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Transformation Groups for Soliton Equations
—Euclidean Lie Algebras and Reduction

of the KP Hierarchy—
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Etsuro DATE*, Michio JIMBO**,

Masaki KASHIWARA** and Tetuji MIWA**

This is the last chapter of our series of papers [1], [3], [10], [11] on trans-

formation groups for soliton equations.

In [1] a link between the KdV (Korteweg de Vries) equation and the affine

Lie algebra A[^ was found: the vertex operator that affords an explicit realiza-

tion of the basic representation of A{1} [2] acts infinitesimally on the i functions of

the KdV hierarchy. It was shown also that this link between the KdV equation

and A[l) comes from a similar link between the KP (Kadomtsev-Petviashvili)

equation and gl(oo)f; the restriction to the subalgebra A{^ in gl(oo) reduces the

KP hierarchy to the KdV hierarchy.

Soliton equations Infinitesimal transformations

KP < > gl(oo)

reduction \J subalgebra

KdV < > A(V

In this paper we carry out a detailed study of reduction problems of this

sort using three kinds of master equations: the KP equation, the BKP equation

and the 2-component BKP equation [3]. We thus obtain several new series of

soliton equations along with the explicit forms of ]V-soliton solutions. The

list of soliton equations and the corresponding Euclidean Lie algebras treated in

this paper are given in Table 1. Here we extract the known soliton equations

in the list :
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Soliton equations Reduction type Euclidean Lie
in Hirota's forms algebras

KdV:(Df-4D1D3)T-T=0 (KP)2

Boussinesq : (Z)f + 3£>i)T - 1 = 0 (KP)3

Sawada-Kotera [4] : (BKP)3

Ramani[5]: (BKP)5

(Df-5D?D3-5Di)t.T=0

Ito[6]: (BKP)6

where we have used Hirota's symbol P(D1, D 2 , . . . ) f - g = P{-a—, -^—,\ oy i cy 2

In [7], M. and Y. Sato proposed the problem of counting the number of

Hirota bilinear equatons of weighted homogeneous degree n in a hierarchy of

soliton equations. The above mentioned link and the character formula for

Euclidean Lie algebras give us a systematic way of carrying out this counting.

Our reasoning owes a great deal to [8]. The results are listed in Table 5.

In the language of quantum field theory [9], the main conclusion of our

series of papers [1] [3] [10] [11] can be stated as follows: The space of r

functions for a hierarchy of soliton equations is the orbit of the vacuum vector

for the Fock representation of an infinite dimensional Lie algebra.

Let us explain briefly the statement above in seven steps. The aim and the

idea of the present paper will, then, be much clearer. We take the BKP hierarchy

as an example [3].

i) Neutral free fermions.

Let us start with an infinite dimensional orthogonal space WB= © C(j)n

with the inner product

The Clifford algebra on WB9 which we denote by A(WB), is an algebra generated

by (j)n(n € Z) with the defining relation

[.^4>nl+=(-r^n,-n-

The generators $n(n e Z) are called neutral free fermions.

ii) The vacuum vectors and the Fock representation.



SOLITON EQUATIONS AND LIE ALGEBRAS 1079

The vacuum | vao and the anti-vacuum < vac | are defined by the following

relations.

<vac|<pw = U n ^ l ,

<vac | vao = 1 .

The vector space A(W)\vac> =A(W)/A(W)( © €</>„) is called the Fock space,

and the representation of the Clifford algebra A(WB) on ^4(^)1 vao, by left

multiplication, is called the Fock representation.

iii) The vertex operator and a realization of the Fock representation.

Let x = (x1, x3,...) be infinitely many time variables. We define a

Hamiltonian HB (x) by

I

— neZ
liodd

We set F=C[xl5 x3,...] and ^(^j,)=7®C[00] = K©700. We note that

0o acts on ^(Wg) by multiplication (0o = ~r)- The following linear differential

operator is called a vertex operator:

I:odd M:odd *^ ^xl/ neZ

Then the following (c, p) gives us a realization of the Fock representation in terms

of polynomials and linear differential operators acting on them.

UJ UJ
\a> I

p: A(WB)
UJ

iv) The Clifford group and its Lie algebra.

The quadratic elements </>;0_j in ^4(PFB) span an infinite dimensional Lie

algebra 90(00) = o(oo)©C. This acts on V through (c, p). The corresponding

infinite dimensional group is called the even Clifford group.

v) The T functions.

Let 3? be the orbit of the vacuum | vao by the action of the even Clifford

group. For an element |L> e £? we define a T function by
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vi) Hirota bilinear equations.

The i function T(X) satisfies the following bilinear identity :

(0.1) J dkXB(k)r(x) • XB( - fc)r(x') = T(X)T(X')

where dk = dk/2nik. This is equivalent to infinitely many Hirota bilinear

equations for T(X) :

(0.2) Z pj(2v)pJ(-2Dx)e*£*yi

j ^ i
Z klxi

where el:odd = £ pi(x)-
j ^ o

vii) The linear problem.

We define a wave function by

w(x, k) solves the following linear problem (Zakharov-Shabat problem)

, k) _ dl ,12
- —

The compatibility conditions for this problem are equivalent to the set of Hirota

bilinear equation (0.2). The characteristic feature of (0.3) is that only odd time

flows enter and that the constant terms blo(x) vanish.

The first two weighted homogeneous bilinear equations in the hierarchy are:

3 - 15)r(x) • T(X) = 0 ,

(D? + 1D\ D3 - 35DI Dl - 210? D5 - 42D3D5 + 90D1D7)T(x) - T(X) = 0 .

The N soliton solution is given by

(0.4) T(*)=i: Z ajl-ajnncJljl.exp(±t(x,Pjl) + t ( X , q j l ) )
,,=o ig; ,<-<j, ,gN i<r 1=1

where frc, fc)= Z x ffc' and cjr= (PJ'PJ^PJ-^ This
i:odd JJ (Pj+pj,)(pj + qr)(qj+pr)(qj+qr)

hierarchy is "sub-sub-holonomic" in the sense that it admits an arbitrary function

in two variables XL and x3 as an initial value. The presence of two kinds of

spectral parameters p/s and g/s reflects the sub-sub-holonomic nature.

If we restrict ourselves to hierarchies which are described by a single T func-

tion, we know three kinds of sub-sub-holonomic hierarchies: theKP hierarchy,
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the BKP hierarchy and the 2-component BKP hierarchy. The corresponding

infinite dimensional Lie algebras are gl(oo), 90(00) and go(2oo) (see §1).
The reduction problem is stated as follows: Find a sub-holonomic hier-

archy by adding an additional constraint on a sub-sub-holonoinic hierarchy.

For example, the Sawada-Kotera hierarchy

is obtained by imposing the condition

(0.5)

For the JV-soliton solution, this amounts to setting pj = ( — qj)3 in (0.4). We

call this reduction the 3-reduction of the BKP hierarchy.

