the von Neumann algebras on (R) F (P^fJ) given

by a unitary operator T from F (H) onto (g) F (PiH) such that

for

7V>(A)T*=l(g>0(/i)<8>l for

for

TUT* = (g)

,C/i]-=0 for hi^PtH and £ = 1,2,3.

For the algebras R(M) and R(iM/)t we get:

£ (M) = C(g)5 (JVI) (g)-R (P3M)

and

S (H) is the set of all bounded operators on H. For the proof of

duality we need the following results:
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Proposition 2. 5. Let H be a complex Hilbert space, M a real

closed subspace of H.

i) Q^F(H) is a cyclic vector for R(M) if and only if M

+ iM is dense in H.

ii) @ is a separating vector for R(M) if and only if MniM

= {0}.

Proof, i) Assume that M+iM is not dense in H. The ortho-

gonal complement of M is, according to Proposition 1. 2, equal to

M±=(M+iM)'=£0. For O^AeM-1 and ^eAf, z = l,2, — we have

(0(A) @, JJ 0(^i) fi) =0. This is in contradiction to the assumption that

Q is a cyclic vector for R (M) . Let now be M+ iM= H, As a conse-

quence of the remark (A. 9) we have R(M}Q ^ RQ(M}Q = ® A(M+iM) .
n n

RQ is the #-algebra generated by polynomials of 0(A). As © A (M
n n

-MM) is dense in F (H) , Q is a cyclic vector for R(M) .

ii) Let Mr\iM={Q}. Q is a separating vector for R(M) because

of i) and because of twisted locality. Conversely, assume Q to be separat-

ing and Mru"M=^{0}. There exists a vector O^AeMfU'M such that

0 (K) EE # (M) , z0 (zA) e R (M) and (0 (A) + z'0 (zA) ) - 0, i.e. 0 (A) =

— z"0 (zA) . Now we have

(A, A) - 20 (A) 0 (A) - - z"0 (A) 0 (zA) - z0 (zA) 0 (A) = - z Re (A, zA)

which is only possible for A = 0.

For M standard in /f , $ is a cyclic and separating vector of R (M) .

In that case, we can use the structure of the Tomita-Takesaki-Theorem

[11]. Let us now consider the antilinear operator

SQ is densely denned and closable. The polar decomposition of the clo-

sure S0 = S=J41/Z gives the Tomita-Takesaki operator J with the property

JR(M)J=R(M)f. Now we consider the connection of S and J with

the operators 5 and j.

Definition 2, 6. S: = e~i(^V*F (is) , F (is) = © Fn (is) .
71=1
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n
Fn(is)9 7z = l, 2, ••• is the closure of the operator (X) (is) on AD(s),

n

AD(s) is the set of all linear combinations of vectors of the type
n

hi/\"° A^n> hj^D(s), j — 1, • • • j T z , and D(s) is the domain of 5.

Proposition 2. 7. 7^* 5 —jSl/z is the polar decomposition of s, then

F (s) = F (j) F (Sl/z) is the polar decomposition of F (s) .

Proof. Easy [6] .

Proposition 2, 8. Let RQ(M), M standard in H, be the ̂ -al-

gebra generated by polynomials of 0(A), h^M.

i) RQ(M)Q is the core of S and S.

il) S\R0(M)8 — *J|fl0(Jlf)fl.

Proof, i) R0(M) is a core for S since R0(M) is ^-strongly dense

in J«(M) [12]. By (A. 9), RQ(M)ti = ® A (M+iM) . ®A(M+iM)
n n n n

is a core for F (is) and hence for S.

ii) We have to compare the effect of S and S on 0(/ii) •••0(/z.7l)$,

hj^M, j — 1, • • - , 7? , ^ = 1,2, ••- with each other. We use formula (A. 8).

Obviously, we have

V *r (z's) A (£) * = A (isk) * 7/1 (w) , k^D(s).

Therefore, it is very easy to evaluate expressions of the type

»)**0- Because we have:

we must only evaluate:

SO,,, ..... . =
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The factor /V""4'"-"*-" generates a sign:

i-e^(fA((-l)«-i))^

If we change the order of the factors in

fl __ / 1 \ n(n-I)/2fl
01,..., n— V, — ±) Vn,n-l,-,l

we will get

SOl,...,n = Qn,n-l,....l •

Applying the relation (A. 8) the last equation gives :

As the functor F respects polar decompositions (Proposition 2. 7) and

S = S we know from the uniqueness of the polar decomposition that

j= e-*wv*r (ij) , Al/2 = r (<?1/2) .
Now we are able to prove v) of Theorem 2. 4. According to Tomita-

Takasaki theory the twisted commutant of R(M) is equal to

R(My*=VJR(M)JV* ,

i.e. -R (M) ft is generated by

If we use the relations

and

we obtain

This means that R (M) /{ is generated by </> (ijh) . On the other hand,

zj7i) generates R(iM') by Proposition 1. 4. iii) i.e.

completing the proof of the theorem.
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Appendix. Fock Representation of CAR

Let H be a complex Hilbert space, F (H) = © Fn(H) the Fock
71 = 0

space on H. Fn(H) is the n-fold antisymmetric tensor product of H

with FQ(H) =C. For each h^H we, define a creation operator A(h)*

on F(H),

(A.I) A(A)*:rn(H)-*rB+1(H),

S^ is the symmetric group of order n. The adjoint operator A(/i) is

given by:

(A. 2)

where @^F0(H), \\fi\\ =1 is the Fock vacuum. The operators A(k)* and

A (A), h.k^H satisfy the CAR

(A. 3) [A (A),

[A (A), A(*)] + = [A (A)*,

We define the following self-adjoint operators on

(A. 4)

These operators have the following properties:

(A.5)

(A. 6)

(A. 7) (J3,0(*,) -0(^)5) =2-(-l)nc"-15/1i:sgnjr[
ff /=!

where the sum is over all 7t^SZn satisfying

By definition (A. 4) and relation (A. 3) every vector
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can be written as a linear combination of the vectors A(hi) * • • • A(hk) *S,

. There is for ri>2:

(A. 8)

where ]T]fc denotes the sum over all permutations K^Sn with

Remark. Let JR0(M) be as in Proposition 2.8. Then we have:

(A. 9) R,(M)S = @A (M+ iM) ,

where A ( M + z'Af ) is the set of all finite linear combinations of vectors
n

of the type

Proof. From (A. 8) we get

®A (M+iM).

The opposite inclusion can be shown by inverting (A. 8) which is ob-

viously possible by recursion.
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