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On the Cauchy Problem of the Boltzmann Equation
with a Soft Potential

By

Seiji UKAJ* and Kiyoshi ASANO**

§ 1. Introduction

The Cauchy problem to the non-linear Boltzmann equation is, [3]

df--t.* f-

/I,., --=/..

Here the unknown / — f(l, x, f) is a function of /EiR+— [0? oo),

.r = te, .r£, .-, .CB) el?n and f = (ft, ft, •», ft) EElT while f -F, = f]
j=i

and Q is a bilinear symmetric operator given as

(1.2) Q[/,g]=lf
2 JlS^

x {/W g 0?') +/(7?0 g W -/(?) g (f0 -/(r) g (

where f(q)=f(t9x9y) etc., y = *-<$-£',(*>>(&, y'=£'-<*-$', ^X

^e-S'77"1 and cos ^ — <f — <?', o>)>/|^ — ?' , <•, •> denoting the inner product in

jR", and q(v,0) (v=\f — f ' l ) is a given function defined on H + X ( —7T?

7T).

Physically (1.1) describes an evolution of a gas in the space K"

in terms of the (probability) density f=f(t9 x, <?) of gas particles at time

t in the space of position x and velocity f. The operator Q describes the

binary collisions of gas particles and the function q is determined by the

corresponding interaction potential. For example we know q(v,Q) —dz\(£

— f, ti>y\ for the hard ball model [3], in which the gas particle is assumed

Communicated by S. Matsuura, December 19, 1980.
* Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka 558, Japan.

** Institute of Mathematics, Yoshida College, Kyoto University, Kyoto 606, Japan.



58 SEIJI UKAI AND KIYOSHI ASANO

to be a rigid sphere of diameter d, and

(1.3) <7(f ,0)=* r <7o, r = ̂ 4, *>1
5 — 1

for the potential of inverse power law r~s [6], where r denotes the dis-

tance between two colliding gas particles. The function q0(0) is a non-

negative function only of 6 and has a singularity at Q— +7T/2 like

|cosfl|" ( IJL1) / ( I~1}. But since ? = f, ?'=f, at 0-+7T/2, the quantity {•••}

in (1. 2) is expected to vanish at these 6, and it is customary to assume

that 0<#0(0) <const. |cos0i (angular cutoff [6]). The inverse power

law potential is said soft (resp. hard) if s<5 (resp. s>5) . Clearly the

hard ball model is a limit case s— »oo of (1. 3) with angular cutoff.

The aim of the present paper is to show the existence of solutions

to (1.1) in the large in time under the following assumption on q (v, 6) .

[Q] (0) q ( v , Q ) *s a nonnegalive measureable function on J?+

X ( - 7 T , 7 r ) .

(i) 0<q(v, 0} <<?0|cos d | (v+v'8')

-with some constants qQ>Q and ff0e[0, 1).

-with some constants qz>qi^>Q and

Clearly (1.3) with angular cutoff satisfies [Q] (i) if 5>3 and [Q]

(ii) if s<C5. If we allow qi = Q, then the assumption [Q] (i) -f (ii) is

the same as that of cutoff soft potential proposed by Grad [6] . (The

necessity of the assumption <?!>() will be made clear in Remark 4. 1 in

the below.)

The initial value problem (1. 1) and related initial-boundary value

problems have been studied extensively on the existence of solutions in

the large in time ([1], [5], [9], [12], [13], [14], [15]). All of these

works, however, have been made under the assumption of cutoff hard

potential in the sense of Grad [6], given also by [Q] but with the

modification — !<£2<fl<0 in [Q] (ii) , and satisfied by the hard ball

model and by (1. 3) if s2>5 and if the angular cutoff is assumed.

A remarkable distinction is found on the existence of local (in time)

solutions. Roughly speaking, (1. 1) admits local solutions for arbitrary
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initials f0 in the case of cutoff soft potentials (Theorem 3.2 below).

While for cutoff hard potential such solutions are known at the present

stage only for those f0 near Maxwellians (for definition see § 3), which

are eventually in the large in time [13]. Thus the cutoff soft potentials

enjoy a better situation in this respect.

However a considerable complexity arises when constructing the solu-

tions in the large in time. Our method of proof is the same as that

previously developed for the case of cutoff hard potentials, which is based

on an extensive use of asymptotic behaviors of a linear semigroup etB of

the so-call linearized Boltzmann operator B obtained upon the lineariza-

tion of (1.1) (see §3). In order to establish decay estimates of etB as

I—>oo which are nice enough to assure the nonlinear problem (1. 1) to

have solutions in the large in time, the behaviors of the resolvent (7.— B)~l

should be carefully studied near the imaginary axis Re^ = 0.

For cutoff hard potentials, the spectrum ff(E) of B has a fairly

simple structure near Re^ = 0: either a finite number of discrete eigen-

values ([5], [12], [13]) or a continuous spectrum consisting of a finite

number of smooth curves emerging from ^ = 0 ([1], [4], [9], [14], [15]);

On the other hand, ff (B) for cutoff soft potentials contains a left

neighborhood of the imaginary axis (Remark 7. 3). In order to establish

estimates of the resolvent (X — B)'1 near Re/t = 0, therefore, we are forced

to use its C°°-extension into Re ^<CO, which were not needed in the case

of cutoff hard potentials.

The plan of the present paper is as follows. In Section 2 we intro-

duce some function spaces in which our problem is to be studied, and

we also summarize the notations for linear operators, both of which will

be used without further references in what follows. The local existence

of solutions is proved in Section 3 while the solutions in the large in

time are constructed in Section 9. The intermediate Sections 4 to 8 are

devoted exclusively to the study of linear operators associated with B

to establish asymptotic behaviors of etB which play an essential role

in Section 9. Thus these sections have a preliminary character to Section

9, but form a core of the present paper.

After the completion of the present work we learned that Caflisch

[3] also solved (1. 1) for cutoff soft potentials, but imposing a periodic
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boundary condition in x. His method of proof is quite different from

ours on the estimation of etB, and is effective to the case of periodic
boundary condition with rather restricted initial values. The method pre-

sented in this paper allows a mild condition on initial values and is appli-

cable to the periodic boundary value problem. Moreover the estimates

derived here can be combined with the method developed in [1] [13]

to solve exterior problems to (1. 1) with soft potentials in the large

in time. This is a subject in a forthcoming paper.

Remark. Recently we have obtained almost the same results for

the Boltzmann equation with an angular cutoff soft potential of exponent

se (7/3, 3], that is, l<c?0^£i<2 in the assumption [Q]. The details will

be discussed in another place.

§ 2. Function Spaces and Notations for Linear Operators

Let J2ci?n be a domain. We will write Sv when it is necessary

to emphasize that the symbol for the generic point of Q is specified as y.

The closure of $ will be denoted as S.

For l<T/><Coo, Lp (J2) will denote the usual Lebesgue spaces on Si.

It is a Banach space with the well-known definition of norm (denoted

as || • ||£*(£)). By definition Lp (Sy) is the class of functions n — ii(y)

eZ/p(«&) whose variable is y. Lfoc (*G) denotes the class of locally LP(Q)-

functions. Let /?EEJR and define

(2.1) L5(«B) - {« = «(£); (1+ |f |)'«(£) €EL*(1P)},

which will be abbreviated sometimes as Lj§, and in particular as Lp when

/? = 0. This is a Banach space with the natural norm

(2.2) IMU|=ll(i + l£l)V£)IU>cj«.)

and coincides with Lp (Rn) when 13 = 0.

Let Z = 0,l,2, • • • , oo. C l(fl),Cj(fl) and C°(J2) have usual meanings

and we put £»(Q) = CQ(0) fl L°°(fl). For />!, Cl(S) (resp. &l(Q))

denotes the class of C° (8) (resp. j3°(J2)) -functions whose derivatives

up to order I inclusive exist in Q and have C°(fl) (resp. j3°(,fi)) -extension

in Q. Clearly Cl (S) = $l (5) if S is bounded.
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For l^R,Hl(Rn) denotes the usual L2-sense Sobolev space on Rn

of order /;

(2. 3) PI1 (R») = {KGE Li* («B) ; u e Lf (tfn) } ,

where u = u(k) is the Fourier transform of ii = u(x)\

f
Jjz

'<*•*>« (.r) <aL

It is well-known that H l (Rn) is a Banach (more precisely Hilbert) space

with the norm

and farther that it is a Banach algebra if l^>?i/2.

Let Y(S) be any one of the function spaces introduced so far and

let X be a Banach space with the norm \\-\\x- Then Y(Q;X) will

denote the class of Y(ifi) -functions defined on S with values in X. If

Y(J2) is a Banach space, then so is Y(Q;X) with the norm

(2.5) | |«| |W:J ,-=| | | |w(-)|UI|r(*).