In general, we shall consider the /-reduction of the KP hierarchy, the /-

reduction of the BKP hierarchy and the (Il9 ^-reduction of the 2-component

BKP hierarchy (with l± + 72: even). We note that the additional constraint for

the T function in the case of even reduction of the BKP types is subtler than (0.5).

In our philosophy, "reduction"" means: to find an appropriate subalgebra of

gl(oo), go(oo) and go(2oo). It is remarkable that the reductions above lead us to

subalgebras known as Euclidean Lie algebras [12] [13], and that the Fock

representation induces their basic representations [2] [14] [15] [16]. We should

comment on the references in this direction. As mentioned in the beginning, in

[2], an explicit realization of the basic representation of A[l) was first constructed

by using a vertex operator. The construction was generalized to "most" of

the Euclidean Lie algebras in [14]. We owe very much to these constructions.

The construction in [15] corresponds to the reduction of the multi-component

KP or BKP hierarchies. We do not discuss this problem here. Priority in

using the Clifford algebra in the representation theory of Euclidean Lie algebras

is attributed to [16]. This work, however, lacks an explicit realization of the

Fock representation, which is essential in establishing the link with soliton

equations.

This paper is organized as follows: In Section 1 we discuss the structure of

infinite dimensional Lie algebras which govern the KP hierarchy, etc. The

reductions are discussed in Section 2. An explicit realization of A(
n
l), A(

2^,

D(n2+i> ^(2n-\ and D(
n
l) in gl(oo), go(co) and go(2oo) is given in the appendix.
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In Section 3 we solve the problem of M. and Y. Sato on the number of Hirota

bilinear equations.

It is a pleasure to express our thanks to M. and Y. Sato whose work led
us to the present study. We are grateful to J. Lepowsky for sending us several

preprints. Among them [8] and [14] are very helpful to this work. We thank
also Y. Tanaka for his clear explanation of the Kac-Moody Lie algebras. We

benefited by discussions with H. Flaschka, R. Hirota and J. Satsuma.

§ 1. The Infinite Dimensional Lie Algebras

In [1], we showed that gl(oo) operates on the space of t-functions of the KP~

hierarchy through the vertex operator. In this section, we shall discuss this

action more precisely. The Lie algebra gl(oo) operates on the space of func-
tions in xl5 x2, x3,.... For the sake of definiteness, we shall restrict this repre-

sentation to the space F=C[xl3 x2, x3,...] of polynomials. Modifying the
vertex operator in [1] [11] by a constant, we set

(1.1)

Here £(x, p) = £ XjpJ and 8 = (j^r-, y -^,...). Since exp (£(x, p) -

£(x, g))exp( — £(8, jr^ + ^d, g"1))" 1 vanishes when p = q, Z(p, q) and Z{J are
well-defined.

The commutation relations among the Zfj/s are calculated in [1]:

(1.2) [ZfJ,Zfwa = ̂ yZ^

where 7+(j) = 0 for j<0 and =1 for j^:0. For a positive integer r, we set

Vr = {f£V; deg/^r}. Here, we count the degree of x7- as j. Then, an easy
calculation leads us to

(1.3) Z,;J/c:Kr+1._,and
Ztj I Vr = 0 except when / ̂  —r,j< r, / — j > — r.

Hence, if we define § to be the vector space spanned by 1 and
for |i—j|»0}, then § is a Lie algebra operating on V.

Equating the coefficients of Z(p, p) (1.1), we obtain

(1.4) jXj = A - j , d l d x j = Aj for 7 = 1,2,...
and A0 = Q,
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where An= Z Zv v + n- From dZ(p, q)/dp\p=q, we obtain
veZ

3 VXj veZ

The structure of g is clarified and formulated as follows. We set

(1.6) P9K°°):={Z aijEj,-l 0// = 0 for [/— j|»0}

where EtJ is a matrix of infinite size whose entries are 0 but for a 1 at the (/, 7)-

place. Sometimes, it is convenient to identify C°° with W—C\_k, k~l~\ and

Eijk~v = dj^vk~i. Then An= Z EVtV+n is nothing but the multiplication by kn.
V

We define the central extension gl(oo) = pgI(oo)0Cz by

(1.7) [A®cz, A'®cfz] = \_A, A'~\@c(A, A')z

where c(A, A') is the skew-symmetric bilinear form on pgl(oo) given by

(1.8) c(Z fly% Z «i7£y) = 2 fliyfl} 1(^(7)- y+(0) -

Then we obtain

Proposition 1.1. ej is isomorphic to gl(oo) as a Lie algebra by the cor-

respondence ZU+->EU and l-^z.

Remark. The choice of Z(p, q) and c(A, A'} in this section are neatly ex-

plained in terms of field operators. As shown in III [11], the charged fermion

fields \l/j,$J O'eZ) operate on F' = C[w, w ~ l , xl5 x2, x3,...]. Then cj is

nothing but the Lie algebra generated by 1 and Z aij^i^J (^,7 = 0 for |/— j|»0)

which operates on Kc: V. We decompose g = g©C • 1 where g = {Z &\j ' ^i1!** '• I
aij = Q for \i—j\»Q}. Then Z{j coincides with ij/^J and c(Eij9 Evj>) coincides

with the expectation value of [: \I/^J :, : \l/i>\l/J' :].

The considerations on the KP-hierarchy given above apply as well to the

BKP-hierarchy. Set VB = £[_XI, *3, ^5 3 - - - ] and consider the vertex operator

(1.9) ZB(p,q)= ?(~+ } (e~^x^+^x'^e-2^'p-

= 1, ZB9iJp*q-J .

Here (x, p)=Zy0dd>o^ and a =

ZBtij satisfies

(1-10) ZBti~-ZB9
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( i . i i ) [zB^zBiif^=(-ydj>vzB,r-(-ydL.rzEji^

Here YB(j) = 1 for j > 0, =1 /2 for j = 0 and = 0 for j < 0. Thus, the vector space

QB spanned by 1 and {^ a^Zg^i a^ = 0 for \i— j|»0} becomes a Lie algebra

operating on VB. Set o(oo) = {£ «/_/£/_/; afj = ( — )i+j+la_J]_i for any /, j and

a0- = 0 for |/— j|»0}. Then 0(00) is the orthogonal Lie algebra on W=C'*3

= {/(fc)=££ ffc-£eC[fc, /c-1]} equipped with the inner product (/, /)

= Z(-)^^-f = Resfc=0/(/c)/(-/cX/c//c. We define the central extension

90(00) = 0(00)® Cz of 0(00) by the formula

(1.12) D40ez, Af®c'z'] = [A, A^®cB(A, A').

Here cB(A, A') is the skew-symmetric bilinear form on 0(00) given by

(1.13) CB(Z aiJEtj9 I fl{y£fy) = Z «fX-i(^(j)- ^(0) -

Proposition 1.2. §fi /s isomorphic to 90(00) by the correspondence Z^

^(-X£0.-(-)££_J-5_I- and !<->z.

