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A Mathematical One-Dimensional One-Phase
Model of Supercooling Solidification
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Ryo KOBAYASHI*

Abstract

This paper gives a mathematical study for the supercooling solidification of materials
consisting of pure elements or compounds. Solidification is a complex phenomenon, and
its process is not yet entirely understood. By simplifying physical characteristics of the
supercooling solidification phenomenon, a mathematical model is derived for the one-
dimensional/one-phase case. This model is given as a new type of moving boundary
problem. The existence and uniqueness theorem is then proved.

§ 1. Introduction

The Stefan problem is well known as a mathematical model describing
solidification or melting of materials. In the Stefan problem, the phase is deter-
mined by the temperature distribution, and the temperature on the solid/liquid
interface is equal to the equilibrium temperature. In view of these properties,
the Stefan problem cannot describe supercooling solidification, then in order to
deal with such phenomena we need another model in which the physical char-
acteristics of supercooling solidification are taken into consideration.

In various solidification phenomena, the speed of the growth of the solid
phase is determined by several factors, for example, the supercooling temperature
on the solid/liquid interface, the shape of the solid/liquid interface and the
crystalline anisotropy. The most important one is the supercooling temperature
on the solid/liquid interface which gives the driving force of the solidification
(see [5], [6]).

In this paper, we attempt to describe a supercooling solidification under the
hypothesis that the speed of the solid/liquid interface is determined only by the
supercooling temperature on the interface. Under this hypothesis T. Nogi has
proved the existence and uniqueness theorem of the one-dimensional/two-phase
problem (see [3]).

Here we consider the case in which the liquid phase is uniformly supercooled
throughout the process. The temperature distribution on the solid phase and the
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position of the solid/liquid interface are unknown. Hence such process yields
one-phase problem. In the sequel we cofine ourselves to the one-dimensional/
one-phase problem.

We shall solve the equations describing the conservation law of heat energy
and the motion of the interface. The solution is constructed by a difference
scheme in which the time width is variable so that the free boundary consists
of mesh points at each step. Then we will obtain a solution untill the time
when the supercooling on the solid/liquid interface vanishes. To prove the
uniqueness theorem, we convert the above equations to an integral equation, and
then apply the fixed point theorem to it.

§2. Mathematical Model

As noted in the introduction, we cofine ourselves to the one dimensional
process of supercooling solidification.

Let the initial position of the solid-liquid interface be at x=l and $(x)
(Q^x^l) the temperature distribution on the solid phase at the initial time £=0.
Let the position of the interface and the temperature distribution on the solid
phase at time t be denoted by y(t) and u(x, t\ respectively. Since we assume
that the liquid phase is uniformly supercooled, the temperature distribution on
It is constant, say zero; accordingly, the equilibrium temperature ue is positive.

Suppose that the relation of the speed of the interface and the supercooling
temperature on it is given by a function F, which is monotone increasing,
Lipschitz continuous with Lipschitz constant KI and F(0)=0. Such restrictions
on F are naturally derived from a physical consideration on solidification (see
[5]).

Let the latent heat of the material be L, and let the boundary condition be
given by the Dirichlet data f(t) at x=Q. Then we obtain the following system
of equations.

ut(x,t) = uxx(x,t) Q<x<y(t), t>Q (2.1.1)

y(f)(L-u(y(f), t}}=ux(y(t}, t) t>0 (2.1.2)

j(t)=F(u,-u(y(t\ 0) t>Q (2.1.3)
(2.1)

w(0, 0=/(0 t^O (2.1.4)

u(x, 0)=0U) Q^x^l (2.1.5)

/. (2.1.6)

Remark 2.2. The temperature and its partial derivative at the boundary
u(y(t), 0 and ux(y(t), t} are understood in the sense of left limits lim u(x, t)

£ -»]/(£) -0
and lim ux(x, t\ respectively.