The space Y(S; X) is similarly defined. For example we shall need

the space

(2.6) H l t f t p = L ^ ( R f ; Hl(Rn
x}), / f /9efi , !</><oo

and we put

(2- 7) l l « l h , A P = II !!«(*, ?) llff jc«sll^(«j) •

The suffix ^> will be dropped in the special case p=oo. Thus

(2.8) H,,f = H,,^ = L?(K;;H'(RMt ||«||l>/9= ||«||IlA. ,

which is obviously a Banach algebra if l^>n/2, and ffp>0.

The function space in which our problem is to be solved is the space

(2.9) HIift = closure of fl HV »> in -ffi f /, .
z'.^'eig"

This is not empty since CT (.RJ X I??) is contained (but not dense) in JJi;^.

Further it is not difficult to see that iiELHi^ if and only if u£z Hii& with

(2. 10) Hm ||Xa (?) « !,.„ = lim || ||%B (*) & (k, f) lU,^ ||w -0

where XA(^) is defined as
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(2.11) X*(y)=l for \y\>R, = 0 for \y\<R.

Thus HI,$ 'is itself a Banach space with the norm \\*\\i,e of (2.8) as a

proper subset of Ht>0. Note that

(2.12) Hlt^Hw, H^rCNk,

for any /'</ and /9'<#.

We also need the space

(2.13) Lp'2 = L2 (H?: Lp («;)),

whose norm will be denoted as || • \\Lf.*.

Now we shall summarize some notations on linear operators. Let

X, Y be Banach spaces. We denote by B(X, Y) the class of linear

bounded operators defined on X with range in Y. and by C(X, Y) its

subset of compact operators. The norm of AEEJB(X, Y) will be denoted

as ||A||jj(^Fy). Endowed with this norm, both B(X, Y) and C(X, Y)

are Banach spaces. We will write B(X) for B(X9X) and C(X) for

C(X,X).

Let A be a linear (not necessary bounded) operator defined in X

with range also in X. The domain of A will be denoted as D(A).

By definition D(A) =X if AeB(X). Let p(A) and ff(A) denote

respectively the resolvent set and the spectrum of A., and (A —A)'1

= (AI—A')~1 its resolvent where 7 is the identity and A^p(A). The

symbols ffp(A), ffd(A) and <Te(A) will stand respectively for the set of

eigenvalues (point spectrum), the set of discrete eigenvalues, and the

essential spectrum (in the sense of [8, p. 243]) of A. The adjoint to A

if it exist is denoted as A*.

Finally we shall agree with the following convention. Let A be

a formally defined operator. Then A may happen to have various reali-

zations in various spaces. In fact we shall often need in the sequel to

consider A in a variety of spaces. For simplification of notation, there-

fore, we will use one and the same symbol A for all of such realizations.

No confusions will arise. Thus, for example, the statement A^B(X, Y)

will be always understood to mean that A has a (unique) realization be-

longing to B(X, Y).
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§ 3, Existence of Local Solutions

It is well-known [3] that Q[g,g]=0 if g(f) = a exp{-r|?-/?|2}

whatever the constants <2e H, @^Rn, f>0 may be. Consequently g = g(£)

satisfies the Boltzmann equation in (1.1). If #>0, g(£) is called Max-

wellian and describes an equilibrium state of a gas.

In the present paper we shall seek a solution to (1. 1) which is

near a Maxwellian g (<?). Without loss of generality we may choose

Ct —1? @ — 0, 7* = 1/2; otherwise we can reduce to this case by a suitable

change of variables. Throughout this paper, therefore, g will be under-

stood the function g(<~) = exp{— 1? |2/2} .

Putting f=g-\-gl/2u, we rewrite (1. 1) in terms of the new unknown

du ____

(3. 1) ®t

U £=0 — *

where we have put

(3.2) F[u,v

(3.3) Lu = 2

The operator JT is bilinear symmetric while L is linear, both acting only

on the variable f.

Define

(3.4) r l[«,t;]=-i

where the notations are the same as in (1.2). It is easy to see that

(3.5) r [«, v-] = F2 [«, t;] + F2 [v, «] - A [«, v] - A [v, «] .

Let LJ (Rf) be that defined in (2.1) with ^> =00 and write its norm

(2.2) simply as || • ||,.

Lemma 3.1. Assume [Q] (0) and (ii) . There is a constant
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c0>0 such that for any /9>0 and ti,v^Lj(R"),

II^OO, *>] ll/3+s<eolWUN,9 , .7 = 1, 2,

zvhere S is the constant in [Q] (ii).

Put

= f
JRn

Owing to [Q] (ii) , there is a constant r0>0 such that

Then the lemma follows if we prove

For ./ = 1, this is a simple consequence of the definitions of /\ and || • | /5,

and to prove the case j = 2 it suffices to note that \y\z-\- \fl' 2=|?|2+|?7 |2

so that

This lemma suggests that a suitable function space in which (3. 1)

is to be solved is the Banach space HI^ defined by (2.8). However

more suitable is HI,Q of (2.9) as will be seen in Remark 3. 1 in the

below.

Since F and L are operators acting only on the variable f, they

can be considered in the space HI,^ and HI^ as well,

Lemma 3.2. Assume [Q] (0) and (ii).

(i) Let r>??/2 and /?2>0. Then F is a bounded bilinear sym-

metric operator from Hi^xHi^ into Hiiff+s.

(ii) For any l^R and $>$, L is a bounded linear operator from

Hit& into HI^+SJ that is, L ^ B ( H i i f f 9 H 1,0+9).

Proof, (i) Let u^Hlt& and put u0(£) = \\u(-, f) \\HKMP and simi-

larly for v^HitP. Then u^v^L™. Let />»/2. Since Hl(Rn) is a
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Banach algebra and since g(v,0)>Q, we see that

\\r,\«, *](- ,£) \\HHw<cr^, Vo-] (£), j=i, 2,
the constant C>0 depending only on n and /. By Lemma 3. 1 and

(3.5), we then get for any />w/2 and /?>0,

(3.6) \\r\u, v^\\lt^8<CrAMiA^,& •
This proves the assertion (i) of the lemma with // in place of H . To

complete the proof, it suffices to show that r\_u^v~\^Hit^+s whenever

u,v^Hit$. So let u,v^Hit$. By the definition (2.9), there exist se-

quences {un} and {vn} in fl -Hi #» which converge to ?/ and z; strongly in
i,0

/fz /o. Then it follows from (3.6) not only that r[un, vn~] GE fl -Hj ^ for
1,0 '

all ;?, but also, by virtue of the bilinearity of /', that P\uny Vn\ converges

to r\u,v~\ strongly in PIj^+89 showing that r[u9v~]^Hti0+s.

(ii) Since g (f ) is independent of .r, we have

ll^[V/2, «] (•« «H'cJws</'y[fl'1/f, «J (0, J = l, 2 ,

where l£iR and /?>0. Clearly (/1/2 and // can be interchanged. By

Lemma 3.1 again and by (3.5) applied to (3.3), we get

The rest of the proof is similar to that of (i) and will be omitted.

Since 8~>0 and since F is bilinear, Lemma 3. 2 and (2. 12) lead to

Corollary 3.1. (i) Let l^>?2/2 and @>0. Then the quadratic

operator F\_u9u~\ is a C°° -map from HI,^ into itself.

(ii) L is a linear bounded operator on HI^ for any l^R and

/?>0? namely LeB(HZf/,).

Let us return to (3. 1) . The linearized Boltzmann operator B is the

linear operator appearing in the right side of (3. 1) ;

(3. 7) (Bit) (x, £) = -£• V*u (x, £) + (Lw) (x, § ) .

We shall study it in the space HI,$ with the domain

(3.8) D(B) =
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where £'PX is, of course, in the distribution sense. Note that this choice

is maximal in HI,& in virtue of Corollary 3. l(ii), and that HI^I^^I

Theorem 3.1. Assume [Q] (0) and (ii) , and let 1<=R,

Then B is a generator of CQ- semigroup etB on Hi,p,

Proof. Define the operator AQ as

(3.9) A,u=-^Vxu, D(A0) = D(B).

Then B=A0-\-L, and since L is a bounded perturbation to AQ (Corollary

3. l(ii)), it suffices to prove that AQ is a generator, or equivalently that

AQ satisfies the conditions of the Hille-Yoshida theorem. Clearly fl Hit$
i,$

dD(Ao), so D(Ao) is dense in H^ by (2.9). Further the Fourier

transformation with respect to x gives

(3. 10) ( A0u) ~ (k, f ) = - *•<*, O« (k, S )

in the distribution sense, and thereby we get formally,

( (AI- A) -«) " (k, f ) = (J+i<*, l» -1Z (k, ?) ,

for ^eC. But this is exact in -H"z,/j if Re ^=^=0, as is seen by the aid

of (2.10). Thus p(A0)=C\iR and

This proves also that AQ is closed. Now the Hille-Yoshida theorem as-

sures that AQ generates a contraction group on Hitp9 completing the

proof of the theorem.

Note that (3. 10) implies also

(3. 11) (etA*u) " (k, f ) - e-it<k'?>u (k, <?) .

