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Time Dependent Representations of the Stationary
Wave Operators for "Oscillating"

Long-Range Potentials

By

Kiyoshi MOCHIZUKI* and Jim UCHIYAMA**

Introduction

Since the original paper of Bollard [7], the long-range scattering theory

for the Schrodinger operators — A + V(x) has been studied by many authors

(e.g., Buslaev-Matveev [5], Amrein-Martin-Misra [2], Alsholm-Kato [1],

Hormander [9], Kitada [13], Ikebe-Isozaki [10] and Kako [11]). These works

treat the case that the potential V(x) approaches zero without too much oscil-

lation at infinity:

(0.1) P«7(x) = (Kr-l«l-*)(|a|=0, 1, 2,...) for some 5>Q

(F=F* is the gradient in R", r=|x| and a = (a1,..., an) are multi-indices with

|a|=a1 + ---+an) , and prove the existence ([1], [2], [5], [9], [11]) and the

completeness ([10], [13]) of the modified wave operators

(0.2) WJ = s-lim exp {iLt} exp { - H0t- iX±(p, t)} in L2(Rn),
f->±00

where L0= -A, L = -A + V(x) on L2(Rn), i = V"-!"* p = -iFx and X±(£,i),

£ eRn, solve the equations

(0.3) dtX±(^ t) = V(2&+ ^X±(t> 0) (3t = 3ldt)

near t=±co. The self adjoint operators X+(p, t) are called time dependent

modifiers for L.

Stationary modifiers Y±(x, A), leR — {0}, solve the equation

(0.4)
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near infinity. As we see in [10] and [13], Y+(x, A) can be obtained from X + (£, f)

by a kind of Legendre transformation in classical mechanics and are used to

establish the completeness of W%. On the other hand, Y±(x9 A) are directly

used in [11] to obtain another formulation of the modified wave operators.

Let ^oM> A el?, be the spectral measure of L0. Then in [11] is proved the

following: For any pre-compact set e(c (0, oo), the limits

(0.5) W}(e) = s-\im exp{iLt}J±(e)e\p{-iL0t}£0(e) in L2(JR")
t-»±CO

exist, are isometry on <f0(e)L2(I2") and coincide with W%#0(e)9 where J±(e):

£0(e)L2(Rn)->l2(R") are identification operators (cf. Kato [12]) defined by

(0.6) J+(e)f=(2nYnl2 exp {ix . c - iY+(x, |
J G ( e )

with/(c;) being the Fourier transform of/(x) and G(e) = {£i \^\2 ee} .

In this paper we shall partly extend the above mentioned results to a class of

"oscillating" long-range potentials settled in our previous papers [14] and [15]

(the definite conditions on V(x) will be given in Section 1). Our main purpose

is to show that modified wave operators of the form (0.5) exist and are complete

for each e^(A^ oo), where the real number A$ depends on the asymptotic

conditions at infinity of V(x). The results will be summarized in Theorem of

Section 4.

Our "oscillating" long-range class includes the following examples:

(E.I) F(x) = c(x)+F/x),

(E.2) F(xO = -I + Fs(x) (r = |x|),

(E.3) V(x) = c(x) sin (log r) + Vs(x) ,

(E.4)

where c(x) (real) satisfies the conditions

c(x) = 0(l), Fac(x)-0(r-l-lal5) (|a| = l, 2,

near infinity, A(x) (real) satisfies the conditions

F«A(x) = ()(r-l*l*) (|a|=0, 1, 2, 1/2<5<1)

near infinity, ^ is a real number and Vs(x) (real) is short-range, i.e., Vs(x)

= 0(r~1~5°)(50>0) near infinity. Note that (E.I) generalizes the usual ~- long-
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range potential which satisfies (0.1) with <5>l/2. Namely., by the terminology

''oscillating'" long-range potentials we never exclude ones which are in the

frame of ordinary long-range potentials.

Now, in (0.5) we lake LQ=-A + A9 on 12(R"). This choice of the free

Hamiltonian mainly depends on the fact that we allow the case AS<Q. In fact,

for the above examples A~5 is given by (cf. (1.2) and Assumption 2 of Section 1)

(0.7) A~d =

for (E.I),

for (E.2),

for(E.3),

for(E.4),

where c^ =lim c(.x), Ay =lim sup A(^f CTOS ^— and e = 4min{50, 25-1, 1/2],
r-^oo r-»oo \[1\

and so we have As<® for (E.I) if c00<0. Further, in our case, equation (0.4)

does not work well, and it is necessary to define J±(e) in a different manner.

Let p±(x, A), A>yla , be two solutions, specified in [15], of the equation

(0.8) ?2p + ZL:J_5rp-.(3rp)2^|/(x)-.A = 0(r-1-5)

near infinity- Then our identification operators J±(e), e (g( / J a , oo), are defined

by

(0.9) J~(e)f=

where x = x/|x| and ^"0: L
2(JRn)->L2((yla, oo)x Sn-1)(Sn~1 being the unit sphere

in Rn) is a spectral representation of L0= — A + As:

(o.io) [

x (27i)-»/2 exp { - iJT^AJ • v - /7c(« - 3)/4]/(jOdj> .

