
Publ. RIMS, Kyoto Univ.
18 (1982), 135-157

On Versality for Unfoldlngs of
Smooth Section Germs

By

Shyuichi IZUMIYA*

§ 0o

In this article, we consider unfoldings of smooth section germs. The

unfolding, which is introduced by Rene Thorn, is an important notion to de-

scribe any situations in which qualitative picture of the object with a change of

the parameters on which the object depends. The idea is an analogue to the

deformation theory of singularities of complex varieties for real smooth cases.

Hence, it can be thought as smooth families of section germs.

It turns out in many cases the study of all possible unfoldings leads to that

of a single one, from which all others can be obtained. Such an unfolding, in

some sense the largest one, should give all the essentially distinct bifurcation

with respect to given equivalence relation; it is the versal unfolding.

In recent years, "the versality theorem" for categories of unfoldings of

smooth map germs relative to some equivalence relations have been proved

([3]5 [4], [8]). Now, we say that the versality theorem holds if the algebraic

notion of "infinitesimal versality" is the sufficient condition of the notion of

"versality". But as the category of unfoldings of smooth vector field germs

relative to coordinate transformations, there are examples for which "the

versality theorem" cannot hold ([!]).

In this paper, we will single out the class of categories of unfoldings of

smooth section germs of smooth vector bundles relative to various equivalence

relations for which "the versality theorem" hold.

As applications of the main theorem, we have "versality theorems" for
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categories of unfoldings of smooth map germs ([3], [4], [8]) and the category

of G-unfoldings of G-invariant function germs relative to G-right equivalence

(Theorem 4.6). These are theorems which are already proved by many authors.

Since our proof is a bit of an extension of Mather's method, it is slightly different

of those of [2], [3] and [8]. The main theorem unifies not only these theorems

but also gives new informations about many other categories. For example,

these are the category of G-unfoldings of equivariant map germs relative to

G-contact equivalence (Theorem 4.7) and the category of unfoldings of smooth

section germs which are solutions of a linear partially differential equation,

(for example, harmonic function germs), relative to some equivalence relations.

(Theorems 4.4 and 4.5).

In Section 1, we will construct the category of A -unfoldings of section

germs relative to the equivalence relation which is given by a subpseudo-group

of the pseudo-group of local smooth fibre bundle automorphisms. Our main

theorem is Theorem B, which will be formulated in Section 1 and proved in

Sections 2 and 3. In Section 4, we will give some applications of Theorem

B.

In this paper, smooth means class C°°.

§ 1. Formulations

In this section, we will construct the category of /l-unfoldings and formulate

the main theorem.

Let M be a smooth manifold. We consider a smooth vector bundle E(M)

over M with the fibre V(M) and the set Ff (M) of local smooth sections of

Let F^(M) be a subset of rf(M) and S>(M) be the pseudo-group of local

diffeomorphisms on M.

Definition 1.1. Let ^E(M) be a subpseudo-group of ^(M) x

Then, we say that ^£(M) is essential if for any (/?, H)e&E(M}, H covers /?.

We now have a definition of ^-equivalence for germs of elements

as follows.

Definition 1.2. Let a: (M, a)-*(E(M), b) and a': (M, a')->(E(M), b'} be

germs of elements of F^f(M) at a and a' respectively. We say that a and a' are

&E-equiva1ent (and we write a~ ,S]LQ') if there exists a germ (/?, H) of elements of
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GE(M) at (a, b)eMx E(M) with (fc(fl) , H(b)) = (af, b') such that H°or = cr'°/i.

Since we shall only consider germs throughout this article, we assume that

M=R" and every germs are defined at the origin.

Notations.

{(T\a: (J*», 0)-»£(K»); germ of elements of r$(Rn)}.

& e rg(/i) | (j(0) = (0, 0) e K» x F(H») s £(«»)}.
&E(n) = {(ft, //) | (A, //) is a germ of elements of &E(R") at (0, 0) e H» x E(Rn)},

Definition 1.3. By an r-Jimensional A-unfolding of crer^(/i)0 we mean a

smooth map germ

r:(H"xH',(0,0)) ^ (£(«"), 0)

such that

i) ZuEF^(n) for any ue(Rr, 0), (where we define Z'/<(A') = I'(x, w) and

w e (Kr, 0) means that u is a point of J?r near the origin),

ii) Z0 = a.