3-1KO-0

Remark 2.3. For simplicity, we assume that the density, the heat capacity
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and the heat conduction coefficient are all equal to one. The general case can
be reduced to (2.1) by suitably changing the variables.

Assumptions 2.4, The following conditions are imposed:

(2.4.1) ue<L; (this means that the material is not overly supercooled)

(2.4.2) there exists M>0 such that -M^f(t)^ue, -M<cj)(x}^ue for all t, x;

(2.4.3) / and 0 are Lipschitz continuous with Lipschitz constant K2',

(2.4.4) /(0)=0(0).

Let us state what we mean by the solution of (2.1).

Definition 2.5. A pair (u, y} is a solution of (2.1) on [0, T] if it satisfies
the following conditions :

(2.5.1) lyeC'CO, T], ;y(0>0 for feE[0, T] and y satisfies (2.1.6);

(2.5.2) u is a continuous function on {(x, t); Q^x^y(t), O^t^T} which satisfies
(2.1.3), (2.1.4), (2.1.5) and u(x, t}<ue;

(2.5.3) ut, uxx exist and are continuous on {(x, t)', Q<x<y(t\ Q<t<T} and
satisfies (2.1.1);

(2.54.) for almost all fe=[0, T], (2.1.2) holds.

§ 3. Existence of the Solution

In this section, we construct a solution of (2.1) by taking the limit of the
sequence of the solutions of the difference scheme which approximates (2.1).

Sola Difference Scheme

Let h be the uniform space width. In the sequel we take only those h
that makes l/h=J an integer. Let kn be the variable time width; kn is deter-
mined at each step so that the approximated free boundary consists of the mesh

n
points, Denote the discrete coordinates by (xjt tn\ where Xj=jh and tn— 2 km;

m=l

uf and yn correspond to u(xj} tn} and y(tn\ respectively. We employ the fol-
lowing notations for the usual divided differences :

,,,71 - _ f l / n 1 J U \ T]71 - _ (T]n U71 \uJX — ~r(Uj+i — Uj ) , Ujx — -j-(Uj Uj- 1) ,

f ~
nln - ,71-lN c,4-nj - i l j j + 1 ) j — Uj — Uj ) , etc.

n Kn

In our scheme, the temperature distribution is obtained from an implicit
scheme of the heat conservation law; the free boundary is explicitly obtained
once kn is determined. Our basic scheme is the following:
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«?!=«;, /=!, 2, - , J+n-l, n = l, 2, - (3.1.1)

~(L-Mj+n)=M}+7if n = l, 2, ••• (3.1.2)

(3.1) ~=F(ue-u^1
n,i) n = l , 2 , - - - (3.1.3)

#71

w? = /n n=0, 1, ••• (3.1.4)

Uj=fa ;=0, 1, •-, / (3.1.5)

where f n = f ( t n ' ) and (j>j=<j)(x3).

t
h

h

0 /

Fig. 3.2.

If M5+i_i<i/ e , then kn is determined by (3.13.). And then wj, wf, ••• , wj+7l

by determined by (3.1.1), (3.1.2) and (3.1.4). So we can find kn, uf (j=0, 1, •-,
J+n, n=0, 1, ••• , JV) which satisfies (3-1) as long as uj+n<ue for n=0, 1, ••• ,
AT-1.

Remark 3.3. It may occur that Uj+N^ue. In this case we cannot solve
(3.1) any more. It is considered that the supercooling on the free boundary
vanished.

For the solution of (3.1), the following proposition holds.

Proposition 3.4, // uf (/=0, 1, ••• , J+n, n=0, 1, ••• , TV) satisfies (3.1) (note
that uj+n<ue for n=0, 1, ••• , N— 1), uf cannot attain its maximum or minimum
on the inner mesh points; i.e. {(xjt t n } ; /=!, 2, ••• , J+n — 1, n = l, 2, ••• , N}.