We shall show that the operators exp {iLt}J±(e)Qxp { — iL0t}#0(e) are

bounded in ^Q(e)L2(Rn) and strongly converge as t-» + oo to the stationary

wave operators U±(e). Here the existence and completeness of U^(e) are

already established in [15]. Our argument essentially bases on [14] and [15],

whose results are summarized in Section 1. To show the boundedness of J±(e)

we shall follow a method of Calderon-Vaillancourt [6] on the L2-boundedness

of pseudo-differential operators (Sections 2 and 3). On the other hand, for the
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proof of the convergence the stationary phase method will play an important

role (Sections 4 and 5).

As we see in (0.7) for (E.3) and (E.4), (As, oo) does not in general cover the

essential spectrum of L= — A + V(x). In this sense it remains some ambig-

uousness in our theory.

Here we note that potentials of the special form

(0.11) V(x) = V(r) = ;-sny^* + vs(r) (A, /i are real constants)

including the case a = /?=l (cf. (E.4)) have been studied by Bollard-Friedman

[8], Ben-Artzi-Devinatz [4] and others. They reduce the problem to the study

of ordinary differential operators on the half line R+=(Q, oo), and prove the

absolute continuity of the positive spectrum (0, oo) of — A + V(r) except for one

possible eigenvalue jn2/4, and the existence and completeness of the M011er wave

operators. In this paper, we do not assume that V(x) is spherically symmetric.

However, our results for the concrete potential (0.11) with a = /?=l (von

Neumann-Wigner's adiabatic oscillator) is weaker than theirs. Also we have

not shown whether or not our wave operators are equivalent to the ordinary

M011er ones.

In case V(x) = Vs(x\ we can see that our modified wave operators coincide

with the M011er wave operators modulo some simple unitary operators.

Similar results can also be expected to the potential V(x) which is improper

integrable in r = |x| eif+. It remains as an open problem so far.

§ 1. Assumptions and Preliminaries

Let Q be an infinite domain in JR" with smooth compact boundary dQ

lying inside some sphere S(R0) = {x; |x|=jR0}. We consider in Q the

Schrodinger operator — A + V(x), where A is the Laplacian and V(x) is a potential

function. We assume

Assumption 1. V(x) = Vi(x)-\-Vs(x), where V^x) is a real-valued function

satisfying the "Stummel condition" for some

(if n>4),
\x-y\<l

(if
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and Vs(x) is a real-valued bounded measurable function in Q. Moreover, the

unique continuation property holds for both — A + V(x) and — A + F^x).

Assumption 2, F^x) is an "oscillating" long-range potential; that is, there

exist some constants Cl>0, R^^^R^ a>0 and l/2<^-<! 0" = 1, 2) such that

for any xeB(R1) = {x-, \x\>Rl},

( i )

(ii)

(iii)

(iv)

(v)

(vi) |(F - xdr) - (P -

On the other hand, F/x) is a short-range potential; that is, there exist some con-

stants C2 > 0 and 0<<50 < 1 such that for any x G

(vii)

In the following we put 6 = mm {<50, ̂ i, ^2) and ^ = min {^? 2^2 — 1}- Note
that the condition ^-<i O' = 0, 1, 2) does not restrict the generality.

We put

(1.1) £(y) = l imsup{r3 r71(x) + y71(x)} for
r-+oo 7

and define Aff, o->0, as follows:

(1.2) A. = E(mm(4<T,2}) + al4,

where a > 0 is the constant given in (iii) of Assumption 2. Then as is discussed

in [14; §8], we have the

Lemma 1.1. Aa is non-increasing and continuous in <r>0, and

(1.3) A j /2 = min Aa > lim sup Kx(x) + a/4 ,
ff>0 r-*oc

(1.4) |F1(x)|<C3r-
1 in B(RJ if a>0.

We put

(1.5) i7(A) = 4A/(4A-a) for

Note that ^(A)=l if a = 0. Then by means of (1.3) and (1.4) we can easily prove

the following
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Lemma 1.2. Let s be any constant satisfying 0<s<l . Then there

exist some constants C4>0 and R{>Rl depending only on s such that for any

(x, A)eB(£i)x[>l 1 / 2 + fi, oo),

(1.6)

(1.7)

(1.8) ISiU-J/W^OON^r-1 (/ = 2~6).

For some R2>R[ and any (x, /l)e£CR2)x [/l1/2 + e, oo) we put

(1.9) P±(x, A)

- -
2 4

Then by a straight calculation (cf. Lemma 1.1 of [15]) we have the

Lemma 1.3. There exists a constant C5>0 depending on e such that

[^il /2+fij °0),

(\ 1 f\\ I rfi- _i_ ^ /-} (rl

(1.11) KF-X
(1.12) KF-X
(1.13) KF-X

For any real number /,* and Gc= Q, let L2(G) denote the space of all functions

/(x) such that

M > JG

If ]ii = Q or G = ^2, the subscript jj. or G will be omitted. Let a, ^ be a pair of

positive constants satisfying

(1.15) 0<a</?<! and a + /?<2($.