Remark 3. 1. In the space Hit^ AQ is not densely defined even if

endowed with a maximal domain, and etA° of (3. 11) is not strongly con-

tinuous in t. Thus AQ cannot be a generator in Hit$. The situation is

the same for B, and this is the reason why Hit& is preferable to Hti^.
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We now consider (3. 1) as an evolution equation in Hi,pi

du (f) _ „„ ,.

(3.12) dt

w(- f -O) =«0.

Here l^>?i/2 and j8>0, and du(t) / dt is, of course, a strong derivative of

«(/) in £ in .H"z,0. We shall agree to say that u = u(t) is a solution

to (3. 12) in Hlift in the interval [0, T) with some T>0, if weC'CEO, T);

H I f0) and u(t)^D(B) for all £EE [0, T) and if w satisfies (3.12).

Let u = u(f) be such a solution. Then it is obvious that u satisfies

the integral equation

(3.13) u(fy=etBu*+ fV f- f )

for £<EE[0, T). Conversely if u(f) eC°([0, T) ; IJ^) is a solution to

(3.13), then it is also a solution to (3.12) in the above sense so far

as tio^D(B). This follows essentially from Corollary 3.1 (i) . And

(3. 13) can be solved by the classical contraction mapping principle in

virtue of Theorem 3. 1 and Corollary 3. 1 (i) . Thus we conclude the

Theorem 3. 2 (Existence of local solutions) . Suppose that [Q]
(0) and (ii) be fulfilled, and let l>n/2 and /?>0.

(i) For any uQ^Hitp there exists a positive constant T and

(3.13) has a unique solution u = u(t) in C°([0, T) ; H i i f t ) .
(ii) If, in addition, uQ^D(B), then this uis also a unique solu-

tion to (3.12) in Hltft in [0, T) .

Remark 3. 2. The assumption gi>0 in [Q] (ii) was not used in

the proof of Lemma 3. 1. Thus Theorem 3. 2 remains valid even if <?i = (X

This assumption is essential, however, for our construction of solutions

in the large in time (see Remark 5. 1) .

Remark 3. 3. No theorems of the type of Theorem 3. 2 are not

yet known for the case of cutoff hard potentials. In fact if S<^0 in

[Q] (ii) > Corollary 3. 1 is no longer true though Lemmas 3. 1 and 3. 2

remain valid. Thus the proof of Theorem 3. 2 does not apply to the
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hard ball model and the inverse power potentials (1. 3) with s^>5. The

local solutions shown in [7] are only for small UQ and can be continued

eventually in the large in time [9], [13], [14],

§ 48 Collision Operators

In order to construct the solutions to (3. 12) in the large in time,

we need to establish nice decay estimates of etB for large £, and to this

end we shall first study the operator L of (3. 3) in some details.

Let F3 Q'=l, 2) be as in (3.4) and put

(4.1) A/ = A fog"],

(4. 2) Ku = Lu+Au = r2[u, g1/2] + F2 [g1/2, «] -

where g(f) =exp{— - |f |2/2}. The aim of this section is to study A, K

and L. We shall do this under the assumption [Q] of Section 1, with

the restriction

This additional assumption is not essential, and is made only to shorten

our arguments.

As is easily seen, A is a multiplication operator (An) (f) = v(£)u($)

by the function

=T f2 J<R»

which, under the assumption [Q] (0) , is measurable on Rn
9 and in view

of [Q] (ii),

with some constants Vi, V2]!>0. The fact that i^^X) assures that for all

(4.3)

with ^a<^Jr°09 so that we can define (formally) the fractional power

Aa even for o:<0 as

(4.4) (^K)(£)=v(£)"f/(£).
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Remark 4. 1. The validity of (4. 3) for a<^0 is essential for our

construction of global solutions and follows from the assumption

in [Q] (n).

Lemma 4.1. (i) Let a', /?, f^R be such that 7"</?H-a<J, and

let l^R and p^ [1, oo]. Then Aa£^B(X, Y) for any one of the fol-

lowing pairs of spaces (X, Y) .

(a) (L|,Lf), (b) (#,.„#,„), (c) (H,f „.„#•,.„,).

(ii) For any 0&R, A is a bounded nonnegative self adjoint ope-

rator on the Hilbert space L|? with <f(A)=ffe(A) = [Q,Vo] -where y0

= sup v ( f ) .
s

Proof. Evident from (4. 3) .

Let us now study the operator K of (4. 2) . It is easy to see that

FI [{/1/2, u] is an integral operator

W1, «](£)= f ^iCf.OaCf')^'
Jl£'i

induced by the kernel

which is nonnegative measurable on R? X Rf by [Q] (0) and symmetric

with respect to <? and <?', Further [Q] (ii) assures

(4.5) 0<

Also the operator F2[g1/2, u] -r F2[u, g1'2] is an integral operator in-

duced by a kernel K%(S,£') which is real, measurable and symmetric

on RnxRn by [Q] (0), and [Q] (i) implies that

(4.6)

with some constant k2>0. This has been proved in [6] for n = 3 and

in [11] for arbitrary n>29 by using too complicated change of variables
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to reproduce their proofs here.

Consequently K is also an integral operator

(4. 7) (Ku) (I) = f K (£, £') K (£') <# '
JR"

and the kernel j£(f, ?') =K2(g, £') — J^j(f , f) is real, measurable and

symmetric on RnxRn. Moreover using (4. 5) and (4. 6) , we can easily get

(4.8) f \K(e,$")\>(i+\$\)-*de'<Kr,f(i+\e\r1'-1,
JR»

with a constant ICp,p>0, for any @>Q and Q<Z.P<^n/(n — 2) if ^>3 or

if n = 2.

Remark 4. 2. No estimates other than (4. 8) are needed in the

sequel. Thus the assumption [Q] (i) is required only for (4. 6) to be

true.

Lemma 4.2. (i) Let 0,r<^R be such that r<#-fl and let

and p^. (1, oo ) . Then K^B(X9 Y) for any one of the following

pairs (X,Y).

(a) (14, L f ) , (b) (#,.,.„#,.„)

(c) (Hi,f, Hi.r), where /9>0.

(d) (HitSif,Hitr), -where

/?>0, r</? + l-l/A p>n/2 for «>3 or p>2 for n = 2.

(e) (Ht,g,Pl, Ht>r:Pl) where B,T,P are as in (d), a«^

KA<A I/A -V&<1/A

(ii) K^C(L^Ll) if r<|8+l.

(Hi) K<=C(U) is self adjoint.

Proof, (i) (a). Let rejR and a = r/ (/>-!). We get by Holder,

Choose t^>pT and apply (4.8) twice with the symmetry of K(g, $') taken

into account. Then
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(4.9) ii^ii^r*1^-^-,)-, fr Jjg

which implies (i) (a) . The proof of (i) (b) is entirely the same.

(i) (c) . Again by (4. 8) we get for

f
*) H>n

showing K^B(Hitp, HttT) . To complete the proof, therefore, we have

only to repeat the argument of the proof of Lemma 3. 2.

(i) (d) . The second member in (4. 10) can be majorized also by

(L\ JM

and hence, according to (4. 8) , it is majorized by

C(l+|£|)-w+1""||«lkftp if 0<p'<n/(n-2) (rc>3) or

0<p'<2 (n = 2), showing

(4.11)

Now (i) (d) follows from the fact that f| Hit0ip is dense in Ht>0tp.
1,0

(i) (e) follows from an interpolation theorem applied to (i) (b)

with p near 1 and (4.11). Recall here that Ht^ = Hi>j3>00.

(ii) Let XR be as in (2. 11) and denote also by XR the multiplication

operator induced by the function %*(£). Let 7</5)+l. Then (4.9)

implies

(4.12) ||£Xi||jB(L.lL.)<C(l + £r-*-1-»0 OR^oo).

Also, since — /J<^— /-t-1, we have

(4. 13) \\K%R ||B(iir, Lle,<C (1 + R) r-"-1

as a special case of (4. 12) . Since L| and Ll^ are adjoint to each other,

and since K(£, £') is real symmetric, the adjoint to KxR^B(L2_r, Ll^)

is XjjJ£eII(Z4, L^) with equal norms. Hence (4.13) implies that

(4.14) fojqB(i|fi?)-*0 (i?-*oo)5

which, together with (4.12), shows, putting KR= (!—XR)

\\K~KR\\B(LliL0 GR->oo),
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Thus (ii) can be concluded if KR^ C(L|, L?) , [8. Theorem III. 4. 7]. Let

KRi£ be the integral operator induced by the kernel Xe (f — £ ') {1 — •£*(?)}

xX(£,f'Hl- a:* (£')}• Then ArKR,,A~& is of Hilbert-Schmidt type, that

is !CAeeC(Lj,L?). Evidently ll/^-X^II^^O (e->0), due to

(4.3), (4.5) and (4.6). This implies that ^eC(Lj,L?). Finally

(iii) is obvious and this completes the proof of Lemma 4. 2.

Finally we should state some properties of the operator L of (3. 3)

considered in the space L2 = L2(Rf). We note from (4.1) and (4.2)

that

(4.15) L=-A + K.