Then we will construct the category of /i-unfoldings.

Definition 1.4. Let I: (JRB x«r, (0, 0))-*(£(«"), 0) be a /d-unfolding of

a e F^(M)O and /: (Hs, 0)-^(Kr, 0) be a smooth map germ. We say that

Q: (R" x Rs, (0, 0)) > (£(«"), 0)

is an induced A-unfolding from I by f if it is defined by

0(x, i>) = Z(x,/(i;)) for any (x, v)£(R»xR>, (0, 0)).

We write fl=/*I.

Definition 1.5. Two /1-unfoldings I, Q: (Rn xRr, (0, 0))->(£(JRn), 0) of

aer$(n)Q are said to be <&E-equivalent when there exists a map germ

(h,/f):(Jt ' ,0) >^(H)

with the following properties:

( i ) (Mf)(0)=l,

(ii) (ftTff): (K11 x E(HW) x fi', (0, 0, 0)) > («" x £(R»), (0, 0))
defined by (lijfl)(x, y9 u) = (h(u)(x\ H(u)(y)) for (x,y,u)e(R"x
E(Rn) x Rr, (0, 0, 0)) is a smooth map germ,

such that H(u)°Zu = Qu°h(u).
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Definition 1.6. Let Z:(R»x Rr, (0, 0))-+(E(Rn), 0) and Q : (Rn x Rs,

(0, Q))-+(E(Rn), 0) be yl-unfoldings of aer£(n)0. A &E-morphism from Q to

I is a pair # = ((fe, #),/) where (/i, H): (IS5, 0)-»^£0) and /: (Us, 0)->(ltr, 0)

are smooth map germs such that /*£ and Q are ^-equivalent by (h, H). We

write $: Q-+Z.

In the above way, we have constructed the category of yl-unfoldings of a

germ of elements in T^(M) relative to ^-equivalence. The versal yl-unfolding

is defined as follows.

Definition 1.7. Let Z:(R«xR*9 (0, G))-+(E(R«), 0) be a yi-unfolding of

creF|(w)0. Then Z is said to be a uersa/ A-unfolding of a relative to &E when

for any /L-unfolding Q of a there exists a ^E-morphism ^: Q-*!1.

Remark. A versal yl-unfolding of cr relative to &E has every information

as /L-unfoldings of a relative to the ^-equivalence. Hence, if we study the

bifurcation of singularities of a in F£(n) with respect to ^-equivalence, it is

enough to seek for a versal /1-unfolding.

Now we have the influential candidate which characterize the versal A-

unfolding of a e F$(n)Q relative to &E.

We will formulate as follows : Let 9(ri) be the set of germs of smooth vector

fields at the origin of Rn. We remark that for any ^ e 9(ri) there exists a unique

smooth map germ 0: (Rnx( — e, e), (0, 0))-»(J?n, 0) with (j)te&(n) and (/>0 = l

such that dfdt((j)t)\t=Q = ̂  by the existence theorem for ordinary differential

equations. Now, we define the "tangent space" 0E(ri) corresponding to

as follows :

- - ( A r ) | f = 0 and

ri=-(Ht)\tssQ for (Ar, Ht)e9E(n) and (AOJ ^0)

In general 0|(n) does not have any useful algebraic structure even for U-linear

space structure.

Let C$(Rn, E(Rn)) be the space of smooth map germs U» ->£(«») at the

origin.

If a e F^(n), we let

da: (TR», ^(0)) - > (IE(R»), wKO))

denote the tangent map germ of er, then the following diagram commutes :
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**-> (TE(R")9 Tc-H

(fin, 0) -5-* (E(R")9 0).

For any £ e 0(n), we can regard as da^ e Cfi(Rn, E(R")), and for any

^ E 0(E(n))9 we can also regard as 1700- e C$(Rn, E(Rn)).

We define

Ta: 9(n) x 9(E(n)) - » Cg»(JP, £(«»))

by

Since E(Rn)^Rn x F(M"), we have a decomposition €£(!?", E(RnJ)^C$(Rn, R»)

®C$(Rn, V(RnJ) and let nv: C$(R", E(Rn))->C$(Rn, V(R"J) be the canonical

projection. We let Tff = nvo Ta.