For A> Ap/2(> Ad) and /6L2
1+j3)/2(^) let us consider the exterior boundary-

value problem

(1.16) { I u
Bu=\ or =0 on 5O,

where v(x) = (v1(x),...3 vn(xj) is the outer unit normal to the boundary dQ and
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d(x) is a real-valued smooth function on dQ. The outgoing (+) or incoming

(— ) solution of (1.16) will be distinguished by the radiation condition

(1.17) w e L 2
1 + a 2 ( 0 ) and d

Now let Lbe the selfadjoint operator in L2(Q) defined by

( $(L) = {ueL2(Q); Au c L2(Q) and flw=0 on
(1.18)

\Lu=-Au + V(x)u for

and let R(Q (£eC — JR) and <f(A) (AeH) be its resolvent and spectral measure,

respectively. Then the main results of [14] and [15] can be summarized in the

following propositions. To show Proposition 1.1 we require (1.10) and (1.12)

(see Theorems 1 — 5 of [14]). To show Proposition 1.2 we require (1.10) and

(1.11) (see Theorem 2.1 of [15]). (1.13) is used to show Proposition 1.3 (see

Theorems 3.1, 4.1 and 6.1 of [15]).

Proposition 1.1. (a) Let a, ft be any pair satisfying (1.15), and let e and N

be any constants satisfying 0<£<l<IV<oo. Then there exists a constant

C6>0 such that for any /eL2
1+0 ) /2(£2) (which is dense in L2(O)), Ae [^i/?/2 + e,

Moreover, R(A±/r ) / converges in L2
(1+a) /2(O) to the unique outgoing [or

incoming^ solution u±=R+(l)f of (\A6) as i i 0.

(b) The above convergence is uniform in Ae[/l J ? / 2 + e5 /t^ /2 + A^]. Thus,

R±(fyf is continuous in L?.(1+a)/2(&) with respect to (A, /) e(^/2, oo)
X ^(l+0)/2VV)'

(c) Let R|(A): Lf1+a)/2(O)^L?.(1+/0/2((2) be f/ie ad/o/nr o/J^+U).

we have for any feL*l+in/2(Q) (c=Lf1 + a ) / 2(^)) and Ae( / i / j / 2 , oo),

(1-20)

(d) For <7/zv pre-compact set e ^ (Ap/2, oo) and f, g eL*1+p)/2(&) we

have

(1.21) (^(g)/, ^)

where ( , ) denotes the inner product in L2(Q), or more generally, the

duality between L?.(1+a)/2(£2) and L^1+a)/2(O). T/tws, r/ie part o/ L m

^((/15, oo))L2((2) is absolutely continuous with respect to the Lebesgue measure

on A 6(4,5, °°)'
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Remark 1.1. Let -Ri i±(A) be the operator JR+(A) with FS(X)==0. In this case

we can choose /? = ! in (1.15), where a should be chosen as

(1.22)

Proposition 1.2. (a) For any a, ft satisfying (1.15), let

and &>Ap/2 + s. Then there exists a sequence rt = rz(a, ft, f, A) diverging to

oo such that

(1.23) lim
J->oo

(b) For any Ae[/i1 / 2H-e, oo) and /eLf(O), to r/ = r/(a, I,/, A), where a

satisfies (1.22). T/zen

(1.24)

strongly converges in L2^""1) as /->oo. Lef c^"1>±(A):

defined by

(1.25) ^1>±a)/=s-lim^li±(A, r,)/ in
|->oo

TTien we

Moreover, ^li±(^) is independent of the choice of rt.

(c) Let a, ^ satisfy

(1.27) 0<a<jg<l and a + j§<2^ = min {25, 4c52-2}

((1.27) is a stronger condition than (1.15)). Then for any Ae[yl^ / 2 + £5 oo)

the operator ^"i,+(A) can be extended to a bounded operator from L2
1+^)/2(^)

to L2(511"1) bj continuity. Denoting the extended operator by ^is±(A) again,

we have for any f^ L2
1+j5)/2(^), t^eL^S'1"1) a>?d Ae[/l^ / 2 + £, oo),

(1.28) (^if±a)/, 0)L2(s»-i) = lini(^li±(A, r,)/, 0)^(5-1) ,
Z-»oo

where rj = rz(a, j5,/, A).

Remark 1.2. In [15] we neglect the fact that R[ in Lemma 1.2 depends on

e, and then ^i.±(A) depends on e and JR2>J^i by (1.9) and (1.25). So the above

and the following propositions are corrections of [15]. Let sr and #1 be another

pair and let ^"i.±(A) be the operator ^"i,±(A) corresponding to e' and some

R'2>R". Then for Ae[/l^ / 2 + e, oo)n [^/2 + e', oo), ^"li±(A) coincides with



STATIONARY WAVE OPERATORS 955

^"1>±(/l) modulo a unitary operator on L2(Sn~1):

(1.29) [^i
J R.2

forfeL2
(l+in/2(Q).

Remark 1.3. Let «^"0W be the operator ^"lj+(A) corresponding to the

selfadjoint operator L0= — A + AS on L2(Rn). In this case, f/(/L)Fj(x)=yia

being constant, we can choose R2 = 0. Then for any A > /1 3, ̂ 0(A)/ is represented

by the right side of (0.10) (see Remark 6.2 of [15]).

Proposition 1.3. Lei a, $ satisfy (1.27) and A§<Ap/2<AB + c.

(a) For 1 E \_A$i2 + e, oo) let

(1.30) ^±(A) = ̂ ±(A){l-*y*±(A)}.

77? en if defines a bounded operator from L2
l+^/2(Q) ^° L2(S"~1). Moreover,

it depends continuously on A.