By calculating Z(p, — p) and ^Z(p, q)l8q\p=_q we obtain

jXj = 2A_j and djdxj = Aj for 7 = 1,3,...

where

(1-14) ^ = Z J B V f V + J

and

(1.15) ^JXjdldxj=-^vEVtV.
j>0 veZ
odd

Although the discussions above apply to multi-component KP- and BKP-

hierarchies, we shall here treat the two-component BKP-hierarchy. Otherwise,

we should need a different kind of vertex operator, such as e£(* ( B ) .p)-£(* ( / J )>9)

xe-w^-p-^+w^-t-^UtUp (see III [11]).

Prepare two series of independent variables xl5 x3, x5,... and j;l3 j;3, j;5,. .. .

Set F2B = C[xl5 x3, x5,..., j;l3 v3, j^55...]. Consider the vertex operators

(1.16) Zll(pq)
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, q) = _ L=-

and

Let §25 be the vector space spanned by 1 and

{ I Zflf/Zf/; < = 0 for |i-7|»0}.
a, 0=1 ,2 i ,j

Then g2B becomes a Lie algebra operating on V^. Set V2B = C[kl, ^I1]

©C[fc2, /cj1] and let £?/ denote the endomorphism of V2B defined by Effk~l =

S^ydjjk'1 for a, j8, 7 = 1, 2 and f, j, / eZ. We define

, ,
a, 0=1, 2

i . jeZ

and «f/ = 0 for |/-7l»0}.

Then o(2oo) is the orthogonal Lie algebra on V2B with the inner product

®g(k2}Y = Res tl,0/(fci)/( - kjdkjk, + Res/C2=0 ^(/c2)^( - k2)dfe2/k2.
Let go(2oo) = o(2oo)®Cz be the central extension of o(2oo) defined by

(1.18) [v40cz, X'©c'z] = [X, A'-]@c2B(A, A')=

for A, ^4' e o(2oo) and c, c' eC. Here c2jB(^4, ^4') is the skew-symmetric bilinear

form on o(2oo) given by

(1.19) c2BC£af}Etf, Zfllf£?/)=T Z. a?/«}f (^(7)- 7B(0)
— < x , p , i , j

where 7B(0 is as in (1.11).

Then as in the earlier cases, we obtain

Proposition 1.3. The Lie algebra Q2s
 IS isomorphic to go(2oo) by the

correspondence Z?/ < — > (-)'£?/- (-YE^^ and 1< — >z.

§ 2. Reductions and Euclidean Lie Algebras

In the previous papers [1] [3] [11] we have mainly treated hierarchies of
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"sub-sub-holonomic" nonlinear equations and their transformation groups.

Now we shall discuss the problem of reducing them into "sub-holonomic"

hierarchies by suitably imposing additional constraints.

For the sake of definiteness, we consider first the case of the KP hierarchy

defined through the linear problem [17]

(2.1) L(x, 3)w = fcw, L(x, d) =

(2.2) ---w = Bn(x, S)w, Bn(x, d) = [L(x, 3)»]+ (n = l, 2, 3,...).

Here d = -* — , and [L(x, 5)"]+ denotes the differential operator part of L(x, d)n.

For a fixed positive integer /, we impose the constraint

(2.3), L(x, 3)' = a differential operator = Bfa, d) .

In other words, we consider along with (2.2) the linear constraint -~^- =

i.e. the linear eigenvalue problem

(2.4),

For example, the cases / = 2 or / = 3,

(2.4)2 (d2 + 2a2(x))w =

(2.4)3 (33 + 3a2(x)<3 + 3(a3(x) + da2(x))) w = /c3 w

together with (2.2) give rise to the hierarchy of the higher order KdV or

Boussinesq equations, respectively. The general case of (2A)t will be called the

/-reduced KP hierarchy.

Recall that the KP r function t(x) is related to the formal solution of (2.1)

and (2.2) through w(x, fc) = g^je»k>g-«^k"1)T(x)/T(;c)[l]. In terms of T(X), the

condition (2.4), is restrated simply as

(2.5), -i(x) = const. T(X).

We remark that, once (2.3), or (2.4), is satisfied for an / eZ, then they are valid

for all integral multiples of / :

(2.3); L(x, dy = a differential operator, 7 = 0 mod /, 7 > 0

(2.4)J J3/x, 3)w = # w , 7 = 0 mod /, 7 > 0 .

£ CjXj

Making use of the freedom ?(x)t-+ej=1 T(X), w(x, k)i-+f(k)w(x9 k) (f(K)
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00 1

= exp( — X -^-CjkJ) = l+O(k~1)) in the choice of w(x, k) and T(X), we can thus

rephrase (2.5)l as

(2.5)J ^-T(X)=:05 j = 0 m o d / , j > 0 .

In terms of the Grassmann formulation of Sato [17], this means that the corre-

sponding point A=(af )nez of the Grassmann manifold satisfies this condition:
v < 0

there exist Sj e GL(oo) such that

(Sy)/lv = 0 0*^0, v<0) and AJA = ASJ9 j = 0 m o d /

where A = ( d l l + l f V ) l l i V e Z . Consequently, if P(£))T • T = 0 is one of the KP bilinear

equations, then by setting P(D)t = P(D) \Dl=0,D2i=o,... weobtain a bilinear equation
P(D),T • T = 0 for the /-reduced KP hierarchy. Likewise a modified KP equation

fc]-t=0 gives us an /-reduced one Q(^)/T[fc]-T = 0, where Q(D)t =

The transformation group of the /-reduced KP hierarchy consists of trans-

formations that are compatible with the constraint (2.5)J. Let Xegl(oo) be an

infinitesimal transformation of the KP hierarchy. Then X preserves (2.5)J

provided

(2.6), r^f-, x} = 0, [x,5 X]=0, j^O mod /
L uxj J

where -^ — = /d;-= XI ̂ /,/+y an^ j X j = A _ j = X ^i,»-y (see (1-4))- We denote
GXj ' ieZ ' ieZ

by 9l(oo)| the Lie subalgebra of gl(oo) whose elements satisfy (2.6)^. If we write

X = A@cz with A= X a0-£fyegl(oo) and ce€, condition (2.6)^ implies that
i,jeZ

ai+lj + l = aij. Thus the block partition A=(Aflv)^V€Z, A^=(ai^fllj+vl)0^iJ^l_1,

has the structure A^v =A0 > v _ ^ . This allows us to identify A with an / x / matrix

of Laurent polynomials

(2.7) ^<-

In fact, (2.6)j says that, when viewed as a linear transformation on C[/c, /c"1],

A commutes with multiplication by t = kl (see page 1083). Hence it may be

regarded as an element of EndC[r5f-i](C[fc, /c"x])^gl(/; €[?, r1]) (this is what

(2.7) means). With this identification (2.7), the skew-symmetric bilinear form

(1.8) reduces to

// A
(2.8) c(A, A') = Res trace ~ (f)A'(f) = ^ v trace A0vA'0-v .

at veZ
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From this we see, in particular, that trace A0v = 0 (v eZ) for y4©czegl(oo)z.