Proof. If uf attain its maximum or minimum at the inner mesh point
(XJQ, tnQ), wy=constant for ;=0, 1, ••• , J+n, n=0, 1, ••• , n0 by the maximum
principle. From (3.1.2) the constant must be L, which contradicts (pj<ue. D

Corollary 3.5,

Proof. If u^+N^L, then 1^^+^ must be the maximum value since uf<ue<L
for any other mesh points on the parabolic boundary. By proposition (3.4),
Uj+N-!<uy+N must hold, hence u$+NS>0. On the other hand, u*f+Nx^Q provided

^L from (3.1.2), which is a contradiction. D
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Corollary 3.6. u^-M for j=Q, 1, ••• , J+n, n=Q, 1, ••• , N.

Proof. Since u3+n<L, wj+7^>0 for n=0, 1, ••• , N from (3.1.2). Therefore
u1} cannot attain its minimum on {(xj+n, tn}'} n = l, 2, ••• , N}. Hence uf attains
its minimum on {(0, t n ) ; n=Q, 1, ••• , TV} or {(xjf 0); /=0, 1, ••• , /}, on which

Corollary 3.7. h/kn^ic for n = l, 2, ••• , N where K=K1(ue+M).

Proof. Obvious from (3.6) and Lipschitz continuity of F.

Next we need an estimate for u?x.

Proposition 3.8. There exists a positive constant Ci=C^(tN} such that

^l^C! for /=0, 1, -,/+n-l, n=0, 1, ••• , TV.

Set d=Max{#2(l+//2), (L+M)/l+K2(l+KtN}/2, K(L+M)}. Fix n0

(=0, 1, ••• , TV) and define C?;7i° O'=0, 1, ••• , /+n, n=Q, 1, ••• , n0) by

Clearly, C^: n°=C?^0 holds. Also, our evaluation on Ci gives £?:7l° = w? on the
parabolic boundary. Therefore it can be shown that £? :w° = ^? for /=0, 1, ••• ,
/+w, n=0, 1, ••• , nQ, by applying the maximum principle to Q'n°—uf.

Since £?o;710=w?0 and Cro : w o^wro , M?j?:^C?x:n°^Ci. Similarly u%^— d, and
hence we obtain I w f ^ l ^ C i for n=0, 1, ••• , N. Furthermore, \UjX\^d for /
=0, 1, ••• , /—I and \uJ+n-ix\^Ci for n = l, 2, ••• , N. Applying the maximum
principle to u™x, we get the desired conclusion u^x | ̂ Cx. Q

To construct a local solution we consider the variation of the solution of
(3.1) along the free boundary.

Lemma 3.9. Let v™ be a function defined on the mesh points {(xit tn) ; i=Q,
n

1, ••• , /, 72=0, 1, ••• , TV}, where xl=ih, tn= S km and r=Ih. If vn
l-t=vn

lx^ for
m = l

i=l, 2, -,/-!; n = l, 2, ••• , N and \v?\^B for i=0, 1, ••• , /; n = 0, 1, ••• , N,
then the following estimate holds,

(3.10) bM^C i

f=l, 2, • • - , 1-1, n = l, 2, - ,TV.

See [3]. EJ

Proposition 3.11. Let h^l/9. If u7} (;=0, 1, ••• , /+n, n=Q, 1, ••• , TV) zs a
solution of (3.1) and £re^Min{l, /2/9}, ^^w ^gre exists a positive constant C3 such
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that

(3.12) \uy+N-u°j\^CsVt^.

Proof. We can easily show 2(^TN+h}^l-h. Put / / : i = T ^ + 1 and r'

=I'h, then j-2I'=±-2(\^]+l):z /~2^+/l^i and

so we can define v?=u3-2I,+is for z=0, 1, ••• , 2/', n=0, 1, ••• , N. From (3.8)
|vf I^Ci=Ci(l), and from (3.1.1) vrii=vrixx. Applying Lemma 3.9 to vl and set-
ting i=I', we have

Hence
N

I Uj-I'— Uj-2' \ ̂  S & n | t t * - / ' t l

Since

V t

and

there exists a positive number Cr such that | u^-j, — u0j-j, \ ̂ CVt^. Hence

itty+*-M*ig|tty+*-^

The conclusion immediately follows. H

We next prove the existence of the local solution of the difference scheme
(3.1).