Then LeB(L2) in virtue of Lemmas 4.1 (i) and 4.2 (i) (a).

Lemma 4. 3. Let L be as above.

( i ) L is nonnegative self adjoint on L2.

(ii)
rwhere y0 =

(iii) 0 6E 0"p (L) ivith multiplicity n + 2 whose eigenspace is

spanned by the functions

(4. 16) ^ (f ) =

(iv) Denote by P the eigenprojection for Q^ffp(L). Then

PE:C(L2
a,L

2
r) for any

Proof. The selfadjointness of L and the assertion (ii) follow from

Lemmas 4. 1 (ii) and 4. 2 (iii) , [7. Theorem IV. 5. 35]. The proof of

the nonnegativity and that of (iii) will be referred to [3], and (iv) is

obvious from the fact that cp} of (4. 16) are rapidly decreasing when

Let T^O(?i) be a rotation in 7?f and define R by

(4.17) CR«)(£)=a(rf) .
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Lemma 4. 4, A, K and L commute ucith R.

This is a consequence of the fact that q in (1. 2) is a function only

of |f — ?'| and 6. For the proof, see [3].

A formal calculation gives the

Lemma 4.5. Let u and v be in a suitable space such that F{i{,

?:>]eLo. Then PF[i{,v~]=Q, zvhere P is as in Lemma 4.3 (iv) .

§ 5. Operators A (&) and U, (k)

To derive decay estimate for etB, we shall appeal to the Fourier

transformation. Recall that L acts only on £ . Then (3. 7) and (3. 9)

yield

(5. 1) (Bii) " (k, £) = - »<*, f > ft (*, S)+L6 (k, $) .

The right side is a multiplication operator with respect to k. Therefore,

regarding k as a parameter, we define

(5.2) (B (k) u) (?) - - /<£, O« (?) + £« (0

for each k^iR11. For our purpose this operator should be investigated

in Z4 for various values of /3s=R. We will do this by perturbation

technics, introducing auxiliary operators

(5.3) A, (*) = -'<&£> X ,

(5.4) A (A) =4. (*)+/!

(5.5) 3,(&) =A,(k) +L-P=A(k) +K-P=B(k) -P,

where A, K and P are as in (4. 1) , (4. 2) and Lemma 4. 3 (iv) respec-

tively. They should also be studied in L| for all /?eJR. This will be

done in this section, while B(k) will be discussed in the following two

sections.

Endowed with the domain

(5.6)

y!0 (£) is anti-selfadjoint in the Hilbert space /4 ^or anY j^^-K- Hence

it generates a unitary group eM°(Ar) for each 7e. Further, if



74 SEIJI UKAI AND KIYOSHI ASANO

(5. 7) ff (AQ (k) ) - ffe (A0 (k) ) - iR, ffp (A0 (k) ) - &

where iR={X^C; Rey l = 0}. Note that A0(0) =0. Define

(5.8) D(A(k)} =

Since A, L, PeJB(Lj) by Lemmas 4 .1( i ) , 4. 2 (i) and 4. 3 (iv) , this

choice of domains are maximal in L|, and moreover since AQ(k) is a

generator, A(k) and £[,(£) are also generators [7. Theorem IX. 2.1].

Note also that

(5.9)

The semigroup etA(k} is a contraction semigroup given as

(5.10) e = e l ' X

and the resolvent is

Since v(?)>0, V(f)->0( |? |—»oo) by (4.4), we see easily

(5. 12)

where C- = {^eC; ReA^O} (same sign). In particular z'H is a part of

the boundary of <T(A(*)), if *=^=0.

The resolvent (5.11) is in B(L%) for ^ep(A(i)) by definition and

hence in particular for ^eCL. by (5.12). Now we note that (5.11)

can be considered also as an operator in B(La, L?$) as far as a>@. This

point of view is advantageous since even h^iR is then acceptable in

(5a 11), which is of course impossible as an operator of B(Z4) by (5. 12).

More precisely, we now prove the

Lemma 5.1. Put

(5.13) I^2a,v = C+xRn

and write R(Z, k) = (A- A(k)) ~\ Let d be as in [Q] (ii).

(i) R a, K) e L00 (I; B (LI, L})) if a

(ii) £(J,*)eE#0(J; B(Ii,Lj)) if

(iii) For each fixed r>0 and
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sup
Ae€7+, |J|^a, i

(iv) Wr^e A = 7"-f ir t^/i 7%

sup
r>o,fc<EJZ

'with some constant C>0 ;zo£ depending on u.

Proof, (i) If we define

/(^, A, £) = (! + if I) " W + y (f) + £<A, O) ^

then we see, on one hand

(5. 14) ||£tt, K) HB^J, =sup

by (5.11), and on the other hand

(5.15)

for all (A,k)^J and felT by (4.3), proving (i) .

(ii) Let Xm = Xm(?) be the same as in (2.11). By (5.14) and

(5. 15) , we see that

(5. 16) \\RU, Qx* iJB(^ i|)<V_1(l-fm)^s-a->0 (m->oo)

uniformly in (A, k) eJ" if a>^ + 5. On the other hand

which, together with (5. 14) and (5. 15) again, shows that R(A, k) (I— %m)

^ffi(I\ jB(LJ)) for each fixed w. Now (ii) is evident from this and

(5.16).

(iii) Let \k\<r, \$\<m and |Im^|>r;». Then |Im^-<

— rm, and thereby we find that

sup ||#(A, A) (/-x.) ||Bu|)<C(Re A+ |Im A| -ri»)-J-*0

for each w>0. Also, by (i) , ||fl& ^."lUj^V-Jx.MlU'^O (m-»oo)

uniformly in (^, k)^Z for each weLj-^». Combining these results, we
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have (iii) .

(iv) is a simple consequence of

ri/(r + *r,*,£)|yr=(l + |£|)-»
J — 00 J—

Remark 5. 1. Since Z/« is dense in Z4 if <X^>@, it follows from

Lemmas 5.1 (i) and (ii) that R(A, k) u^ &°(2; L|) whenever

Now we study B0 (k) .

Lemma 5, 2. B0 (k) is dissipative in L2 = LQ,

Proof. In virtue of Lemma 4.3, L — P is bounded, selfadjoint and

negative on L2. This and the anti-selfadjointness of AQ(k) implies that

for any u^D(B,(k)) =D(A0(k))9 ti=£Q,

(5, 17) Re (B0 (k) u, u)L,= ( (L-P) u, 11) <0 ,

which proves the lemma.

We noted already that BQ (k) is a generator. This lemma, therefore,

shows that B0(k) is maximal dissipative in L2, or equivalently, etB°(k} is

a contraction semigroup on L2. BQ(k) is not dissipative in L| if @=£0,

but etB°(k) can be shown to be a bounded semigroup. This fact, however,

is not used in the sequel, and so the proof will not be given. Instead,

we need some properties of ff (B0 (k) ) in L| for arbitrary /?, namely,

Proposition 5. 1. (i) ff(BQ(k)) CC_, p ( B 0 ( k ) ) Z)C+. (ii) ffe(BQ(k)}

(iii) (

Proof. If we put KQ = K—P9 then

(5.18) 50(£)=A(£)+£:0

by (5. 5) , while by Lemmas 4. 2 (i) (a) , (ii) and 4. 3 (iv) , we see for

any £>0,

(5. 19)



BOLTZMANN EQUATION WITH A SOFT POTENTIAL 77

Therefore (ii) is a simple application of [7. Theorem IV. 5. 35] . More-

over (5.19) implies o~(BQ(k)) f lp(A(£))C o~d (A (*))• Consequently (i)

follows from (iii) in virtue of (5. 12) and (ii) . To prove (iii) , let 2

^ffp(B0(fr)). Then hi = BQ (k) u with some u^D(B0(k)) , «=£0. If /?>0,

then //eL2 — Z4, and (5.17) can be applied to conclude Re ̂ <0. Let

/9<0 and suppose Re A>0. Then KQu^L}^ by (5.19), so that n= (A

— A(£)) ~1K0u^ 14+i-s in view of Lemma 5. 1 (i) . Since 5<T1, this argu-

ment can be repeated to verify n^.f\Up. This shows that 7/GD(J30(£) )
0

in ZA Hence Re /1<CO as proved earlier. This completes the proof of

the proposition.

LeUe.€+. Then Z t E p ( B 0 ( k ) ) f lp(^(£)) by (5.12) and Proposition

5. 1 (i) , and we can easily obtain from (5. 18)

(5.20) ^

Write

(5. 21) F(l, k) - (A- A(k)) ~1KQ .

Lemma 5.3. L<^ 2 = C+xRn, and

( i ) Fa^)e^°(J;C(L2,)).

(ii) _ sup \\F(l,k)\\B(L^0
*

for eacJi r>0.