1.8. We say that

is an infinitesimal map of a relative to &E,

If 0|(n) is an H-linear subspace of 9(n)x 9(E(n))9 the infinitesimal map of

a is an JR-linear map.

We now assume that

Assumption (*). nv(r$(n)) is an R-affine subspace of C$(Rn, V(Rn))

(i.e. for any a9coE nv(r^(n)), {ta + (1 - t)co \ t e R} c: nA(r£(rij)) .

Remark. For any

)|T= (/r)|f=0 for

/: (KB x (-ee), (0, 0)) - > V(Rn) such that

is an It-linear subspace of C$(Rn
9 V(Rn)) which is independent of the choice of

a. Hence, we can denote it as GjJfR", V(Rn)).

Now, we consider the inclusion map

C^(R\ V(Rn)) - > C$(R\

then it induces the following injective linear map;
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where mn denotes the maximal ideal of the ring of smooth function germs at

OeK". (cf. Definition 1.10).

Since dimR(C$(R", V(Rn))lmnC$(Rn, V(Ra))) = dimR V(Rn\ there exist

", V(R")) whose images are basis of

tf(K», V(R»)) n m^QW, K(H-))) over JR.
Let 2: (RnxRr, (0, fy)-»(E(R»\ 0) be a /1-unfolding of cref^OOo, then

n x 0 e CtfOR", K(ft»)). Hence, I7, - <5I/flM i | R" x 0,. . ., ar/aw, | Hw x 0,

a !,..., Ofl is an It-linear subspace of C^(KM, K(JR»)).

Definition 1.9. Let I: («» xRr, (0, 0))^(£(H"), 0) be a /1-unfolding of

(iEr^(n)0. Then I is said to be an infinitesimaHy versal A-unfolding of a

relative to &E if

is an JR-linear subspace of 9(n) x 0(E(n)), then we have the following

proposition.

Proposition A. Let creF^(7i)0 which satisfies the following condition:

0I(n)) < + 00.

//I: (RnxRr, (0. 0))-»(£(1?"), 0) is a uersa/ A-unfolding of a relative to

E, then I is infinitesimaHy versal.

Proof. Let r;(0I(«))^ = T?(0g(n)) n C^(lfB, K(«»)), then

= ^< +00. Hence, there exist b^..., bqeC$(Rtt, V(Rn)) such that {bi},..., {bq}

generate C^(K", V(Rn))/T%(0%(n))A over JR.
We now define

Q: (R» x JR«, (0, 0)) - > (£(JR"), 0)

by

Q(x, v) = (x,

for any (x, v)e(Rn xR*, (0, 0)), then Q is an infinitesimaHy versal /1-unfolding

of a relative to &E.

Since Z is a versal yl-unfolding of a relative to ^£, there exists a ^£-mor-

phism 0: O->T. Hence, by the direct computation and the definition of the
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infinitesimal versality, I1 is an infinitesimally versal /l-unfolding relative to &E.

Q.E.D.

In general, we say that "the versality theorem" holds if the converse of the

above proposition holds.

We need a condition about the differential structure of Rn (i.e. local ring

on Rn) in order to characterize the category of /1-unfoldings for which "the

versality theorem" holds.

Let C%(R") be the local H-algebra consisting of smooth function germs at

aeR". We denote m*(Rn) the unique maximal ideal in C%(Rn). For the

convenience, we denote mw = nto>(JR11).

Definition 1.10. Let R(n) be a sub U-algebra of C$(Rn). Then R(n) is

said to be of finite type if there exist p l 9 . . . , pkeR(n)such that P*(C*(Rk)) =

Here, P: (JRB, Q)-+(Rk, a) is defined by P(x) = (/>,(*),..., pk(x)) and P*:
->C$(R") is defined by P*(/i) = /jop.

Now, we let ja^/£(M) be the pseudo-group consisting of local smooth

fibre bundle automorphisms, then it is the maximum essential subpseudo-group

of @(M) x &(E(M)). We denote the "tangent space" corresponding to

j/*/f(M) by 0£(n). Then 0£(n) is naturally a C$(Rn)~modu\e: the action of

CJ(JR") on 0£(n) is defined by h(X, X+Y) = (HX, hX + hY) for h eCg(U") and

(*, X+ y)e0£(n). It is evident that Q(JRn, K(J?fl)) is also a CJ(H")-module.