Proposition. 3913e For all e>Q such that <f)(l}<ue—ey there exist positive
numbers T, h0 satisfying the following property: For all h<hQ, (3.1) has a
solution uf (/=0, 1, ••• , J+n, n=Q, 1, ••• , N), where tN^T and Uj+n<ue—e for
n=Q, 1, -,N.
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Proof. Set T=Min{l/2, /2/18, (Ue-£-^(/))/C3)Y2}, A0=Min{//9, F(s)T},
and fix h<hQ. Suppose u^+n<ue—B for n—Q, 1, • • • , N—l and tN-i<T. Since
F(£}^h/kn for n = l, 2, ••• , TV, £zv = *2v-i+&2v^2T, and therefore ^^Min{l, /2/9}
and VT^^(ue—£—0(/))/C3. Applying (3.12), \u^+N—(j)(l}\<ue—B—(j)(l}J hence
uy+N<ue—s. Therefore, by solving (3.1) step by step we finally get a solution
M? O'=0, 1, • • • , /+n, n=0,l, • • - , # ) such that f^T and u3+n<ue—e for
n=0, 1, - ,W. D

Proposition 3.14. Let uf (/=0, 1, -• , J+n, n=0, 1, ••• , AT) 6e a solution
obtained in Proposition (3.13), if/ien £/z0re e^zs^s a positive constant C4 such that

Proof. Let us rewrite the left-hand side of (3.14) as follows:
N J+n-1 N J+n-l
S h "N A h (1J "^ -}^"— % A b y^ /7 77 ̂  - 7y ̂  _/v TJ, x j i L\H/ jij — / i K fi / i 11* M, j i IA, j x x

N
— / j h

n=l

n=i U n x i

1 N J+n-2
L v b V /
2 Z-I KU 4-1 i

71 = 1 .7 = 0

2 V ^ 1 J+N-2

1 ,7-1 1 J + N-2 . J_ JV J+n-2

2 J = 0 2 J = J 2 7i = l j=0

Therefore
2V J+n-1 TV 2V

71 = 1 .7 = 1 71 = 1 71=1

2V 1 J-l

2-i kfij 7 Uux-i pr ^j /l(c)7-;

Then

= 2 (i-u5+»)
71 = 1

Define
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then
^(^+J-^(wJ+^l) = (L

where Rn^0(kn}.
Hence

! i+n\
Since F(u) is bounded on [—M, ue~], (3.15) holds. [J

3.2. Construction of the Solution

To construct a solution of (2.1) we need some preliminaries. Let us denote
the domain of a function / by Dom/. We write

fn —» f on A

if the sequence of the functions {fn} converges to / uniformly on A. Let D be
an open set in Rm, and let {Dn} be a sequence of subsets of the same space. If
for every compact subset K of D there exists a positive integer NK such that
DnIDK for all n^NK, the sequence {Dn} is said to cover D. A sequence of
functions {fn} covers D, if {Dom fn} covers D. Suppose {fn} covers D and /
is a function with domain D. We write

/„-!»/ on D

if for all compact subset K of D, [fn}n^NK converges to / uniformly on K.

Lemma 3.16. Suppose {fn} covers D, and for every compact subset K of D,
(fn}n*NK is uniformly bounded and equicontinuous on K. Then there exists a
continuous function f defined on D and a subsequence {gn} of {fn} such that

gn -^» / on D.

Proof. This lemma is an easy consequence of the Ascoli-Arzera theorem. D

To extend the solution u7} of (2.1) to a continuous function, we linearly
interpolate it according to the triangle partition as Fig. 3.17.

t

Fig. 3.17.