Therefore

(2.9)

Here the right hand side singnifies the central extension of sl(/; €[£, r1]) through

(2.8), known in the literature [14] as the Euclidean Lie algebra A^.

The representation of gl(oo) via the vertex operator (1.1) carries over to the

present situation. Since -7, Z(p, q)\ = (ps-qs)Z(p, q) and [xj, Z(p, qj]

=J~1(P~j — q~j)Z(p, q) (p^q), the specialization pl = ql of Z(p9 q) belongs to

Ql(oo),:

(2.10) Z(p, cop) = T - - e x p ( .X (1 -

Conversely, gl(oo)j is spanned by the homogeneous components Zy(co) of (2.10)

and 1, Xj and -* — (j = 0 mod /). Thus the /-reduction procedure naturally leads

to a linear representation of A^ on the space C[xj (j^O mod /)] by means of

the vertex operator (2.10). This representation is identical with the one obtained

by Kac-Kazhdan-Lepowsky-Wilson [14]. The explicit form of (2.10) is of

interest from the viewpoint of soliton theory, for the functional form of the

JV-soliton T functions TN(X) is immediately read off from (2.10). In the present

case of the /-reduced KP hierarchy, we have

fl! aN

X>

p[=q[,...,PN=qlN

where tNsK? denotes the N soliton KP T function (5) in [1].

With minor changes, the considerations above apply also to the BKP and

the two-component BKP hierarchy. Let us work out first the corresponding

transformation groups. We set

(2.11)

90(00),= {A®czeQo(co)\A= Z atJEtl, au- = (-
i,jeZ

9o(2oo), l iIa={^©czego(2oo)M= Z Z flff
a, 0=1, 2 i,jeZ
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In the second line of (2.11) we assume that Jt +12 is even (otherwise

splits into 90(00)^ ©go(oo)/2). Note also that, for odd /, /j and /2, (2.11) can be

rephased as

(2.11)' 90(00), = {Xe 90(00) | [X, /1VJ=0 forall v :odd} 5

go(2oo)Zl>,2 = {Xego(2oo)| [X, ylj/1 + ^jy = 0 forall v: odd}.

fin the case of even /, l± and /2, Avl or A*fa do not belongs to go(oo) or go(2oo)).

Just as for KP, go(oo)z and go(2oo)/ls/2 have realizations as Lie algebras over

Laurent polynomials (see e.g. [14]). Recall that 0(00) is the orthogonal Lie

algebra on the linear space C[k, fc"1] with respect to the inner product given in

page 1084. We define for/, g e C[fe, fc"1],

(2.12) </, 0>j(0= Z ( A - v t f , g)tv

veZ
r

V r- /TT-f 4-— 11
E ^L*5 * J •

We have then <^v//, gyi(t) = t v ( f , gyt(t). Moreover, for even /, </, 0X0 is

symmetric, and for odd /, is "Hermitian" in the sense that <#,/>,(0 =

</j ^)/( — 0- Since 90(00), preserves the bilinear form (2.12), we have

, N f su(/; C[f, r^eCz (/ odd)
(2.13) 90(00),^^ v L Jy v y
V j I o(/; C[r, r1])0Cz (/even).

More explicitly, the right hand side means

where we have used the identification (2.7), and

/ 1

\ I -r1

The rule of the central extension in the right hand side of (2.13) is given through

1 d A
(2.14) cB(A, A') = -i- Res trace -^- (0-4'(/)*•

Likewise, for X©cze8o(2oo),1>/1M= Z L a?f£ff, we set ^v
a ,0=1 ,2 i,jeZ
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^•uv=(ai+ui i + v / ) o £ / s i a . Then under the identification (2.7) we have

(2.15)

(Jh(f)®Jh(i))A( ± 0 + '.

according as ( — )ll=( — )h= ±1. The role of the central extension is again

given by (2.14).

Actually the Lie algebras 90(00), and go(2oo)/lj/2 are isomorphic to one of
the Euclidean Lie algebras A(£, D$l9 A^ and D™ (see Table 1). For the

reader's reference we give below the definition of Kac-Moody Lie algebras,
among which the Euclidean algebras form an important class. For details see

[12], [13], [14].

In general a Kac-Moody Lie algebra is a complex Lie algebra, defined by

giving 3(n+ 1) generators ei9 fh hi (Org i^n) and defining relations of the follow-
ing form :

(2.16) [*,,/,] = <$iA Wt,hjl=09

[hi9 ej] = C^*, [hb fj] = - Cyfj ,

(ad edl-c"ej = 09 (ad/-)1~c%- = 0.t)

Here the Cy's are integers such that Cu = 2, C,7^0 (i^j) and Cy = 0 if C^ = 0.
The matrix C = (CiJ)0^ij^n is called a (generalized) Cartan matrix. In Table 1

the matrix of C is tabulated for A(
n
l\ A(

2
2J, D$l9 A

(£-i and D£\ In order to
identify gI(oo)/? gl(oo)z and gl(2oo)/>r with these algebras, it is sufficient to know

the canonical generators eh ft and ht. In Table 2 we have given a choice of them
in terms of infinite matrices in gl(oo), go(oo) and go(2oo). Using this one can
verify the commutation relations (2.16) by a direct calculation.

n times

t) (ad X)"Y=[X,..., [X, [X, Y]],...].
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Table 2. For a fixed / or (Il9 12) we use the convention

la,j+nie (<*? ^ = 1, 2) .

(KP)n+1 (/=«+!)

(BKP)2n

(l^i^«-l), >%„=£„„-£_„,_„

(BKP)2n+2 (/ = 2« + 2)

e0 = v/2"(£_10 + £01), e; = £,.i+1

nn+l + En+1}n+2) ,

l j _ 1 — £n)+Z,

(BKP
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(BKP II)2r,2s (n = r + s, /i=2r, I2 = 1s) £ = ̂ ( — )r+s~l

"'
72 -1

The realization of these elements as Laurent polynomials is given by the

following rale: Eij+^E-^j-t*, where i=i, j=j mod / (Orgz, j^I— 1) and

[(7—/)//] =v. For example, in the case of (KP)n+1, we have

i-l
r^ "^

/0='

*o=( ) + ̂ , Ai^"1^' ""1
i / *)-i /
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As in the KP case, reduction of the vertex operators ZB(p, q) or Zcj/(p, q)

leads to linear representations of A(
2
2
n\ D$l9 ^2»-i an^ D(

n
l)- *n the case of

go(oo)/5 the homogeneous components of

(2.17) ZB(p9 -a>p) = ±l±^-(exp( Z
2 I — CO \ jrodd

x e x p - 2

span 90(00), together with 1, Xj and -g — (j:odd^l, j^O mod/). In the

case of 90(2oo){ljl2, there appear two series of variables x} and y j ( j : odd).