(b) Lef ̂ ±: L2
1^2a)/2(^)->L2([yia + 2s, o^xS""1) be defined by

(L.31) [^±/]a, S) = [^±(A)/](Jc), (A, x)6[yl, + 2e, c»)xS»-1.

Then 3F± can be extended to a partial isometric operator from L2(O) onto

L2([Ag + 2e, oo)xS"~1) with initial set #([As + 2e, oo))L2(f3). The extended

operator will be denoted by ^+ again.

(c) (Spectral representations) For any bounded Bore] function b(f) on

R and anyfeL2(Q), we have

(1.32)

= s- lim &*(X)b(X) \&± f] (1, • )dA in L2(Q) ,

where &%\ L2([yla + 2e, c»)xSl|-1)->L2((2) is the adjoint of &± and ^J(A):
2

(1+^)/2(O) is the adjoint of &±(X).

(d) (Stationary wave operators) We put for any pre-compact set e

e, oo),

(1.33)

<f0(A), AeU, is f/ie spectral measure of L0. T/?^n ^ac/i l/+(e) is a

unitary operator from #Q(e)L2(Rn) onto £(e)L2(Q), which intertwines the

operators <f0(e)L0 and ^(e)L. Namely, we have for any bounded Borel

function b(f) on R9
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(1.34) *

(1.35) *

where I7|(e): <?(e)L2(Q)-><?0(e)L2(Rn) is the adjoint of U±(e).

§ 2. Expressions of &\(X) and the Identification Operators J± (e)

Let p+ be as given in (1.9) with some R2>R\ and e = (hl9 A2) be a bounded

interval in [/la + 2£, oo). For any <£(A, x) e Qfte x S""1) we put

(2.1)

(2.2) g,.±(x

where i/r(r) is a smooth function of r>0 such that 0 <!>(;-)<!, i/^(r) = 0 for r

and =1 for r>R2 + 2. Note that

-(2.3)

Here (F -xd r) • (F -xdr)<j> = 0(r-2) and F^ = 0(;--') near infinity. Then as is

easily seen from (1.9), (vii) and Lemma 1.3, we have

Lemma 2.1. There exists a constant C7>0 such that for any (x, X)

e B(R2 + l)xe,

(2.4) \g^±(x, X)\ < C^-'-'-D/V-'1^',

(2.5) \»+.±(x, X)\£C^-w.

Moreover, we have

(2.6) {dr + d rp±(x,A)H i ±(x,A) = 0 ™ (x, A) eB(R2 + 2) x e,

(2.7) fli^f±(x, A) = 0 on (x,X)edQxe.

Let a, j§ be as given in Proposition 1.3. Then (2.4) implies that g^^±

eL^1+^)/2(O).) and it follows from (2.5)—(2.7) that v^^ determines an outgoing

[incoming] solution of (1.16) and (1.17)+ with f=g(ttt±, oc = a and jS = j§.

Namely, we have
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(2.8) i^,±(., A) = [K±a)0*.±(-> A)](-), A e e .

Proposition 2.1. For any 0(A,x)eCg>(ex S""1),

is expressed as follows:

(2.9) [.

Proof. For/e Lf1+^)/2(O) and A e e let

(2.10) «± ( . , A) = «±(A)/=R l t±(A){l-*y?±(A)}/.

Noting {1 — ̂ sR±(A)}/eLf1+£)/2(O), we choose a sequence r/ = r/(a, j8, {1

— FSK±(A)}/, A) diverging to oo as in Proposition 1.2 (a). Let ^2(r/) = {xeQ;

|x| < r / j . Then by the Green formula, (2.6) and (2.7) we have

(2.11)
^

-j- 1

'(n)

4M •2i )s(n)

Here by (1.9) and (2.1),

(im drp + }u + v6 +dS = \ J A — ̂ (A) Ft (x)i/ + v6 +dS
) Js ( r / )

—Y~=-exp {p + (r/.x, A)}i^±(?^x,

So, letting /->oo in (2.11), we have

(2.i2) -tL ̂  {W±^; -/^T}^

By means of (2.10) and Proposition 1.1 (c), the left side of (2.12) equals

( f, -=^r-{^,± — ̂ +(>00<£,±})- On the other hand, by means of Proposition J.2

(c) and (1.30), the right side equals (/, J^|(/l)<)(>(A, •)). Thus, we obtain (2.9).

q. e. d.
Now we define the operator K+(e) as follows:

(2.13)

\x\<R2
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for <£(A, x)e CQ(€x S""1). In the next section we shall show that K±(e) can be

extended to a bounded operator from L2(exSn~l) to L2(Q). The extended

operator will be denoted by K±(e) again. Then our identification operators

J±(e) are:

(2.14) J±(e)f=K±(e)&0f for /e lQ(e)L*(R»).

§ 3. L2-Boundedness of K± (e)

We begin with a lemma which is a slight modification of Calderon-

Vaillancourt [6].

Lemma 3.1. Let I be a bounded interval of R = (— oo, oo) and let A(r)

(re/) be a weakly measurable and uniformly bounded family of operators In

a separable Hilbert space §. If the inequalities

\\A(r)A*(r')\\<h\r,r') and \\A*(r)A(r>)\\ <h2(r, r')

hold for r, r 'e/ with a non-negative function h(r, r') which is the kernel of a

bounded integral operator Hj in L2(/) (A*(r) being the adjoint of A(r))9 then

the operator \ A(r)dr defined by
Ji

4(r)fdr for fe §

is a bounded operator in § with norm

A(r)dr <\\Hj\\.