Let us call the triangle whose vertices are (xj-lf t n - J ( x j , tn-i} and (xjf tn),
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(xj-i, tn-i)(xj-i, tn) and (xjf tn), Tf and Sy, respectively. Then the interpolated
function u(x, i) is given by the following formula :

U(X, t^utt + U^X-Xj-J + uWt-tn-J , U,

= u?-1
1 + uh(x-xj-J + u?-1 i(t-tn-J , (x,

The domain of u is D= (J T?U \J Sy. The partial derivatives ux and
l^jgj'+n-l I^J^J+TZ

l^n^N l^n^N
ut are represented by the divided differences un

jx and unj-t, respectively:

ux(x,t)=u»sl, (x,

Remark 3.18. Note that z^ indicates the partial derivatives of the inter-
polated function u, and w^, u^ x etc. the divided differences of the solution uf
of the difference scheme.

Let us state the existence theorem of the local solution of (2.1).

Theorem 30199 For all e>0 such that (f>(l)<ue—£} there exists a positive T
and a solution (u, y} of (2.1) on [0, T] satisfying u(y(t}, t)^ue—e for all

), T].

Before going into the proof, we have to prepare some notations and a
lemma.

To represent the dependence of a solution of (3.1) on h, denote the solution
of (3.1) as u\j\ similarly we write k%, t\ and y\ etc. Let yh(t) be a function
obtained by linearly interpolating y%. Take T>0 given by (3.13) and set

Dh={(x,t); Q^x^yh(t)

Dh={(x,t)', Q^x^yh(t)-h

By interpolating u%j, u\jx and utj-t in the way previously stated, we get uh< uh

and uh. The functions uh, uh and uh are defined on Dh, Dh and Dh, respectively.

Lemma 3.20. Let u%j be the solution of the equation

and let uh be the interpolating function of ufij. If Uh is uniformly bounded and
covers an open set D, then the following holds. For each compact subset K of
D, an arbitrarily high order divided dcfference of u\3 is uniformly bounded on K.

Proof. This lemma is proved by the similar method to the one in [4] using
the estimate (3.10). D
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Proof of Theorem 3.19. In the first step we cons tract the solution (u, y) as
the limit of the subsequences of {uh} and {yh}, and in the following steps we
show that (u, y) satisfies the conditions of the solution of (2.1).

First step: Since

(3.21) l^yM^l+tcT for all fe[0, T]

and

(3.22) \yh(n-yh(t')\^K\t"-t'\ for all t', f"eE[0, T],

y & is uniformly bounded and equicontinuous on [0, T]. Therefore, by the
Ascoli-Arzela theorem there exists a subsequence {yh,} of {yh} and a continuous
function 3; on [0, T] such that

(3.23) yh. —» y on [0, T].

From (3.21), (3.22) and (3.23)

(3.24) l^y(f)^l+icT for all *e[0, T]

and

(3.25) l3Kn-3Kni^U''-n for all f, re[0, T].

Obviously

(3.26) ?«))=/.

Set

(3.27) D={(x, f); 0<*<;y(0, 0<£<T},

which is an open set in x— t plane. Clearly {Dh,}, {Dh,} and {5ft,} cover D.
Since {wAr} is uniformly bounded and covers D, for every compact subset K

of D, {uh,} and {uh,} is uniformly bounded on K from Lemma (3.20). Therefore
{uh,} is equicontinuous on K By applying Lemma (3.16) to {uh,} and D, there
exists a subsequence {uh»} of {u/^}, and a continuous function u on D such that

MA* — » u on D.

Similarly there exists a subsequence {«/>•»} of {UK}, and a continuous function u
on D such that

uh'" — » M on D ;

and there exists a subsequence {wj of {w^-}, and a continuous function M on
D such that

^v — » s on D.