In the case /l5 /2 = even, go(2oo) / lS /2 is spanned by the homogeneous compo-

nents of

(2.18)
j:odd>0

x e x p - 2 £ (1
j:odd>0

-
2 1 — j:odd>0

x e x p - 2 Z
j:odd>0

j:odd>0

x e x p - 2 E
j:odd>0 J

together with I, ^-, -^-T~J y j an(i "^ — 0'-" odd). In the case /15 /2 = odd, we

note that xj9 -~^r (y^O mod/j) and yy, -g — O' = 0 mod/2) are absent in Zi1,

Z|2, whereas they appear in Z^2 only through the combinations xiiv — v / 2 V

and i -- ^ - — -5 -- ̂  - . In correspondence with this fact, the basis of/jV ox^v I2v oyhv

Qo(2co)llj2 is formed by the homogeneous components of (2.18) and 1, xj9

^0mod/ l 97:odd), y^-^U^Q mod/2,j: odd), A: [ IV-J^V and-yL

x --- — - (v . Q^ j^g ^g representation space of A(
n

l\ . . . , D^1}
Gxiiv I2v °y /2v

is the polynomial algebra C[{.xJ] in the following infinitely many variables:
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Table 3.

(KP),,.,

(BKP)2n+1

(BKP)2n

(BKPII)2 r J 1 ,2 s + 1

(n = r + s + l)

(BKP II)2r,2s

(n = r + s)

A™

A®

«

Afl-i

DP

xt : i=£Q mod n+l

xt: i odd, z^O mod 2n+ I

XL : i odd

Xi : i odd, / ̂  0 mod 2s + 1

Vj 17 odd, /^O mnd 2r-H

•*(2r+i)v-J '(2s+i)v" v: odd

X j . - / odd

y j i j o d d

In the case of BKP II / l j / 2 , we count the homogeneous degree of x,, yt to be

degxf = i72/d, degyj=jljd where d = g. c. m. ( / l 5 /2).

These representations are actually the samef) as the basic representations

given by Kac-Kazhdan-Lepowsky- Wilson [14]. To recall the terminology,
n

let g be a Kac-Moody Lie algebra and let A be a linear form on I) = © Cht c g
i=0

such that each A(/?f) is a nonnegative integer for i = 0, 1,..., n. An irreducible

3-module V is called the standard module with the highest weight A, if there

exists a nonzero vector yA e F satisfying

(2.19) /?yA = A(A)yA for any /i e/,

The vector yA is unique up to constant multiple, and is called the highest weight

vector. The representation associated with the simplest choice of A = A defined

by

(2.20) A(H0)=l, /l(/i1) = 0,..., /!(/»„) = 0

is called the basic representation.1 *} In the present situation, the constant

function 1 in the polynomial algebra ^=C[{jcJ] is the highest weight vector.

Using the realization of canonical generators in Table 2, one can explicitly verify

(2.19) and (2.20) by noting

t) For BKP H f l,j2, their vertex operators correspond to the choice /2=1 or 72 = 2.
(*) \ye ilave reversed the enumeration of IVs for /f^}[141.
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Z i r l=0, ZBf i rl=0, Z5£,rl=0 for f<0 or ;>0.

Now we return to the standpoint of soliton theory. We define the space of

T functions of the /-reduced BKP hierarchy (resp. (/19 /2)-reduced BKP II

hierarchy) to be the orbit of 1 by the group action of 90(00 )j (resp. go(2oo)il>/2).

It is then clear that, for odd I or (/1 5 /2), we have the constraint

(2.21) ^-TBKpW-O, 7=0 mod/, j: odd

(2.22) + -

In [1]? [3] we obtained bilinear identities for the wave functions of KP,

BKP and BKP II which are equivalent to bilinear equations for the corresponding

T functions.

One can also derive extra bilinear identities for the wave functions of the

reduced hierarchies. For KPh BKPZ and BKP II/ l f/2, they read as follows:

(2.23) WKP(*, fc)wgP(jc', -k)kl+idk =

(2.24)

(2.25)

Here dk = dkj2nik, and the integration is taken over a small circuit around

k=co. The wave functions in (2.23)-(2.25) are related to the T functions

through wKP(x, fc) = ^(x»ft)e"«g'k"1)TKP(x)/TKP(x), w$P(x, k) = e-^x^e^-k~1^

^KPW/^KPW, VVBKP(X, /c) = ^^k>e-2^^fc-1)TBKp(x)/TBKp(x)3 W^PII(X, y, fc) =

ei(x,/0e-2|(^,fc-1)TBKp n(Xj ^)/TBKP n(Xj J;) and wg)p n(Xj ̂  fc) = ^(,.*)c-2«(ay.*-i) .

TBKP ii(x? V)/TBKP n(^j ^)^ respectively [10] [3]. To derive (2.23) we use the
operator expression (18) of [11] for WKP and w|P. We set

ieZ
^*^=Z d^fafj with X aija*j = du'- For the /-reduced hierarchy, we have

ieZ jeZ
ai+lj+l = atj. Therefore by following the argument in [11] we have

Z <vac l^iWgf^-l vacX,.<vac \q> -
i . i ' . jeZ
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_ Z <vac Iv^gi/Sil vac> <vac \9-i(x)g\l/?\ vac>5 f i r_j
i, i' eZ

= 0.

Similar arguments show (2.24) and (2.25).

Remark. In the case of (BKP)j with I even, also, L(x, d)1 is a differential

operator, since it should belong to (KP)/ when evolved with respect to x2, x4,... .

By applying L(x, dx)
z and L(x', d^)* to (2.24) we see that their constant terms

must be absent.

In terms of T functions, (2.23)-(2.25) turn into

(2.26)
f

(2.27)
i^O

(2.28) (Z jJ^iOJ^^-lflj- Z
i^O i^O

v «<w,i>jc>4-<y,i>v>T .T _ flX e^ x/ y TBKP II TBKP II — U

respectively, where <w, D>= Z M ;D, (for KP), = Z w/^ / (for BKP and
J = l j:odd^l

BKP II), and wf, t;f are auxiliary parameters. In the case of even reduction of

BKP or BKP II, (2.27) or (2.28) certainly give additional bilinear equations which

are not contained in the unreduced hierarchies. In the remaining cases, bilinear

equations for the reduced hierarchies are obtained from the original hierarchies

of bilinear equations by setting Dj—0 (j" = 0 m o d / ) or Dxl,j+Dyi,j=Q

(j = 0 mod/1/2/^)- We expect that (2.26)-(2.28) are exhausted by this pro-
cedure.