Proof. By assumption we can admit ||>4(r)||<M for any re/. From

the two inequalities

and

\\A(r1)A*(r2)A(r3)---A*(r2J\\<\\A(r1)UA*(r2)A(r3)[\-

we have for rt e I (i = 1, 2, • • •, 2m),

(3.1) M(/-1M*(r2M(r3)..^*(r2m)||<M/!(r1, r2)^(r2, r3)-h(r2m.l, r2J.

Since \ y4(r)dr(\ A(r)drj is a bounded selfadjoint operator in § and
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A(r)dr* = A*(r)dr, we have from (3.1)
/

(3.2) A(r)c/r
i l J j

/r \*nmi
A(r)dr(\ A(r)dr]

/ \J/ / J 1
l/

l/

where x/(r) = 1 on / and |/| is the length of/. Letting m go to oo in (3.2), we have
the assertion. q. e. d.

Remark 3.1. By Petti's theorem the weak measurability of A(r) and
the separability of § show that A(r)f, /e §, is strongly measurable on J. More-
over, A(r)f is Bochner integrable on / since \\A(r)\\ is bounded in I (see Yosida
[16], pp. 130—134).

Let eQ=z(A1/2 + G, A1/2 + N), where N is chosen so large that e = (A l 5 A2)
c=e0. Let CW e Co3(e0) be a real function such that C(A) = 1 on e, and let #(r) e

C™(M) satisfy the following: /(r) = l for r< l , =0 for r>2 and 0<#(r)<l for

l<r<2 . We put for /i, Aee 0 , r>,R2 + l andxeS""1,

(3.3) S±(fJL9 A, r, x)=±

(3.4) pR(n, A, r, x) =

where \l/(r) is as given in (2.1) and R>(R2 + l)/2.

For any r, r'>R2 + l, we have

(3.5) S±Gi, {, J

and

(3.6) d\ exp { ± i f ' x/f^
I Jr'

= ff±(f , r, r', x)exp ± i
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(3.7) ff±(£, r, r', x)

Then the following inequalities are consequences of Lemma 1.2. Namely,

there exists a constant C8 > 1 such that for any r, r' > R2 + 1, £, ^, A e e0, Jc e S""1

(3.8) |(7±«, r, r', ^I^CgMr-rr-Cslr-r ' l ,

(3.9) |3Jflr±({, r, r', S)|<C8(l + |r-r'|3) (/=!, 25 3),

(3.10) \d\[pR(n, L r, x)pR(t, ^ r', 5c)]|<C8 (/ = 0, 1, 2, 3).

With these inequalities we can apply Lemma 3.1 to prove the following

Lemma 3.2. The operator PRt± defined by

f°° r(3.11) [Pflf±0] (JJL, x) = \ \ exp {iS±(v, A3 r, Jc)}pR(/L, A, r, x)0(A, x)drdX
JR2+1 Je0

for 0(A, Jc)e$ = L2(e0xSB~1) /5 bounded in §>, and there exists a constant

C9>0 s^c/z r/i«^

(3.12) ||P1, j±li<C9/ora^JR>(^2 + l)/2.

Proof. We define the family AR}±(r), re!R = (R2 + l, 2R), of operators

in § by

(3.13) [^^(r)^] GI, x) = ( exp {iS±(fi, 1, r, x)}pR(^ 1, r, Jc)0(A5 S)dA .
J eo

Obviously, each ^K,±(r) is bounded and selfadjoint in §. Since we have

(3.14) M*,±«||<{ sup
JceS" -1 J eo

it follows from (3.10) that

(3.15) IUK,±00||<C10 for any R>(R2 + l)/2 and re/*.

Further, by the Lebesgue theorem, -4Rs±(r) is strongly continuous in IR. Thus,

to complete the proof we have only to show the existence of a kernel hR(r, r'}

which satisfies the following inequalities :

(3.16) \\AR,±(r)AR>±(r')\\<h2
R(r,rf),

(3.17) hR(r,r')f(r')dr' dr<Cu \f(r')\2dr'
IR iR
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for any R>(R2 + l)/2, r, r'eIR and /(r) e L2(IR), where C t l >0 is independent

of/?.
We can choose C1 2>0 and C13>0 to satisfy

C12 + C81T3-C8T>C13(1 + T3) for any T>0.