We thus obtained subsequences {yv}, {uv}, {uv} and {u^} of { y h } , {uh}, {uh}
and {Sft} such that

(3.28) yv— >*y on [0, T],

(3.29) uv —
 c-»u on D,
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(3.30) uv—^»u on D,

(3.31) uv—
 i»w on D.

Second step: In this step we prove

(3.32) ut=u, ux—u and ux — u on D;

which guarantees

(3.33) ut=uxx on D.

Here we show only ut—u, then other equations are shown by a similar method.
To prove ut=u, it is sufficient to show that

(3.34) u(x, t'}-u(x, t"}^' u(x, t}dt

for all (x, t'\ (x, tff}^D where t' <t" . Let us estimate the difference of uvt and
uv. Since

(3.35) uvt=u%i on T?/JS?,+1

and wy is a linearly interpolated function of ufa,

(3.36) sup Iw^-^I^Maxi^^-M^-l, |M?^-M?^|, |M?^-M?y+itl}.
r?,us£

From Lemma (3.20) there exists a positive number C^ such that

(3.37) \u%u\^CK and \u?ftx\^CK on /f,

where 7r is a compact subset of D whose interior includes a segment connecting
(x, O and (.T, £"). Therefore

(3.38) \uvt(x, t)-uv(x, t)\£(

on the segment. Then

(3.39) \uv(x, n-uv(x, t')

and by taking the limit as v->oo, we obtain (3.34).

Third step: In this step we prove

(3.40) lim u(x9 t)=f(t) for
X-+ + Q

and

(3.41) \}mu(x,t) = 6(x) for Q<x<l.
£- + 0

From (3.8), \uv\^d and consequently

(3.42) \ux\^C,.

Then

(3.43) \u(x, t}-f(t}\^\u(x, t)-uv(x, 01 +^+1^(0, 0-/COI,

and by taking the limit as v— >oo, it follows that
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(3.44) \ u ( x , *)-/(*) I ̂ Ci* for

which implies (3.40).
In order to prove (3.41) we apply Lemma 3.9 to u%s. Then we get the

following: for *e(0, 0 there exists a positive number C(x) such that

(3.45) \uv(x, V-u,(x, 0)|^-CU)VTlog t

for sufficiently small t. Then

(3.46) \u(x, f)-0(*)|g|M(x, O-MV(*, OI-C(*)V7log f+KU, 0)-0(x)|,

and by taking the limit as v>— »oo, it follows that

(3.47) \u(x, 0-0(*)l^-C(x)VTlog t .

Therefore (3.41) holds.
In view of the Lipschitz continuity of / and 0, and /(0)=0(0); u can be

extended to a continuous function on {(x, t); Q^*x<y(t), 0^t

Fourth step: Here we show that lim u(x, 0 exists and is a continuous
t -»y (« ) -o

function of t (denote it u(y(t), 0), and

(3.48) y(t}=F(ue-u(y(t}} t}}

and

(3.49) u(y(t},t}^ue-s.

The existence of lim u(x, t) is immediately follows from (3.42). Put v(t)
i -»y( t ) -o

= u(y(t), t) and vv(t)=uv(yv(t}, t}, and let us show

(3.50) z;y -^» z; on (0, T).

Fix £>0 and [}', r]c(0, T), then for

(3.51) |v(0-Vv(01^2Cie+|ii(^(0

Since {(j(0— e, 0; t^[t', t"J\ is a compact subset of Z),

(3.52) |M(y(0

for sufficiently large v. And

(3.53)

for sufficiently large u. Therefore, for such v it holds that

(3.54) \v(f)-vv(f)\<4C1e for all t^[t',t"~].

It means (3.50), which implies the continuity of v(t}=-u(y(t], t) on (0, T), and
(3.49). Also from (3.12)

(3.55) \u(y(f), 0-0(OI^C8VT for fe[0, T].