Because jR(w) is a sub JJ-algebra of C$(Rn\ 0%(n) and C$(Rn, V(Rn)) are natural-

ly jR(w)-modules.

Definition 1.11. We say that a triple (r^(n), &E(n), R(n)) is essential if

the following conditions hold :

(1) r$(n) satisfies Assumption (*),

(2) &t(Ra) is an essential subpseudo-group of &(Rtt) x ®(E(Rn)) ,

(3) R(ri) is a sub It-algebra of C$(R") of finite type such that

(a) <C#(Kn, V(Rn))yR(n) is a finitely generated ^(w)-module and T^(Q%(n)}

C2(C$(R\ F(«"))>K(W) for any trer^(n),
(b) 0|(n) is a sub £(n)-module of 0£(w) ,

(c) the infinitesimal map 71?: 0|(w)-><C^(K11, V(Kn))>u(B) is an

homomorphism for any a e

Then, our main theorem is the following.

Theorem B (The versality theorem). Let (Fi(n\ <#E(n\ R(n)) be the
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essential triple. Let crer^(n)0 which satisfies the following condition:

If I is an infinitesimally versal A-unfolding of a relative to &E, then Z is

versal relative to &E.

For the proof of Theorem B, it is enough to prove the following uniqueness

theorem.

Theorem 1.12 (The uniqueness theorem). With the same hypotheses of

Theorem B, if I and Q are infinitesimally versal A-unfoldings of a relative to

&E with the same dimension, then these are &E-isomorphic.

If we assume the statement of Theorem 1.12, we can prove Theorem B as

follows.

Proof of Theorem B. Let Z be an r-dimensional infinitesimally versal A-

unfolding of a G r^(ri)0 relative to &E. Let Q be any ./1-unfolding of a whose

dimension is s.

We now define

O* : (fl» x Rr+s, (0, 0)) — > (£(«»), 0)

by

O*(x, 11, v) = (x, 7cF(Q)(x, v)-nv(ff) + nv(Z)(x, u))

for any (x, u, v)e(RnxRr+s, (0, 0)). Since nv(ri(n)) is an J?-affine space, O*

is a /1-unfolding of cr and Q is induced from Q* by the canonical inclusion / :

(«', 0)^(»+', (0, 0)).
We also define

I* : (R« x Rr+s, (0, 0)) - > (E(R»), 0)

by
Z*(x9u9v) = Z(x9 u)

for any (x, u, v)e(RnxRr+s, (0, 0)). Then £* is the /1-unfolding of a which

is induced from I by the canonical projection.

Since I is an infinitesimally versal /1-unfolding of a relative to ^£, O* and

I* are infinitesimally versal /1-unfoldings of a relative to &E. Because Q* and

Z* have both (r + s)-dimension, these are ^£-isomorphic by Theorem 1.12.

Hence, there exists a ^-morphism from Q to I. This completes the proof.

Q.E.D.
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We will prove Theorem 1.12 in Section 2 and Section 3.

§ 2o Preliminaries

In this section, we will prepare some tools in order to prove Theorem 1.12.

2-A) Ordinary differential equations.

Let ^: (RnxRrxR, (0, 0, 0))-»(£(MM), 0) be an (r+l)-dimensional A-

unfolding of

For any given elements ftl5..., bqEC$(Rn, V(Rn)), let

+ 2:5=1 1//*, «, i>, 0. , , --

, K, i>, 0

be a germ of vector fields on RnxRrxRsxR at the origin. We now define

where (yl9..., ys) is a coordinate of V(Rn) about the origin. Let

rj rj

*\ "\
Tj (%, y, U, V, f)

dvl

d?(x,y, u, v , t ) - dt

be a germ of vector fields on E(R") xR'xRixR at the origin. We also define

Z 5^J

Lemma 2.1 o Suppose there exist germs of vector fields X on RnxRr

xR*xR and Yon E(Rn) x Rr x R* x R at the origin such that the following

conditions hold:

(1) &(X) = (Y°$y.