(iii) _sup ||F(A,A)||B(L.)^0 (r->oo).
^

Proof. Recall 5<1. Then (i) follows from Lemma 5.1 (ii) ,

(5. 19) and [7. Theorem III. 4. 8], while (ii) from Lemma 5. 1 (iii), (5. 19)

and [7. Lemma III. 3. 7]. To prove (iii), l e t % m — %ffl (?) be as in (2.11).

In view of (5. 16) and (5. 19) , we have

the right side of which tend to zero as m->oo uniformly in (X, k)

Hence if we put I m ( A , k ) = (/t — A(k)) ~1(I—Xm), then ii suffices to prove

that \\Im (^, k) KQ\\B(L*)-*0 ( \ k \ -*oo) uniformly in AeC f for each
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and this follows, owing to Lemma 5. 1 (i) and (5. 19) , if

(5.22) _sup ||/m(A,*)*|U"->0 (r->oo)
AGO*, |fc|>r

for each z/eLj+a and w>0, [7. Lemma III. 3. 7]. To prove this, put

for each (X,k)^2 and r, m^>0. It is not difficult to see that mes Sl

^^~r so that

(5.23) mes 5^0 (r->oo)

uniformly in (^, k) e2" for each fixed 7?z>0. Moreover if f is the same

as in the proof of Lemma 5.1, then |/j<>-i in S1 and \f\<il/(\k\/<Jr)

in S2 if \k\>r. Hence

for AeC+ and |*|>r. Now (5.22) follows from this and (5.23).

Lemma 5.4. (i) Is=p(F(l,k)) for all (X,k)^Z. (ii) (7-

Proof, (i) Suppose I^ff(F(A,k)) for some (^, &)eJ, Then

F(^, ^)) by Lemma 5. 3 (i) . So u = F(X,k)u with some u<=L2
0,

. Then u^L^l,s and therefore u^.f\L?$ and ̂ e(Tp(50(^)) as shown
0

in the proof of Proposition 5. 1, a contradiction to Proposition 5. 1 (iii) ,

proving (i) .

(ii) (i) and Lemma 5.3 (i) imply (I-F(X, k)) ̂ eC^J; B(LJ)) .

so that it suffices to show that (I—F(yl, A)) ''eL00^; JB(L2^)) for some

where we have put

(5.25) Ir

And this follows from Lemma 5. 3 (ii) and (iii) . In fact there is an

r>0 such that \\F(X,k)\\mLZ)<l/2 for all (I, k) <EE Ir. Hence || (/-
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, k)) ~1||B(L|)<2 by Neuman series.

Applying Lemmas 5. 1 and 5. 4 to (5. 20) , we readily have

Lemma 5.5, Lemma 5.1 is valid 'with BQ(k) in place of A (k) .

The assertions (i), • • • , (iv) of Lemma 5. 1 for R(A, k) = (Z-

zvill be referred to as Lemma 5, 5 (i) , • • • , (iv) respectively.

§ 6. Estimates of etB(k} for |fe Bounded Away from Zero

Choose D(A(k)) of (5.8) as the domain D(B(k)) and write

(6. 1) B(£) - B0 (k) + P=A0(k)+L.

Since BQ(k) is a semigroup generator, so is B(k) in il by Lemma 4.3

(iv) . Moreover we have the

Lemma 6* 1. etB(]c) is a contraction semigroup on L2 = Ll for each
I! _ffi(fc) II\\e l i B C

Proof. Instead of (5. 17) we have by Lemma 40 3 (i) ,

(6.2) Re(B(k)u,u)L,= (Ln,,<)L,<0, »eD(B(k)),

showing that B(k) is dossipative in L2, whence the lemma follows accord-

ing to the remark given below Lemma 5. 2.

The following proposition, corresponding to Proposition 5, 1, holds

in LJ for all /9eJR.

Proposition 6.1. (i) (T(5(^))cC_, p(B(k))1)C+. (ii) (T(B(k))

. (Hi)

Proof. The only difference from Proposition 5. 1 is the restriction

in (iii). Indeed 0&ffp(B(ty) =ffp(L) by Lemma 4. 3 (iii) . Let

, and AetTptBOfe)) . Then lu = B(k)n with some u(=D(B(k))9 w=^0.

Consequently Re ^<0 by (6.2). If Re ,1 = 0, then by (6.2) again and

by Lemma 4.3 (i) , Ltf = Q, and so hi = A0(k)i{9 that is,
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a contradiction to (5. 7) . Taking account of this fact, we can repeat

the proof of Proposition 5. 1 to conclude the proposition.

Let 2eC+. Then A t = p ( B ( k ) ) f) P(ft(*)) and by (6.1)

(6.3)

Put

(6.4)

In view of Lemma 4.3 (iv) , Lemma 5.3 applies also to (A — A ( I t ) ) ' 1 P.

Hence by Lemma 5.4 and (6.4), this is the case also for

Lemma 6. 2* Lemma 5. 3 Is valid if F(A, k) is replaced by

Now the following two lemmas follow from Proposition 6. 1 and

Lemmas 5. 5 and 6. 2 applied to (6. 3) , just in the same way as Lemmas

5. 4 and 5. 5 followed from Proposition 5. 1 and Lemmas 5. 1 and 5. 3

applied to (5.20).

Lemma 6. 3. For any r>0, (i) lep(Gtf, *)) for all (A, k) e Jr,

and (ii) (1-Gtf, £)) -'<= $°(Ir; B(Z4)), where 2T -was defined by

(5. 25) .

Lemma 6, 49 Put R(^k} = (k~B(k)}~\ and let r>0. Then

Lemma 5. 1 is valid if 2 is replaced by ZT in (i) and (ii) , and if

the supremum in (iv) is taken for r2>0 and \k\>r. The constant C

in (iv) depends, of course, on r.

The assertions (i) to (iv) of Lemma 5. 1 for R(JL, k) = (J- B(k)) ~l

will be referred to as Lemma 6. 4 (i) to (iv) respectively. In the above,

r = 0 is not possible because of the restriction k=£Q in Proposition 6.1

(in).
Now Lemma 6. 4 enable us to evaluate etm™ for

Theorem 6. 1. Let ff>Q and r>0. There exists a constant
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C>0 such that for any />0 and k<=Rn, \k\>r,

where (J>0 is as in [Q] (ii) , and U = Ll.

Proof. If 13 = 0, this is nothing but Lemma 6.1. For /?>0S it is

sufficient to deal only with the case ft = 18, l^N. For, the theorem for

general /3l>0 then follows from an interpolation theorem.

For simplification of notations we write R(X) = (& — B(k))~1 and de-

note the inner product and the norm of L| as (•, •)# and \\-\\p respec-

tively.

To prove the theorem, we use the fact that erB^ is given as the

inverse Laplace transformation of the resolvent R(%) = (h~B(k)) ~1;

(6.5) ets™u=s-lim— {^ euR(l} udl .

Here 2t&D(B(k)) and />0, and f>0 can be chosen arbitrarily. We

first show that we can put 7 — 0.

I'Ct /9>0 and /e^V, and let 2t^L^^i8. By an argument similar to

that given in Remark 5. 1, we see from Lemma 6. 4 (i) (ii) (iii) that for

any

(6.6)

and that for any k^R, including & = 0,

(6.7) _sup

Since J^(^) is a resolvent, R(X)u is analytic in A in p(B(k)} and

hence in particular in C+ by Proposition 6. 1 (i) . Thus Cauchy's theorem

on the integrals of holomorphic functions can be applied to the right

side of (6. 5) to shift the path of integration to the imaginary axis by

the aid of (6.6) and (6.7) with 1 = 1. Thus T = Q is possible in (6.5)

if u&L}-r8.

Therefore, defining

(6.8) I l ( t 9 a y b )

we have
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(6.9) e"
wu= — s-liml^t, -a, a)u

for £>0 and u

It is well-known that dlR($/d)!= (-1)1/ ! R(X)l+l for Af=p(B(k))9

, and so we have, putting ^=7" + /rs

(6.10)

This holds for u<=L} and r + zrep(B(£)) IDC+, but if weLj+a+lw, this

is valid even for 7" = 0 in virtue of (6.6). Therefore we can integrate

IQ (t, a, b) by parts to obtain

(6. 11) /.(*, «,*)«

where O>0 and weZ/J+a+1)ff. The first term of the right side tends to

zero as a-* — ooy b-^oo by (6.7). Consequently (6.9) reduces to

(6. 12) etB^u=--s-limIl(t9 -a, a)u

if £>0 and

To evaluate the last limit, observe that

(6. 13) | (R(Vl+1u, W),| = | (R(X)lu, R(X) *v)t\

<C|| R (X) u\\s+(l-v»3 1| R (X) *w||,_

holds for />! and (k,k)&2T where

by Lemma 6.4(i). Since 1?(^) * = (l~B(-k)) ~l in view of (5,9)s it

follows from Lemma 6. 4 (iv) and (6. 13) that

(6.14)
a

6 \ 1/2 / P6 \ 1/2a6 \ 1/2 / P6

[l?(»r)«a5+(l_W)^r)
z / \ Ja



BOLTZMANN EQUATION WITH A SOFT POTENTIAL 83

for all *>0 and \k\>r. Note that if \k\>r, then (l,k)t=Sr for all

^e€+. In (6.14), the constant C0 depends only on r. Now (6.14)

implies not only that Ii(t,a,b) converges as a-> — oo,b— >oo absolutely

in the weak topology of B(L} + ls, L|) to some I(l} (t) eB(Z4+w, LJ) for

all £>05 but also the limit Ja) (f) is uniformly bounded there in £>0

and \k\>r. Noting that Lj + u+na is dense in L|+w, we therefore obtain

by (6.12),

(6.15)

Put /? = 0 here and use Lemma 6.1 to complete the proof of the theorem.