These facts guarantee that M can be extended continuously to {(A:, 0 J Q^x^y(t\
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Next we show

(3.56) y(n-y(t')=^F(ue-u(y(t), t}}dt

for t', re(0, T) where t ' < t f f . From (3.1.3)

(3.57) j£=F(ue-vv(rn-M
Kn

then

(3.58) yv(n-y»(t')=H h»=^ F(ue-vv(t
v
n-l))k^n

Taking the limit as u— >oo, we obtain (3.56) and then (3.48).

Fifth step: In this step we prove

(3.59) lim Ul(x, t)=y(V(L-u(y(t), 0)
£-»2/(O-o

for almost all fe[0, T]. From (3.15),

(3.60) 2 f e » S A
71 J

then

ST f y U ) (T
dn u£U, 0 2d^=\o Jo Jo

By Fubini's theorem,

S y C f )
i^U, t)zdx<™ for almost all fe[0, T],

0

and for such t, ux(x, t} is Holder continuous of order 1/2 in the space variable
x. Therefore lim ux(x, t) exists for almost every t. Put

z-»y(O-o

(3.63) <f>s(t)=ux(y(t)-d, t) for small d>Q,

and

(3.64) W)=y(t)(L-u(y(t), 0) .

Let us prove the following: for arbitrary \_t' , £"]ci(0, T),

(3.65) & — > X in L2D', ^] as 5 — > +0,

which assures the desired result. Set

(3.66) ^(0=«v(3'v(0-Av, 0-

First of all, let us show

(3.67) $v — » 7. on [t', r].

From (3.1.2) and (3.1.3),

(3.68)

Since vv — »v on [£', ?x/], for arbitrary e>0 we can take sufficiently large y
so that
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(3.69) \^(tvn}-F(ue-v(tl

Also from the uniform continuity of v on [£', /?"],

(3.70) \^(tl}-F(ue-v(mL-v(m<2e for fe[f t_ l f ft].

Then, for sufficiently large y, it holds that

(3.71) |^(rn)-X«!<2s for fe[ft_ l f ft]C[f ',*"].

Since ^,(0 is a continuous and piecewise linear function, it follows that

(3.72) l&,(0-XGOI<6e for fetf ' , **],

which indicates (3.67).
We next estimate the norm of fa—fa in Z,2[f, t"~\. From (3.60)

S £* f y v «) - f t j ,
df *„*(*, Oad*^C4,

«' JO

and applying Schwarz inequality, we get

S ?„«)-&„
|3«(jc, f)|'d*

t/CO-5

Integrating both sides from £' to J", and using (3.73)

(3.75) j«v(;y(0-M)-WOI8df^^^

Taking the limit as y— >oo

(3.76)

therefore (3.65) holds. D

We have obtained the local solution of (2.1) by Theorem (3.19). Considering
the proof of Theorem (2.1) we can extend the local solution as long as the
temperature at the free boundary is less than ue. Then the global solution (2.1)
is obtained.

Theorem 30770 There exist a solution (u, y] of (2.1) on [0, T) satisfying (1)
or (2) :

(1) T=+oo,
(2) T<+oo and \\m

§ 40 Uniqueness

In this section we prove the following theorem.

Theorem 4.L The solution of (2.1) is unique.

Before going into the proof, we need several preliminary results. In (2.1),
replace u, (j) and / by ue— u, ue—(j) and u e — f , respectively. Setting k — L — ue,
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we get

Ut(x, t)=uxx(x, 0 0<*<3KO, t>Q (4.2.1)

y(V(k + u(y(t), t» = -ux(y(t), 0 £>0 (4.2.2)

y(t)=F(u(y(t), 0) *>0 (4.2.3)

w(0, 0=/(0 f^O (4.2.4)

(4.2.5)

;y(0)=J. (4.2.6)

In order to express the solution to (4.2) in terms of Green's formula, we put

w(x, f)=exp(— J-

-0
and

g(x9 t] f, r) = u;U— f, t—T)—w(x+£,
Then we obtain

x, t',£, 0)^(f)if+['ft(x, f ; 0,
Jo

S ?/co
g(x, t ; f,

S£
g(z, f ; J>(T), T)M

o

S J
o^(^, ^; 3^W, r)M

where s(x) is the inverse function of y(t). Also, in view of the boundary con-
ditions (4.2.2) and (4.2.3), the sum of the third and the fourth term is equal to