By a similar calculation we obtain the following equations for the modified

T functions

(2.29) ( E
i^O

(2.30) ( Z
i^O

(2.31) {( E pl(2u)pt+ll(-2B,)+ Z p i(2y)p i+(2(-25,))e<«'^>+<^^>
i^O /^O

_ 9f _ Lr\lx &-<u, Dx->-<u,Dv>\T-(a) ~ _ A (n _ 1 9\— L{~ K) *e ^ x/ N y )TBKP i i [ fc] ' T BKp ii— u va— i, zj .

Example. We give below the first few bilinear equations for the reduced

hierarchies.

(KP)2( = KdV), A{1}: xpj: odd^l .
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(KP)3( = Boussinesq), A(
2

l } : xj9 j = 1 , 2 mod 3 .

(Df + 3Df,)T • T = 0, (D?D2 - 3Dj D4)t • T = 0, . . .

(BKP)3( = Sawada-Kotera [4]), A(
2

2} : xj9 j=±l mod 6.

(Df + 9D1D5)T-T=0, (D?-21D?D5 + 90D1D7)T-T = 0,...

(Dl - k*)iw - T = 0, (6D5 - Df - 5/c3D? )%] • T = 0, . . .

(BKP)5( = Ramani [5]), A(
4
2}: xpj odd, 7^0 mod 5.

(Df - 5D?D3 - 5D§)T • T = 0, (Df + 1D\ D3 - 35DfD§ + 90D1D7)T - T = 0, .

(D3 - D?)r[fc] • T = 0, (5D3D? + Df - 6/<5)T[fc] - T = 0, . . .

( = Ito [6]), D3
2): Xj9 j:

i + 10D3Df - 2DJ - 135k6 D^T^ - T = 0, . . .

(BKP 11)^), 42) ; x,., j: odd^ 1. (We replace xsj-yj by x5j.)

D^Ds - fe5)tffc] - T = 0, (2D3 + Df) (D5 - /c5)Tffc] - T = 0, . . . (Tfk] = T{IJ or T$3)

(BKP II)^i, Dl^ : Xj, yj = x3y ; j : odd £ 1 .

(D3 - D?)D3t • T = 0, (Dl + 2Df D3 - 3D3
2)t - T = 0, . . .

(Dl + 2DfD3 + 3D3
2-3/c6)T[*krT=0,...(T*fc] = T[i] or t[f3]) .

Remark. The 4-reduced BKP hierarchy ((BKP)4, "D^2)") is equivalent to

the 2-reduced KP hierarchy ((KP)2 =KdV, A\l)). In fact, by a change of variables

Xj I - >Sj^2xj, Dj i - >eJy>/2-1Dj9j=l, 3, 5,...

( f iy= l , —1, —1, +1, for 7 = 1, 3, 5, 7 mod 8, respectively)

we see that the vertex operators and Hirota's bilinear equations for (BKP)4

reduce to those for (KP)2, respectively. Likewise we have

(BKP II)4,2("D^)") =

In each case, soliton solutions are immediately obtained from the form of

the (reduced) vertex operators. Take as an example the case of (BKP II)U

(1: odd). For convenience we adopt the renaming Xjv — yv*-+xlv, -r~ -Iv dxlv

t) r satisfies also the bilinear equations for BKP with respect to xt, x3, x5s... ,
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Then by calculating e f l lZ^^z2. ± (fl ec, Zf.=

Zn(p, —cop) with &)'=!, or = Z12(p, — p1)) we obtain the following different

types of 2 soliton solutions :

^

pl~p2 P\~P\
Pl+P2 Pi +P2

where C> Z (1-ta^p/x,, ;/,= Z p/xy and o>! = !(/=!, 2).
j^O mod/ j'rodd

§ 3. Enumeration of Bilinear Equations

In this section we study the Hirota bilinear equations from the viewpoint of

the representation theory of Kac-Moody Lie algebras.

For a hierarchy S of soliton type equations, we are interested in the number

of linearly independent Hirota bilinear equations of given degree which i~

functions is of the hierarchy S satisfy. Namely, we want to count the dimension

of the space

Hs(/n) = {PeC[dJ I P(Dx)rS'is = 09 for any TS, deg P = m] .

Here x = (xi)iefs is the set of independent time variables attached to 5.

This problem was proposed by M. and Y. Sato [7]. For the KdV hier-

archy, they showed

(3.1) dim//K d V(wi) = ?{(/?71,..., mk)\mi\ positive odd integer

!,..., m f c ) | w i f : positive even integer, m1

They also counted the dimension for the MKdV and the nonlinear Schrodinger

hierarchies. For the KP and the Sawada-Kotera (SK) hierarchies they con-

jectured the following:

(3.2) dim /fKP(m) = Jt{(m l J . . . , mk)\ m-L: positive integer,

"h = ' " = mfc> Z ?=i 'wf = m — 1 } ,

(3.3) dim /fs}C(m) = tt{(m1,..., mfc) 1 777 ,-: positive integer,

ml-^--^mk, mi= ±1 (mod. 6), £?=i m,- = m}
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— tt{(m1?..., mk) | mi', positive integer, m1 ̂  --^mk ,

mt = ±2 (mod. 10), H?=1 mf = m} .

In the previous section we showed that to each of the Euclidean Lie algebras

A^, D(
n

[\ A(
2
2J, A(

2
2J-! and D$l9 there corresponds a sub-holonomic hierarchy

of soliton type equations obtained as the reduction of the KP, the BKP and the

two-component BKP hierarchies. The correspondence is given in Table 1.

The associated set of independent time variables is listed in Table 3. Hereafter

we mean by S one of such hierarchies. We also denote by gs the corresponding

Euclidean Lie algebras.

In the sequel, we count dim Hs(m) by using the character formula for gs.

The dimension formulas (3.2), (3.12) of HKP(m) and HBKP(m), then, follows as

a consequence.

The use of the character formula is based on the following observation.

WeputHs = @mHs(m).

Recalling the definition of the Hirota blinear operator:

P(DX)/- g = P(dy)f(x + y)g(x - y) \ y=0 ,

we write the product -cs(x + y)rs(
x ~ y) as

iG>; TS)

where in the right hand side we take the shortest representation (cf. [7]). We

introduce a pairing of C[dy.; fe/ s] and C[jf; ie/s] by

(3.4) <a, by = a(

Then with respect to this pairing, the space Hs is the orthogonal complement of

Q' = th& vector space spanned by {G^y; ts)|for any TS and /}.

Recall that the totality of (polynomial) t-functions is the orbit space of

the highest weight vector 1 under the basic representation of gs on V(A) =

C[xf; ie/s] (see §2). Here A is the highest weight of the basic representation

(§2). Therefore the irreducible representation space V(2A) with the highest

weight 2/1 is the space

linear hull of

where x(1) and x(2) are two copies of the time variables attached to S.

In the space V(2A) we consider the subspace
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P)v = 0, Vie/ s}

= {v e V(2A)\v: function of y}

where we have set

The space Q was introduced in Lepowsky-Wilson [8] for the standard

modules of A\l) in their study of the Rogers-Ramanujan identities. The follow-

ing relation among V(A), V(2A) and Q (Prop. 1) is given in [8] for A{1}. Their

arguments are valid for our case.