Remark 6. 1. In L|, j&^O, etB(k} is not a contraction semigroup but it

can be shown to be bounded in B(L2
0) uniformly in t>Q and k^Ru.

Hence Theorem 6. 1 is valid even with B(L?a, L2) replaced by JB(Lj+«,

Remark 6. 2. The proof of Theorem 6. 1 is based only on Lemma

6. 4. Thus Lemma 5. 1 and Lemma 5. 5 can be used to conclude Theorem

7. 1 for etA(k} and etB°(k\ Moreover the estimates are uniform with respect

to k^Rn. For etA(k\ however, there is a very simple proof, which will

be presented in Lemma 8. 1.

§ 7. Estimates of etB(k) near fr = 0

The constant C in Theorem 6. 1 can be found to tend to infinity

as r— >0. To see this more precisely, let a>r\>0 and write (6e 8) as

(7.1) Ji(*f -*,*)=!!(*, -a, _ r )+ / i ( f , -r,r) +It(t9r,a).

If Ae I, W>r, then (A, £) <Ejr for all &GEIT. Therefore (6.13),

(6. 14) and the argument following to (6. 14) apply to the first and the

last term in the right side of (7. 1) . Thus we have the

Lemma 7. I. For each fixed r>0, the limits of Ii(t, —a, — r)
and Ii(l,r9a) exist as a->oo in the weak topology of B(L2$+iS9

and are bounded hi B(LZ
0+IS, Up) uniformly in t>Q and
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Consequently it is the middle term of the right side of (7. 1) from

which the singularity arises when &— >0. To derive its asymptotic be-

haviors, we are forced to use a C°°-extension of G(k,k) for Re

For simplifications of notations we write

(7. 2) R(X, k) = (l-B(k))~\ RQ(l, k) = (l-BQ(k))~\

G (J, k) = R0 (J, *) P,

Htf, £) - PP0 0*, k)P=

where G(h,k) is the same with (6.4).

We use the second resolvent equation in the form

(7.3) R (J, *) = RQ (^, *) + G (A, *) (I- H (A, *) ) ~1G1 (^, *) ,

which follows from (6. 1) and the fact that P is a projection, P2 = P.

Since jR0, G and GI are bounded in J^ the singularity arises from (I—

A, k) ) ~\ To study this, we need

which is a second resolvent equation for the first equality of (5. 5) .

This is a formal equation since D(A0(k)) =£L2
ff, but if both sides are

multiplied by P from the left or from the right, then the equality be-

comes exact, owing to nice properties of P given in Lemma 4. 3 (iv) ,

and if we put

(7. 4) D (A, *, k') = PR, ft k) A, (k')P,

then we get

(7.5)

since PL = LP = 0 by Lemma 4.3 (iii) .

Lemma 7. 28 P«£ A = r + zr and identify 2=C+xRn with R+xR

xRn. Considered as functions of Y, r and k, the operators

d (A, k) and H(X, k) are in $°°(I; C(LJ) ) . Also D(H, k, k')&

xRxRnxRn;

Proof. This also is due to nice properties of P mentioned above.
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In fact it follows from Lemmas 4. 3 (iv) and 5. 5 (ii) applied to (6, 10)

that dlG/drl,dlG/fal€=&°(I; C(LJ)) for all l(=N, as a product of P

eC(Lj,LJO and l^'eE $°(I; B(Z,J,, Lj)) with /9'>0 + (/+ 1)5. Simi-

larly

-G y , *) = -!?„ (A, A) ^Ro (A, 4) P e S° ( J; C (LJ) )

since dBQ(k)/dkj= -if,X eB(Lj+1, L|) for each /Jefi. The proof for

other derivatives of G(^, A), and also the proofs for Gi(A, K) , JJ(A? £) and

,k') can be carried out exactly in the same manner.

This lemma assures that the functions G? G1? U and D possess C^-

extensions for / = Re^<CO, [10]. Denote such extensions as G(7?r,£)

etc. with symbol ". The extension is not unique, but any extension suffices

for our purpose except for H which should be specified as that induced

from D by (7. 5) ;

(7. 6) H(r, r, A) =_
A ~r

It is evident that D and H commute with P and have ranges in

the space PL| of dimension /z + 2, so that they can be studied through

their matrix representations for PZ/| with a particular choice of /?. We

take /? = 0 and choose as a basis of PL2 the orthonormal set {3T/}5=-i

given as

SF-i = £i<?o + Cg^nTl, ¥j = (pj/ \\<PJ\\L*, 0<j<n,

where <PJ = <PJ(?), 0<j<;z+l, are those given by (4.16) and Ci, c2 are

so chosen that ||Sr.1||L8 = l and (^-1,^0)^ = 0. With this basis D has

a matrix representation

(7.7) d(r,r,k,k') = (dfl(r,r,k,k')),

with

dfl (r, r, k, k") = (B (r, r, k, k'

It is clear from Lemma 7. 2 that

(7. 8) dp. (r, r, A, k') e C°° (B x JR x fi" X B') .
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To investigate this matrix, we follow the argument of [4] .

Lemma 7. 3. Let ^= (1, 0, • • - , 0) ̂ Sn'\ and for k<=Rn, set

/c = \k\, o) = k/K= (ft)j, ft)2l • • - , ft>n) ̂ Sn~\ Then

dji (r, r, k, k) = Kdjt (r, r, A;*!, ̂ ) , j,l=~l, 0,

= iC(Djdu (r, r, /eel5 *0 , 1< '̂<^, 1= - 1, 0,

= Ka)idJl(r1r,K:el, eO, J= —1, 0? l<^<?/?

where dji is Kronecker's d.

Proof. Since A0 (^) =/cA0 (ft)), we see ^(r, r, k, k) =icdji(r, r, %(*>,

Let r=(r / l)eO(w) with JR as in (4. 17) , and note RAQ (k) R* = AQ (

where V is the transpose of r. Then Z) (r, r, 4, &x) =^*JD (r, r, V*, V£

by Lemma 4. 4. This can be shown first for ?C>0 and then for

Thus

(7. 9) dfl (T, r, *, k') = 0 (r, r, lrk, >rk') RW 3,

On the other hand we have

(7.10)

Now choose r^O(n) such that rei = a) and let j9 1= — 1, 0. Then Vft> —

and we have by (7.9) and (7.10),

d,i (r, r, *, ft)) = (15 (r, r, /c^, eO Wh y,) = ̂  (r, r, **!, ̂ ) ,

proving the first line of the lemma. The rest of the lemma can be

proved similarly by choosing suitable rEiO(ri)9 and the details will be

omitted.

Define a 3 X 3 matrix

(7.11) dQ (r, r , /O = (dfl (r, r, icel9 e,} ) , J , /=- 1,0,1,
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and a 3 X (n + 2) matrix

/I 0 0'

0.= 0 (0 0

\0 0 1,

for o)= (ft>!, • • - , o>n) ^.S71'1. Then Lemma 7.3 asserts that the (?2

matrix (7.5) with k = k' '={Cd) can be written

(7. 12) rffr, r, £, £) = /rtW0 (r, r, /c) fl.

+ A: (IB+2 - '#,#,) ^22 (r, r, A;*!, ^) ,

where Jn+2 is a unit matrix of order ;z + 2. It is easy to see that G^S^

= J3 for each o)^Sn~], Therefore the decomposition (7. 12) is orthogonal,

from which follows

(7. 13) <TP(d(r, r, £, k)) =ffp(fcd0(r, r, yc)) U {^22 (r, r, /c^1? ̂ )}.

Lemma 7. 4. There exist a positive number r± and functions

vy = v /(r,r,/c), ^ = 1,2,3, defined on 2\= {(r, r, *) e.K3; |ri + |r|<r,, |/c|

( i ) ffp (dQ (r, r, A:) ) = {y,- (r, r, A:) } 3
/= t /or «M (r, r, K)

(ii)

(iii)

(iv) z/ ^^ denote by QXl", r, £) ^^ eigen projection for Vy(7", r, y

Proof, We see easily that

where CKi= (AoC^OF-i, Fj)L2 and or2 = (A0(^i)?ro, 1̂)1,2 are nonzero and pure

imaginary. Consequently the 3x3 matrix dQ (0, 0, 0) has three distinct

real eigenvalues v = Q and v = ± V — (al + o|) =^=0. This and (7. 7) prove

the lemma since a simple zero of a polynomial is a holomorphic function

of coefficients in a small neighborhood,
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Let us turn to H of (7. 5) . Let vj9 Qj be as above and put

(7.14) /i,(r,r,*) = - I_n+^( r r £)), j = 1,2,3,

A (r, r, «) =

(7. 15) P, (r, r, /ceo) = 'Q.Q, (r, r, *) fl. , ^ = 1, 2, 3 ,

We identify the matrices Pj with the corresponding operators in L|.