Then, by setting u(y(r), T)=V(T), we obtain

(4.3) u(x, V = g(x, t ; ?, 0)^(f)df + €(x, f ; 0,

Jo Jo

The following equation must hold in the limit as x-*

(4.4) v(0=2f WO, ^ ; f, 0)^(^)^+2(^(3; (0, ^ ; 0,
Jo Jo

where ^(0=
Jo
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Note that the last term of the right-hand side of (4.3) becomes

, f; ytf, rMr)dr,

due to the discontinuity of double-layer potentials.
We wish to solve this integral equation in a suitable Banach space. Let

C[0, a] be the Banach space consisting of all real-valued continuous functions
on [0, a~] with supremum norm || • ((, and let C^[0, cr] be the closed ball in C[0, a~]
of radius A centered at the origin.

For some A, 0->0 we can define an operator

0: CA[Q, al-+CA[Q, a]
as follows:

Jo

-2k^g(y(t),t;yto,

where y(t)=l+\ F(v(T}}dr. Indeed, take A as
Jo

(4.6) A=Max{4 sup 10001+1, M+ue},

and note that

— l^y(t)^-~-1 for all

as long as

(4.7)

Then it readily follows that

and

(4.8) | (^)(0 i ̂ 4 sup 1 0(*) | +C5 sup

for all z;eC^[0, a~] and £e[0, o*]. Therefore, by taking a small enough to satisfy
(4.7) and

(4.9) C5sup \f(t

we see that 0 maps CA[0, a] into itself, thereby insuring the validity of the
above definition.

We want to show that 0 becomes a contraction by taking the above a even
smaller. Let

^(0=/+fV(vW)rfr and /(0=/
Jo

for v, v'^CA[Q, o~]. Then
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where

l ) , * ; f ,

, f ; 0,

JO JO

Estimating Pt (2 = !, 2, 3, 4) as in [1], we obtain

I Pi I ̂ C7 sup i^Wk^b

Hence if a satisfies (4.7), (4.9) and

(4.10) C8sup|/k+(C7sup|^|+C9+C10)(71/2<l,

then
\\®v-$vf\\^0\\v-v'\\ for all v, v'eC^O, a],

where 0 denotes the left-hand side of (4.10). Therefore, if we choose such a,
0 is a contraction mapping in C£0, <j]. Since C^[0, 0-] is closed in C[0, a~],
the equation @v=v admits a unique solution in C^[0, a].

Proof of Theorem 4.1. If (M, 3;) is a solution of (4.1) on [0, T], for A
defined in (4-6) and sufficiently small a,

v^CA[Q, <T] and 0v=v where v(t) = u(y(t), t) .

By the preceding argument on contraction, such v must be unique, and so is y.
This proves the uniqueness of the solution of (4.1) (make use of the maximum
principle). The same is true of (2.1). D

References

[ 1 ] Friedman, A., Free boundary problems for parabolic equations I. Melting of solids,
/. Math. Mech., 8 (1959), 499-518.

[ 2 ] - -, Partial differential equations of parabolic type, Prentice-Hall, Engle-
wood Cliffs, N.J., 1964.

[ 3 ] Nogi, T., A mathematical one-dimensional model of supercooling solidification,
(a private communication) .



344 RYO KOBAYASHI

[4] Yamaguchi, M. and Nogi, T., The Stefan Probrem (in Japanese), Sangyo-Tosho,
Tokyo, 1977.

[ 5 ] Chalmers, B., Principles of solidification, John Wiley & Sons Inc., New York,
1964.

[ 6 ] Winegard, W. C., An introduction to solidification of metals, The Institute of
Metals, London, 1964.