In Section 2, we gave a realization of gs as differential and multiplication

operators on V(A) = C[xi\ ie/J (the basic representation). In this realization,

the operators xi9 3/dxf, / e Is and 1 form an infinite dimensional Heisenberg

subalgebra. The corresponding subalgebra in gs is called the principal sub-

algebra ([2], [14]). We denote this algebra by s. The above space Q is the

s-highest weight space of the s-module V(2A). The complete reducibility of

s-modules implies that V(A) and V(2A) are related in the following manner as

s-modules

Proposition 1 ([8], p. 16, p. 7).

Now we have

Proposition 2, Q ' = Q .

Proof. First we show the inclusion O'-1 <= O1, where -1 denotes the orthogo-

nal complements with respect to the pairing (3.4). Take Pe Q'L. By the defi-

nition of Q'-1-, we have

Ptf,)G&; Ts)|y=0 = 0

for any TS and L This implies

and consequently for any v e V(2A)

P(dy)v(x,y)\y=0 = Q.

In particular, this equality holds for v E Q. Hence we have

Now we show the converse inclusion. By Proposition 1 we have
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) = V(A)®CQ.

On the other hand, the definition of Q' implies

V(2A) = {linear hull of Ff's} ® Qf .

Using the complete reducibility of s-modules we have

{linear hull of Ff's} = C[jc,|i e /J .

Therefore we have

l®Q'c: 7(2/1). q.e.d.
Let

In view of the considerations above, we have

(3.5) dim//s(m) = dim{P6C[xI., ie/s] |degP = wi}-dim Q_m .

The dimension of the space {PeC[xf, / e/s]|degP = m} is equal to

Therefore our problem is reduced to the calculation of dim Q-m.

A method for calculating dim Q_m is supplied by the character formula for

the standard modules of gs.

We explain the character formula, restricting ourselves to the principally

specialized characters. For details we refer to [14], [18], [19].

Let g be a Kac-Moody Lie algebra of rank n + 1. For a = (a0, al9...9 an)

eZ++1, a =£0, the Z-gradation of g of type a is defined by assigning the degrees

deg^^-deg/;.-^, deg/?~0, / = 0, 1,..., n

to the generators of g (see [14] and Section 2). We denote this gradation by

g(0)=©m9(fl)m- The principal gradation of g is the Z-gradation of type
1 = (1, 1,..., 1) and we write gm for g(l)w.

Let 7(A) be a standard module with the highest weight 1 as defined in

Section 2. If we set

7(A) is endowed with the gradation called the principal gradation of 7(/l).

Let PFbe a graded subspace of 7(1) with respect to the principal gradation.

The subspace Q of 7(21) is an example of such a graded subspace.

The principally specialized character of W is the function
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where q is an indeterminate and W-m denotes the subspace of ^consisting of

elements of principal degree — m. In other words, the principally specialized

character is the generating function of dimensions of homogeneous parts of W.

To state the character formula, we further need the concept of dual Kac-

Moody Lie algebras. For a Kac-Moody Lie algebra g with its Cartan matrix

C, the dual Kac-Moody Lie algebra gv is defined to be the Kac-Moody Lie

algebra with the Cartan matrix tC.

For a = (a0, a1?...5 a

we put

A Cartan matrix C is called symmetrizable if there exists a nondegenerate

diagonal matrix A such that AC is a symmetric matrix.

Then, for a Kac-Moody Lie algebra with a symmetrizable Cartan matrix,

the principally specialized character of a standard module V(X) of g is calculated

in the following way.

Proposition 3e Let ai = l.(hi)eZ+, i = 0, 1,..., n, and a = (aQ, al9..., an).

Then

The Euclidean Lie algebras gs of concern here are

and Djj+V As is seen in Table 1, their Cartan matrices are symmetrizable.

Therefore for gs? Proposition 3 can be applied. Their duals are

/ f ( U v _ j ( l ) r> ( i )v_n( i ) j ( 2 ) v _ j ( 2 ) j(2)v _ od) „„*An ~An 9 un ~Un •> A2n ~ A2n •> A2n~l ~ & n ana

On the other hand, by using Proposition 2, we have

Proposition 4 ([8]).

In view of Proposition 3, 4, the principally specialized character of Q is

given by

(3.6) 0^(0 = 1:2.0 (dim fl_J«»

= D(^;(3J1,...,1))/D(8^; (2, !,...,!)).

Since the principal degree of xt regarded as an operator on V(A) = C[x;, j

e/s] coincides with its degree given in Table 3, but with the opposite sign,
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the principally specialized character of Q (3.6) gives us the desired answer.

We list the results in Table 5.

Below we explain how to calculate D(Q%; (a, 1,..., 1)) explicitly. The

dimensions dimc$((a, 1,..., l))m can be calculated by using a realization of

9s as a Lie algebra over Laurent polynomials. Here we employ the realization

given in [14], which slightly differs from the one given in Section 2.

We first treat the affine Lie algebras A(
n*\ B(

n
l\ C<1} and D(

n
l\ Let us denote

by L one of the simple Lie algebras sl(?t + l, C)( = An), o(2« + l, C)( = Bn)

sp(n,C)( = Cn) and o(2n, C)( = DJ. Let t and z be two indeterminates.

Then the affine Lie algebra L(1) is realized as the complex vector space

provided with the bracket

(3.7) \_PAf)® c,z, P2(i)®c2z~\ = [Pi(0, P2(t)~\©A/Res trace dp^ P2(t)\\ t=o at J

where, Pl5 P2EC\_t, r1]®L, cl9 c2eC (the central extension of C[f, r1]

®L). Here [ , ] denotes the usual bracket in C[£, rx]®L and k = l for L

In this realization, the generators ei9 fi9 h^^i^n of gs are described in

the following way. Let rj0 be a Cartan subalgebra of L. Let L = f)0© Xa6^ La

be the root space decomposition of L with respect to f)0, where AL denotes

the set of roots of L. We fix a system of positive roots ALi + . Let al5..., an be

simple roots and let a be the highest root. Choose £jeLa. and F^eL_ a . so

that ai(J
[/i) = 2, H~[Ei9 FJ holds (£f, Ff, Hf: the canonical generators of L).

Further we choose £0eL_g , and F0eLg by the condition

(3.8) [H0, F0] = 2E0, [H0, F0]= -2F0, where H0 = [£0, F0].

Then, we have

(3.9)

The vector space L(1) has the following direct sum decomposition

(3.10)
(*.«)

where (k, a) ranges over the set Zx(zlLu{0}) and L0 = f)0- This decomposition

can be regarded as the "root space decomposition" of L(1). But we do not
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discuss this concept here (see, for example, [15], [19]).