Combining (7. 7) and (7. 12) with (7. 6) , and using Lemma 7. 4, we

readily prove the

Proposition 7. 1. Let n>0 £e as in Lemma 1 . 4 a/id put

(r,r,k)<ERxRxRn; |rl + !r|<rlf

(i) (a)

(b)

(c)

(d) ^(0,0,0) =1^(0,0,0) = -!, l<j<4.

(ii) (a)

(b)
4

^-1

Using this spectral decomposition of H, we can write

Substitution of this into (7. 3) then gives

(7. 16) tf(A, A) =^o(A, *) + S(l-,«,-(r, r, |*|)) -'C7Xr, r, *)

where A = 7"+£*reC+ and we have put

U} (r, r, *) = G (r, r, *) P,. (r, r, *) 6, (r, r, *) ,

G and Gx being C°°-extensions of G and GI of (7. 2) respectively. Differ-
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entiate (7. 16) with respect to t. By (6. 10) and Leibniz' rule, we have

for /<EJV,

(7.17)

+ s : (i-^
.7 = 1 m=0

Here Uf?m are given as linear combinations of products of fa, Uj and

their derivatives, and in particular Uf^ = i~l (d/Jj/dr') lUj. We see easily

from Proposition 7. 1 (i) (d) that

(7.18) Uft(0,0,0)=P, (0,0,0)

and from Propositions 7. 1 (i) (b) and (ii) (a) that

(7. 19) U?>m (r, r, K) s C" (I1 ; C(LJ) ) .

Now (7.17) shows that the singularity of R (k, k) i41 arises from the

factors (I — /(/(?', r, i^l))""7""1 . To study this in details, consider the maps

defined as

hj= (Re /lh 1m fij) ; 2l-»R2 , l</<4.

Then Proposition 7. 1 (i) (b) (c) (d) ensures all the conditions under

which the classical implicit function theorem can be applied. Thus we

have the

Proposition 7. 2* There exist a positive number r2(<O"i) and

real valued functions Yj(ic) and r^-(/c), l<j<!4, defined on the interval

Iz— ( — 7*2, rz) such that for all j,

(i) r,,ryeC°°(If),

(») (^ (/c) , r,- (/c) , /c) e i1}, /c e J2

(iii) ULS (TJ (tc) , r,- (/c) , /c) = 1 , /c e 72.

As for asymptotic behaviors of Yj(fc) and tj(fc), we should mention

the

Proposition 7, 3. There exist constants ^0)>0 and

when /c~>0,
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The proof can be carried out along the line given in [4], and there-

fore will be omitted.

We are now ready to prove the main result of this section:

Theorem 7. 1. Let /J>0. There exist a positive number rQ and

a constant C>0 such that for all £>0, \k\

where p0(tc) =1 for /9<1, -log(2+|/c|) for /3 = 1, and = \n\-^-» for

Proof. We recall (6. 9) and Lemma 7. 1. Thus we have only to

evaluate It(t, — r, r) of (7.1) for some sufficiently small r\>0. Choose

rx of Proposition 7. 1 as r, and use (7. 17) to write

(7. 20) /,(*,- n, n) = /? (0 + £ I] /,, ,, . (0 ,
y=l m=0

where

(7.21)

and

(7.22) J,iyi.(0

Since (6.13) and (6.14) hold with R0(£) in place of R(X), we see

(7.23) sup

To evaluate (7. 22) , we first note from Propositions 7. 1 (i) (b)

(d) , 7. 2 (iii) and 7. 3 that Taylor expansion gives

(7. 24) (l-/«,(r, r, *))-'= (MrX*) , rX«) , *) -A/fr, r, *)) -1

when |A| , i / e |— >0 where X = f-\-ir and we defined

^ («) = T; (K) + itj («) , 1 </<4.
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Also by Proposition 7.3, there exist positive constants r0(<^j~2) and

^0 such that for l</<4 and for all |/c!<r0,

(7. 25) T, (K) = Re ̂  fa) < - %/C2.

Then we get, with p$ (/c) stated in the theorem,

(7. 26)
^ ; f ̂  - — - <C p^ (/c) ,

J-r, | f r- ; i ,OOI* ~

for 1<J:<4 and |/c|<^r0. This, together with (7.19) and (7.25), gives

(7.27) sup | | / , ly | W(

with some constant C>0 depending only on

For the case ni = l, however, this estimate is yet unsatisfactory.

An improvement is possible if we note from (7.18), (7.19) and Proposi-

tion 7. 3 that

(7. 28) || 17ft (r, r, K) -P,(0, 0, 0) ||B(L.,=O(|*| + \l-lj(K) [)

when m, |*|->0. Put

(7. 29) 77f ,; - f r° eM (/r - Ay (A) ) ^~J JrP, (0, Os 0) .
J-r0

Then we get by (7.26) and (7.28)

(7.30) 11/^(0 -Ii.

It still remains to calculate the integral in (7.29). Define Fl=

_; Ul-n} and put T3 - A IJ T2. Put

jom= f
Jr

Since Ps is a simple closed curve and since hj(K) are inside of Fs for

0, a residue calculus yields, if a positive direction is taken for FS9

(7.31)

On the other hand, |A — ̂ (/c) ] is strictly bounded away from zero for all

^2 and |/c|<>o. Thus we find easily

(7.32)



92 SEIJI UKAI AND KIYOSHI ASANO

where C>0 does not depend on t>0 and |/t|<>o. Clearly the integral

in (7.29) is equal to iJf\ = i(Jf^ — Jf)i), and so, substituting (7.31) and

(7.32) into (7.29), and then combining this with (7.30), we get

(7. 33) ||/I|iM(0 -tcWP,®, 0, 0)

Substitute (7.23), (7.27) and (7.33) into (7.20), and use Proposition

7. 1 (ii) (b) and (7. 25) to get

This and Lemma 7.1 with r — r1? substituted into (7.1) and then into

(6. 9), prove the theorem for the case ff^N. For general /J>0, it suffices

to use an interpolation,

§ 8. Decay Estimates of em

The estimates given in Theorems 6. 1 and 7. 1 enable us to derive

decay estimates of eLB in the space Hit0i2 of (2.6). The estimates in the

space HI^ which are necessary in the following section can then be

obtained by the aid of nice regularity properties of K stated in Lemma 4. 2.

To accomplish this, we first consider B of (3. 7) in Hi,p,-p with

domain (3. 8) with Hi,p replaced by Hit0ip. Then B is a generator for

any /el?, /?>0 and !<!/>< oo, which can be shown just in the same

way as Theorem 3. 1. Moreover, using arguments for Lemma 6. 1, we

can prove that etB is a contraction semigroup in Hi,o,2 since L is nonpositive

there by Lemma 4.3 (i) .

We now state decay estimates of etB in HL>0t2>

Theorem 8.1. Let ls=N and />e[l,2]. For / ?EE[~O,— (— - —
L 2 \p 2

a constant C>0 stick that

M^C { (i + o -*(!!« II •,«,!+ II « II tf-O

p

+ — ), there exists a constant C>0 stick that
& '
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holds for all t>0 and u^H,iffdt2n Lp'\ where d>0 is that of [Q] (ii)

and Lp'2 was defined in (2.13).

Proof. Bis related to B(k) through (5.1) and (5.2). Then

||*IJIK|IU,= f (i
JRn

by the definition (2. 7) . Let r0>0 be as in Theorem 7. 1 and divide

the region of integration in the above into two regions |£|2>r0 and |£|<Crn,

Denote the respective integrals as /! and 72- If we take r = r0, then

Theorem 6. 1 gives

for any /#2>0, while by Theorem 7. 1 and Holder

iiu»+( f p,x,/,(i*i) *'<\ J|si<:r,

+ ( f e-^^dk)'*' \\PZ\\\\
\ Jit|Sr0 / «J

where y, = L'«(JIJ; L2(J«f")) and l/«-h !/«' = !, g>l. Put /. = 2«r/(29-l)

. Then l<p<2, and

r ^v-»(i^i)29 '
J|A-|^r0

. f o ̂  n 1 nil 1 \ . 1 -, .,if /?< - -f — = — — — — -f — , while
V 2 2 \ / > 2/ 2

a
and

Now the theorem follows immediately from these.

In the space Ht>0 defined by (2.8), etB has decay estimates slightly

weaker than those in the above.