It then follows from (3.8) that

(3.18) l + iC12sgn(r-r') + ff±«,r,r',x)|^C

where sgn t = 1 if t> 0 and = -1 if l <0. So by (3.6),

(3.19) e x p ^ ± i \ J£ — *i(£>')Vi(sx')ds> = {-HC12 sgn(r — r')4-0r±(f, r, r', x)}~
I Jr' )

x | + /C12 sgn(r —r') + df} exp < ± i \

Note that the support in £ of pR(fJL9 £, r, x)pR(£9 /I, r', jc) is contained in e0.
Then (3.5), (3.19) and integrations by parts give

PYTI < 7 ^ r// c >* Y^ —I- 7 ^ ^ ̂ " >! I"' V^l T) (II *~ V V^T) (t~ >1 I*' ^f\f\<^CAIJ 1 t O 4.1 tt, (55 / , .V I r^ I kj 4-1 L. , A, f , A- I j L/R\Mj S J ' * "^y^Rv^ 5 9 ? A-ICi (5
/* eo

= \ exp{iS+Ou, ^, r, x) + fS:E(^ A, r7, x)}{ + i'C12sgn(r-r/)-3|}

Applying (3.9), (3.10) and (3.18) in this equality, we obtain

exp {iS±([i9 £9 r, x) + iS+(£9 A, r', x)]pK(/,f, ^, r, x)^((^, A, r',

where C14>0 is independent of R>(R2 + l)/2, r, r' eIR, \JL, Iee0 and xeS""1.

Now for any $(A, x) e §,

exp {JS±Oi, C, r, jc) + iS±«, A, r', x)}
eo

x p^jH, ^ r, x)pR(^, A, r', x)d^.

So (3.20) has shown the inequality

(3.21) \\AR}±(r)ARs±(rf)\\<C\4(l + \r-r'\*)-i with C14 = C14\e0\.

Hence, choosing hR(r, r/) = Vc/i4(l + k-'</l3)"1/2 ^r any .R>(^2 + l)/2, we

have (3.16) and (3.17) with C^C'^ft (l + r 3 ) - 1 / 2 ^^ . q.e.d.

Remark 3.2. The method of the above proof, which apparently seems to
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be much different, however, follows the idea employed in Calderon-Vaillancourt
[6]. If Vfc) is sufficiently smooth, e.g., eC19(B(R2)\ a general theory of
Asada-Fujiwara [3] can be applied to obtain the above result.

As a corollary of Lemma 3.2 we can now prove the following

Proposition 3.1. For any 0(1, x) e Q?0 x S"-1), where e£e0, let K±(e)(j)

be defined by (2.13). Then we have K±{e)(j>eL2(Q) and

(3.22) l|X±(e)0lla^C9||^||i2(.xS-i).

Thus, K±(e) can be extended to a bounded operator from L2(ex S""1) to L2(Q).

Proof. By integration by parts we have

x ( exp j + i ' JA - rjWV^sZjds] {A -

R2

This with Lemma 1.2 shows that

i.e., K±(e)^> e L2(O). Thus, we can apply the Lebesgue theorem and the Fubini

theorem to obtain

(3.24) ||J£±(^ll2=lim f \*(rlR)[K±(e)<ft(x)\*dx
R->co JQ

r r r°o r
= lim \ \ (/>(/,£, x)diidS \ \ exp{i5'±(^, A, r, x)}

#->oo Je JS""1 jR2Je

x pR(^, /I, r, x)^(/l, x)drdk = lim (PR> ± <^,

= lim (Pp +<A, i)r2/^vcn-n

^-.oo —-- - -2(exS" i)

(3.12) and (3.24) imply (3.22). q. e. d.

§40 Theorem; Time Dependent Representations of U±(e)

First we note the following lemma which can easily be proved by Lemma

1.2.
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Lemma 4.1. Let & and N be any constants satisfying Q<e<l and

N>A§ — A1/2 + 2. Then there exist some constants C16>1 and R2>R'i such

that for any (jc, A) e B(R2) x \

(4.1) C

In this and next section we choose R2>J^i defining p±(x, A) as in the above

lemma, and prove the following theorem which gives time dependent represen-

tations of the stationary wave operators U±(e) with ec:[As + 2e.> A1/2 + N~j.

Note that the operators U±(e) and J±(e) and functions v^±(x, A) and g<jft±(x9 A)

are now determined depending on the above R2.

Theorem, Let e, N and R2 be as in the above lemma. For any interval

<? = (A1? A2)c[/la4-2s, /!1/2 + JV] let J±(e): £0(e)L2(R»)-+L2(Q) be defined by

(2.14). Then the strong limits

(4.2) W}(e) = s-lim exp {iLt}J±(e) exp { - iL0t}#0(e)
f-> + 00

exist in L2(Q) and coincide with the stationary wave operators U±(e) defined

by (1.33). Thus, Wj(e] are unitary operators from #0(e)L2(Rn) onto

£(e)L2(Q) satisfying

(4.3) &(e)LW}(e)f=W}(e)£0(e)L0f for any fe®(L0).

Remark 4.1. K±(e) and J±(e) depend on the function i//(r} given in (2.1).

However, Wj(e) does not depend on the choice of \l/(r).

The following proposition will be proved in the next section by use of

Lemma 4.1 and the stationary phase method.

Proposition 48L For 0(A, x) E C$(e x S"'1) let

(4.4) $4.±(x,t)

where g^t±(x, A) is defined by (2.2). Then we have

(4.5)

Based on Propositions 2.1, 3.1 and 4.1, we can now follow the idea employed

in Kitada [13], Ikebe-Isozaki [10] and Kako [11], where is treated the case of

"non-oscillating" long-range potentials, to prove the above theorem.