The decomposition (3.10) permits us to express D(L(1); (a, !,..., 1)) it terms

of the root system AL of L (cf. [21]). For OCEZ!L , we define its height /(a) by

'(a) = Z?=i fcf, where a=Z"=i Mi-

In view of the relations (3.9), the indeterminate t has degree a + l($) in the Z-

gradation of L(1) of type (a, 1,..., 1). Therefore we have the equality between

vector spaces

LM((a, !,...,!))„= © tk®Lx
( f c . a )

where in the right hand side, (fc, a) ranges over the set

{(/c, a) E Z x GdLu {0}) | fc(a + /(a)) + /(a) = m} .

Noting that
l i f

n otherwise ,
we have

An analogous expression for D(>4£2); (a, 1,..., 1)) is also possible. We

explain this briefly. A realization of A(
2

2J is given as follows. On sl(2w + 1, €)

consider the involution

/I - > - ll /6sl(2n + l, C).

Let L0 (resp. Lx) be the 1 (resp. — l)-eigenspace of this involution. Then L0 is

isomorphic to o(2n + l, C) ( = Bn) and L1 is an irreducible L0-module. The

Euclidean Lie algebra A^ is realized as

with the bracket (3.7), in which Pf (i = l, 2) belongs to

C[f2, r2]®L0erC[^2
? r2]®Lt and fc = l/2.

We fix the root space decomposition of L0 :

^0 = VO© Z/ae^lo •*-'0,a

with respect to a Cartan subalgebra rj0 of L0. Here J0 denotes the set of roots of

L0. We also fix a system of positive roots A0i+ and let a !,..., ocn be the system

of simple roots of L0. Then Li is an irreducible L0-module with the highest
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weight a = 2a1 H — 2an. The set of weights Av of the L0-module L1 is

^0

Let

be the weight space domoposition of L±.

Then corresponding to (3.10), we have the following decomposition of

where L0j0 = f)o an(i (^ °0 ranges over the set Z x ( A 0 [ ) {0}) and (/, y) ranges
over Zx A^.

The realization of the generators e i 9 f h ftf, z = 0, 1,..., w of ^4^} is given by

(3.9), in which £0 (resp. F0) is chosen from L l 5_ 5 (resp. Llj5) so that the relation

(3.6) holds and the relation h0 = l®H0@z is replaced by

Then arguments to those used in the case of affine Lie algebras give

(3.12) D(A%; (a, !,..., l)) = n^i(l-«*(fl+l(4))B

where Ali+ denote the set of positive weights of Lt.

The remaining task is to count the number of elements in AL}+ or A0> + uAli +

of given height. This is achieved by consulting the Table in [20]. We list the

results in Table 4.

Using Table 4 and (3.12), (3.12), we obtain the results given in Table 5.

Using Table 5 and (3.5), dimHs(m) is calculated as follows. For the KdV

( = (KP)2) hierarchy, we have

+J odd m^ — ̂

A theorem of Euler states that

l.6Z+, ml. = 2(mod. 4), m^~-^

= ${(ml5..., mfc)| mf: positive even integer, m 1 <- - -<m & , X)f=i ^i =
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Hence, in a accordance with the result of M. and Y. Sato, we have (3.1).

For the (KP)/J+1 hierarchy, we have

(KP)n+1(m) = *{(m l J . . . ,mk) |m ieZ+ , 777^0 (mod. n + 1),

j,..., mk)| mtEZ+, m^O, ±l(mod. n

For the Sawada-Kotera ( = (BKP)3) hiererachy, we have (3.3), proving the

conjecture of M. and Y. Sato.

For the (BKP)2fI+1 and the (BKP)2n + 2 hierarchies, we have

dim H(BKp)2n+ 1 (m) = % {(m 15..., mk) \ m,eZ+, mf: odd,

m f f £ 0 (mod.2n + l), I^m1^-"^mk9 Zf=1 mf = m}
— ${(777!,..., mfe)| m f 6Z + , mf: even, mj = 2/, 1^7^

jVw + 1, J1 + 2 (mod. 471 + 6), l^m^---^?^, 2

dim H(BKP)2n4.2(7n) = tt{(7iz !,..., mk)\mieZ+, mt: odd,

!,..., mk)| m f eZ + , ?n^: even, 7n£^0 (mod.

For the (BKPII)2r+l j2S+i hierarchy, the result is the same as that of the
(BKP)2H hierarchy with T? = r + s + 1 .

For the (BKPII)2,.s2s hierarchy (n=r + s), we have

dim H(EKP II)2r>2s (m)

Finally we mention the result of the calculation of dim H KP(m) and

dim HBKP(m) :

dim HKP(m) = lim dim ^(Kp>n (m) •>
n-*oo

dim HEKP(m) = lim dim H(EKP)n (m) .
«->c»

In view of the results above, we have

l5..., mfc)| mteZ+,

-^{(m!,..., mJk)|mI-eZ+, 2^m 1 ^ - - -^m f e , Z*=i wf =

= *{(mlv.., mk)\miEZ+9 l^m^^ —

which proves the conjecture (3.2) of M. and Y. Sato.
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For the BKP hierarchy, as announced in [11, IV], we have

dim /fBKP(m) = tt{(m j , . . . , mk)\mieZ+, mt: odd, l ^m^- ' - ^m^ ,

l9...9 mk)\miEZ+9 mt: even, l^m^- ' -^m^, X*=i mt =

Table 4.

type of g|

number of
roots (weights)

of length i

A-

n-i+l

j^(l) £(1)

/i-p/2]

^>

n-p/2] »-p/2]-l

type of Qy
s

number of
roots (weights)

of length /

A®

A*,+

(1^/^2/1-1)

^i.+

n— [(/ — 1)/2]

In this Table, [ ] denotes Gauss's symbol.

Table 5.

Type of S

9s

ch,0

D(9^:(2, 1,..., 1))

D(Qv
s:(3,l,...,l))

(KP)n+1

^(
n°

H + l

11 11 \1 ^ /
fc^l i=2

n

fc^l i=l

(BKP II)2,+ 1>21+1 (BKP)2n+2

42«U n^ + 5 + lD^

n

•?(?)" ri n o -?2"*-'2'-1')
9(qY

n+l

fc^l i=l

n
fn(n\n T~T T~f /I /7(2n+2)fe-2i\-l
9W 11 1 1 V1 # >
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Continue

(BKP II)2,,2s

DV,n=r+S

tn n (i -q2'*-21)-1 n a -q
2»k->ri

^""fnV-^-l'I,
ii- 1

fc^l i=l

^11 \-*- tf )

(BKP)2n+1

4V

n TT fl /7(4n+6)fc-2i\-l
1 i V1 y /

k>l l<i<2n+2
i^n+l,n+2

T \y[ ) A A J. J. \ T /

9(qY

fn(n\fl 1 f 1 T /'I /^(4n + 6)/C — 2i\ — 1
T^V~// 11 11 \^- y /

f c > l l < i < 2 n + 2
l^n+1, n-t-2

In this Table, <p(q)= U
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