Theorem a 2. Let 5e[0, 1) be as in [Q] (ii), and



94 SEIJI UKAI AND KIYOSHI ASANO

For any a>Q such that a< — ( — — — ), o:< — , and for all l^R and
2 \ p 2/ d

n/29 there exists a constant C>0 such that

for any u^Hit$+aSf\L
p'z. Moreover if u is such that Pzi = Q, then we

can take ae[o, min (—(—-—)+—, —
L \2\p 21 2 ff

To prove this theorem, we first recall A0 of (3. 9) and A of (4. 1) ,

and define

, D(A)=D(A0).

It is easily found that the proof of Theorem 3. 1 applies also to A to

conclude that A with a maximal domain D(A) =D(B) is a semigroup

generator in Hi^,-p as well as in HI, p. etA has estimates similar to those

in Theorem 6. 1 (cf. Remark 6. 2) , namely,

Lemma 8. 1. Let /e R, a>0y /?>0 and />e [1, oo) . Then

for either pair (X, Y) of (Hlt^a8,Hl>&) and (Hlip+aSip, Hliffip) .

Proof. Using (3.11), we see (etAu)~ (k, f) =e-"
i<k'*>+l'{*»a (k,

Since sup xae~tx<ct~tt for ^ a>0, the lemma follows from (4.3).

Proof of Theorem 8.2. First note that if 7>a>0, and # =

— 1), then

log (2+0, r= i ,ri
(8.2)

Jo

holds for all

Further, for z; = t; (t) eC°([0, oo) ; X) with a Banach space X, and

for #eJ?, we define

(8.3) INIU., = sup(l + «)'||i;(*)|U.
t^Q

We have already noted that B is a generator in both Hii0ip and
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Hi.0. Write v(t) =etBu0. Since B=A + K with D(B)=D(A) where

K is defined in (4.2) or (4.11), then v(t) satisfies

(8. 4) v 00 - etAuQ + (*e«-*AKv (s) ds ,
Jo

for all

Let To G (1,1/5) and ae[0,ro]» Since ?"0>1, min(a, ro + tf — 1) = <*.

Then, applying Lemma 8. 1 and (8. 2) to (8. 4) , we get

But ||^t;(s) ||jf0+ros<C||^(s) | |Z f0+ r o (y_i in view of Lemma 4. 2 (i) (c) , so

that (8. 5) indicates that

(8.6) WU

holds for

-X = .£ii f0, I =J^1 i^ + aS* £ — <£*• 1,0 + T08-1>

Since TV^ — 1^0 by our choice of To, we can iterate (8.5) to verify that

(8. 6) is true eventually for

(8.7) X=Hii$9 Y=Hitp+a89 Z = HjtQ

where use was made of (2. 12) .

Choose a p0>2 such that max (;z/2, 1/(1— To^) )Oo< + oo if ^>3

and max(2Jl/(l-r0<?))<^o<c>0 if w = 2. Put ^ = 0 in (8.4) and use

Lemma 4.2 (i) (e) with # = 0, T = ToS9 p = pQ and we find that (8.6) is

true also for the case

(8. 8) X=HiiQ9 \ =HiitX8y Z=Hif0fPo.

In a similar way, Lemmas 4. 2 (i) (d) , 8. 1 and (8. 2) , applied to

(8.4), give rise to (8.6) for X=PIi>Qip29 Y=Hii(xSip2 and Z = HltQ>Pi for

any 1<A, A<A>, I/A — 1/A<1/A- Since 1/A>0, this result can be

iterated to conclude again (8. 6) for the case

(8.9) X=Hii0lpa9 Y— Hiia$iPo9 Z = HiiQt2.
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If $>n/2 and p>2, then Hlt^.ad,dHltaStp with

(8.10) lu\\i,^,p<C\\u\\li0+aS.

Hence (8.7), (8.8) and (8.9) can be combined to obtain (8.6) for

(8. 11) X=Hiip9 Y=Hii0+a8, Z=HiiQi2.

On the other hand, if we choose a<~ (— — — ), or <2<— ( — — —
~2\p 21 2\p 2

-f- — ) provided Pu = Q, then Theorem 8.1 yields
n /

Substitute this into (8.6) with (X, Y, Z) specified by (8.11), and use

(8. 10) to complete the proof of the theorem.

§ 9. Existence of Solutions in the Large in Time

The decay estimates derived for the linear semigroup eiB in Theorem

8. 2 are sufficient to ensure solutions in the large in time to our non-

linear problem (3. 12) . To be precise, we can now prove the main result

of this paper, namely,

Theorem 9,1. Let n>2, Suppose [Q] of Section 1 be fulfilled.

Let [>—, /?>— -o and />€=[!, 2), and put a = min(— (—-—), l).
2 2 \ 2 \ p 2

Then there exist positive constants a0, al9 and for any initial 7/0 in

ffii0+aSr\Lp>2 -with \\UQ\\itp+a8+ \\UQ\\ if, t<OQ9 (3.13) possesses a unique so-

lution u = u(i) in C°([0, cx5); Htip) satisfying

for all t>0. Here ffe [0. 1) is as in [Q] (ii) .

Remark 9.1. The optimal decay order of (9.1) is a — n/4 with

p = l when n = 2, 3, 4, and a = l with p<= [1, 2w/(w + 4)] when 7?>5. On

the other hand no solutions have been found in the large in time for the

case p = 2 for which a = 0, or what is the same thing, for initials z/0

belonging only to HI,$. Recall that for the case of cutoff hard potentials,

the optimal decay order is a = n/4 for all n>2, and moreover that solu-
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tions exist in the large in time for p = 2, [9], [13].

Remark 9.2. Theorem 3.2 (b) states that u — u(f) of Theorem

9.1 is a unique solution to (3.12) in HI-II$-I in [0, oo) . Consequently

(9.1) indicates that the solutions f=g + Ql/zu to (1.1) tends to the Max-

wellian g with order (1 -f /) ~* when t-*oo. Physically this means that

the gas is stable for a small disturbance to an equilibrium.

Proof of Theorem 9.1. First we shall prove that

(9.2)

holds for all £>0 and fj>n/2 — 8. For this, we put ?/„(?) = | |«(-, f) \

and obtain by Schwarz

where rj9 j = 1,2 are defined in (3.4). The L2(J^|)~norm of the right

side is majorized by its Hii0+s-noim since /3 + d^>?i/2. Use first Lemma

3.1 and (3.5) to obtain (9.2) for 1 = 0 and then (2.12) for all />0.

Let To"! for ?i>3 and choose a To such that 1 — a<7"o<O if n = 29

where a is the same as in the statement of the theorem. Note that

(9. 3) To e [0, min ((n + 2) /2, l/d) )

and moreover that for a^. (0,1),

(9. 4) min (r0> 2a, TO + 2a- 1) >a .

Define the bilinear operator TV as

(9.5)

Let X=C°([0, oo); Hi,p). By virtue of Corollary 3.1 and Theorem

3. 1, N is a continuous map from XxX into X. Noting Lemma 4. 5 and

(9.3), we apply Theorem 8.2 to (9.5). Then

By the aid of Lemma 3.1 (i) and (9.2), we can majorize the righr
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side by

(9.6) CJ]' (1 + *-*) -'•[«(*) ||,,,|K*) lk*«fc •

Here the fact r0<[l is essential in order that we can apply Lemma 3. 1.

Recalling the definition (8. 3) , we put

III -III = 111 -III*.,*.-

In view of (8.2) and (9.5), (9.6) is majorized by C (! + *)"" IHIIWI-

Thus we have proved

0.7) ll̂ [«,f]lll<:qil«llllllfl!l.
For each fixed Uo^Hit$r\Lp'z9 define the map H as

which maps X into itself continuously. We evaluate |||̂ «o||| by Theorem

8.1. This and (9.6) give

(9. 8)

Note that C0>1 since etB is a semigroup. Also by (90 7) we have

(9.9) - -

Choose a ]U<= (0, 1), and put a, = ff/4C0Ci and a,=^/2C,. Then if

and if HU, |M|a<ai, it follows from (9.8) and (9.9) that

(9.10)

This states that H is a contraction map on the complete metric space

Y={*eC°([0, oo); Hif,); W|<fli> with the metric d(u, v) =\\\u~v\\\.

Hence H has a unique fixed point u~H\u\ in V. This u is, of course,

a solution to (3. 13) satisfying (9. 1) . Moreover it is unique not only

in V but also in X=C°([0, oo) ; H^p). For, if there is a solution v

= v(t) ^X, v = H[v]9 other than the solution u found above, then v^. V

because of the uniqueness in V, and hence it follows from the continuity of

v(t) in t and the fact ||v(0) \\i,0= \\uQ\\ii0<aQ= (^/2C0)ai<ax that there

is a T0>0 satisfying

(9.11) 1*.= sup
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and

(9.12) (l + Toril^To)!!,.^/,.

On the other hand it is easy to check that (9. 10) remains valid if the

norm ||| • ||| is replaced by the norm ||| • |||r of (9.11) for any T>0. Hence

\\\v\\\T0 = \\\H[v'j\\\To</jial<,al. This contradicts to (9.12). Thus there is

no such a v and u is unique in X.
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