Lemma 42. We have for any <£(A, jc) e C%(e x S""1),
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(4.6)
\Je - - - - - - J0

Proof. Noting that 00 j ± ( - , A)eL^1+£)/2(£2), where /? is as given in Prop-

osition 1.3, we put

G±(x) =

Gti±(x) =

where the measurability of the integrands is guaranteed by Proposition 1.1

(b) and the continuity of g(f)i±( •, A) in A e e. In virtue of (2.4) we have

exp {i(L — X+ii)t}dt \c

exp

Thus,

(4.7) i |G T j ± | |<±\ l l < ? 0 , ± ( - 3 t)\\dt<co for any t>0.

Further, since we have for any/eL2
1+^)/2(O) and T>0,

(Gt,±,/)=<

it follows from Proposition 1.1 (a), (b\ (c) and the Lebesgue theorem that

• j g t . ± ( - , X ) , R ± (

) being dense in L2((2), this and (4.7) imply that G+ is the weak limit

as T | 0 of GTt± in L2(O). Hence, G+ eL2(O) and

t io

which is to be proved. q. e. d.

Proof of Theorem. Let /e £Q(e)L2(Rn) satisfy [JF0/] (A, jc) e CJ(e x S"-1),

and put w(0 = exp{ — iL0t}f. Since c^0w(0 = exp { — ifa}^^/ by Proposition

1.3 (c), we see that cF0w(0 also belongs to C%(exS"~1}. By Propositions 1.3

(d) and 2.1 we then have
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(4.8) exp{-iLt}U±(e)f=U±(e)u(f)

Here by definition

(4'9)

On the other hand, the equality

0Vo«(0, ± ( • ^) = exp { - ilt}g^Qfj ± ( • , A)

and (4.4) show that

^o«<o,±(->5) = ^o r ,±( -> s + 0 for any ±s>0,

and hence, we have from Lemma 4.2 and Proposition 4.1,

(4.10) <±±m\\8,of.±(',s+t)\\ds
±co

(4.8), (4.9) and (4.10) prove the following:

(4.11) lim \\exp{iLt}J±(e)exp{-iL0t}f-U±(e)f\\=Q.
£-»±00

Since QKexS11"1) is dense in L2(exS'"~1) and J^"0 is a unitary operator from

£0(e)L2(Rn) onto L2(ex S"'1), (4.11) holds for any/e^0(4L2(^")-

The proof is thus completed. q. e. d.

§ 50 Proof of Proposition 4.1 ; The Stationary Phase Method!

We put for the sake of simplicity

(5.1) «x,
R2

(5.2) C0f±(^ A) = x/7^exp {p±(x, A)}^i:E(x, A),

where 0(A, ̂ eCJCexS11-1) with e = (Al9 A2)c[yla + 2e? A1/2 + N]. We can

find a concrete form of £<f,i±(x, A) in (2.3).

The following lemma is easily proved by a straight calculation (cf. Lemmas

1.2, 1.3 and 4.1).

Lemma 5.1. There exists a constant C17>1 such that for any (x, A)

e B(R2 + 1) x e,
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(5.3) C

(5.4) C^r<-8^(x, A)<C17r,

(5.5) |<3i£(x, A)|<C1 7r 0 = 3 ,4 ,5) ,

(5.6) |<31^i±(x,A)|<C17r-i-* (/ = 0, 1,2).

Let ei = [A3, A4]ce be a closed interval which contains the support in A

of C^i±(x, A) for any x e £(7?2 + 1). We put

(5.7)

Then we have

(5.8)

since (8^)(x, X) is by (5.4) a monotone decreasing (in a strong sense) function of

A e e for any x e B(R2 + 1). Moreover, we have the

Lemma 5.2. There exists a constant C18 > 1 such that for any xeB(R2 + 1),

(5.9) Cr8V<(1(x)-(3(x)<C18r,

(5.10) C^r<t4(x)-t2(x)<C18r.

Proof. Since we have

for a suitable 9 (0<0 = 0(x)<l), (5.9) is a consequence of (5.4). (5.10) can

similarly be proved. q. e. d.

With the above lemmas we shall estimate the function

(5.11) ^,±(x,0

- exp{-iAf±i«x,= -7=
V n

Our estimation will be done in the each case ±t>t1(x), 0< ± f < f 2 W or

In the case + 1> t^x) or 0< ± t< t2(x), it holds that

(5.12) \d,{tt + t(x,V}\ = \t-d&x,Z)\>\t\~t3(x) or t+(x)-\t\

for any (x, A) e B(R2 + l)xei. So we can prove the

Lemma 5.3. There exists a C19>0 such that

(5.13) I^^OI^C^r-'"-1)/^-^
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for any xeB(R2 + l) and ±t>t1(x), and

(5.14) l^ifoOI^C^r-c--1)/2^

for any xeB(R2 + l) and 0< ±t<t2(x).

Proof. Integrating by parts gives

^(3^
Thus, noting (5.12), (5.4), (5.5) and the inequality

(5.15) \3]i{^-riV1r
l/%.±}\^C20r'^ (1 = 0, 1, 2)

which follows from (5.6) and Lemma 1.2, we obtain (5,13) and (5.14). q. e. d.

Next we consider the case t2(x)< ±t<t1(x).

Lemma 5.4. There exists a (unique) function Ac(x, t) such that for any

x e B(R2 + 1) an d t2(x) <±t< t^x),

(5.16) |f |=(^C)(.x,Ac(x,0),

(5.17) A i < A c ( x , 0 < A 2 ,

(5.18) Ac(x, -0 = Ac(x, 0-

Proof. We have only to solve in A the equation \t\=(d^)(x, A), which is

possible by the monotonicity of (d^)(x, A). q. e. d.

Ac(x, f) is the so-called critical point of A|r| — (J(x, A).

Let co(A) be a exjunction of AeH such that 0<o>(A)<l , co(A) = l for |A|

< 1/2 and =0 for |A| > 1. By use of this function we divide #0,±0c, t) into two

parts :

(5.19) ^i±(jr, r^-r -C' -D/ 2 exp {-iAf±/S(x, A)]
e,

, A)}
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where v(x, i)>l is given later. Note that

+ —(A —Ac)3 \ (1 — T)2(<3|£)(x, Af 4- (A — AC)T)^/T .

Then we have

x \ exp < +4-(A — Ac)
2(d?£) (x, Ac)^a+(x, f, A)exp{ + z^(x, f,

Jei I 2 j ~

where

(5.21) a+(x, f, A) = co(v(x, f){A —Ac(x, t)}){l — ??(A)K1(x)}~1/4^j±(x, A),

2 Jo

By (5.15) and (5.5) we have noting v(x? t)> 1,

(5.24) \dWx, t, A)|<C21|A-Ac(x, t)l3-'r (/ = 0, 1, 2).

We put

(5.25) /?=(x, t, A) = fl±(x, f,

Then obviously,

(5.26) 3Ah± = {3Afl± ± w±3A6} exp {

(5.27) aj/?±={^f l

Lemma 5e5. Le^ v(x, r) = r1/3 /w (5.19). T/?e« ^/iere exists a C22>0

swc/i that for any XEB(R2 + 1) and t2(x)< ±t<t1(x),

(5.28) |^>±(^ 01 < C22r-(»-1)/2r-3/2-5~.

Proof. Note that the support in /I of /i±(x, t, X) is contained in e1. Then by

use of the equality

Jo

we have for any sufficiently large N,
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(5.29) exp { + 2-1f(A-Ac)
2(aia(x, AC)}M*. t, A)dA

i

= /i±(x, r, Ac) J*w exp {±2-H(X-W(d\t;}(x, Af)}dA

exp { + 2-1 i(A - AC)W) (*, Ar)J (1 - Ar)rfA

Here applying the Fresnel integral formula, we have

(5.30) lim T exp{±2-i/(A-Ac)
2(^)(x,Ac)}<U

N-*oo J-N

= 72S|(3JO (*, A,)]-1/2 exp ( + 7d/4) .

On the other hand, since the Lebesgue theorem shows that

lim
JO

integrating by parts and changing the order of integration, we have

(5.31) lim T exp{±2-1/a-Ac)
2(aK)(x, A,)}(A-Ac)dA

A'->oo J-N

TCT exp +
o Ji

)(x, f, Ac + (A-Ac)r)rfA,

where

-Ac and

if we note that o)(A) = 0 for |A| > 1 and /2 + (x, f, A) = 0 for X^el. Taking account

of (5.5), (5.23) and (5.24), we now have from (5.20), (5.27) and (5.29)— (5.31) the

following inequalities which prove (5.28):

y/'2V V^jr fT I
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'{2v + |-A-v-2H-|-/-2v-5J

where in the last equality we have used v = r1/3. q. e. d.

Lemma 5.6. Let v(x, t) be as in the above lemma. Then there exists a

C24>0 SMC/J that for any xeB(R2 + \) and t2(x)< ±t<tl(x),

(5.32) \8f£±(x, t)\<C24r-«'-^2r-s/*-s .

Proof. We put

(5.33) d±(x, t, A) = {l-co(v(x, f)U-Ac(x, OHHA-rtAWM}-1'4^ ±(x, 1).

Then it follows from (5.15) that

(5.34) \d{d±(x, t, A)|<C25v'(x, Or'1'* (/ = 0, 1, 2)

in the whole e^. Note that d±(x, t, A)=0 in {/leej; |A-Ac|<(2v)-1}. On

the other hand, it follows from (5.16) and (5.4) that for any /Lee t satisfying

(5.35)

Now, integrating by parts gives

(5.36) V*'1'1"1'' W±(*, 0 = 1 exp { - iA< + i«x, A)}d+(x, /, A)dA
Jei

= -( exp{-iAt±i{(x,

So, applying (5.34) and (5.35) in the right side of (5.36), we obtain

\g(£±(x,t)\<C26r-(n-l»2r-Wr-1-*^

which proves (5.32) since v = r1/3. q. e. d.

Proof of Proposition 4.1. Let \JL be a constant satisfying 0</*<2<5. Then

we have

(5.37)

B(R2+1)
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)B(R2+1) JO

We divide the integrand of the right side as follows:

(5.38) ±1

~~LJO J±t2(x) J±fi(jc)J

By (5.14) of Lemma 5.3 we have

Thus, it follows from (5.10) and (5.8) that

By (5.13) of Lemma 5.3 we have

±ti(x)

Thus, it follows from (5.9) and (5.8) that

Further, by Lemmas 5.5 and 5.6,

Thus, it follows from (5.8) that

/2<

Summarizing these inequalities, we have from (5.37) and (5.38),
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Thus, (4.5) holds and the proof of Proposition 4.1 is complete. q. e. d.
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