(2) There exist ^ e mrCg)(«II+r+1) (i = 1,..., n\ rjp TZ e mrCg)(fiII+r)
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(j=l,..., r; /=!,..., q\ and lk £mrC$(R"+s+r+l) (k = 1,..., s) such that

*=Zf-ifi(*, u, lO-^L +£5-1^(«f /)^-- + Zf-iT,(*,/)-^- +

and

F= !:?=,£«(*, «, v) -- + ZUi^C*. y, u, t)
.

(3) // we denote *;„.,)= £?,,! &(x, «, 05/5x, and y;.l0=Zl»i^, J',",
0 d/3yt, r/ien

(x;,(,n, x;,,,() + y;,,0) 6 0|(«) /or an v (u, o e (w x «, (o, o» .
Then, <PQ and <Pt are &E-isomorphic for sufficiently small ?>0.

Proof. Let (j)t(x, u, v, s) be the integral curve of X on RnxRrxR^xR

which passes through (x, w, y, s) at £ = 0.

Let ^r(x, y, M, f, 5) be the integral curve of 7 on E(R") x Rr x Rq x R which

passes through (x, y, u, v, s) at r = 0.

Since both coefficient of d/dt of X and 7 are 1 , then

4>t(R
n xRrxR«x {0})cjR» xRrxR«x {t}

and

\l/£E(Rn) xR'xRtx {0}) c: £(«») x «•• x jR« x {r}

as germs. Hence,

$t \ R" xRrxR«x {0} : R" xRrxR«x {0} - > jR" xRrxR*x {t}

and

^f | £(RW) xRrxR«x {0} : £(«») xR'xR«x {0}

- >£(«") xf t r xJI«x{r}

are local diffeomorphisms for sufficiently small r>0.

By the condition (2), we can write

fa(x, u, v, Q) = (h(x, M, t ) , f ( u , 0, g(u, 0, 0 and

^(x, >', w, y, 0) = ((fc(x, M, 0, H(x, y, u, r)),/(w, r)5 0(", ̂  0, 0-
The relation <£'pO = (Y°<2>)' guarantees that the following diagram commutes

as germs :
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E(R») i '̂̂ ^l^ll

Rn -- *OL.£> - > Rn

for any (M, t)e(RrxR, (0, 0)). By the definition of 0%(n), we can appreciate

that (/!(„,,), H(ttff)) is a family of elements of ^E(n).

Since ^t€mrC^(Rtt+r+l) and lkemrC$(Rn+*+r+l), we have

ht(x9 0) = x and //,(*, >', 0) = (x, y) .

Hence, ((/?„ Hr), /r) is the ^-isomorphism between <f>0 and 4>f. This com-

pletes the proof. Q. E. D.

2-B) The local R-algebra R(n).

Let Al be a sub M-algebra of C°°a(R
n) for any neiV. Let /: (JR», a)->

(l?p, b) be a smooth map germ. We define an K-algebra homomorphism

f*:C?(R') - >CJ(«")
by

f*(h) = /io/.

Definition 2.2. Let /: (R", a)-»(Hp, fe) be a smooth map germ such that

f*(A$c:A». We say that/MJ~>/42 has Property (W) if the following holds:

Let M be a finitely generated ^-module. Suppose that

dimK M//*(m£(l^) n Ap
b)M< + 00, then M is a finitely generated ,4£-module

via/*.

For any non-negative integer r, we define

C^(n)(R^) = R(n)®RC^(R'').

Then, we can regard CS(l0(R
M+r) as a sub R-algebra of Cg)(RB+r)- Let

TT : (Rn+r, (0, 0))-^(Hr, 0) be the canonical projection, then we have

7c*(C?(R"))c:CJ(ll)(H"+0.

The following lemma is "the preparation theorem" for R(ri).

Lemma 23, TI*: Cg)(Hr)->Cf(II)(JRl|-|-r) has Property (W).

Proof. Since R(n) is of finite type, there exist pl9...9 pkeR(n) such that

P*(C^(J*fe)) = R(n). We now define

7ir: (Rfc+% (0, 0)) - >(*',0)

as the canonical projection. We also define
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by i(/) = l®n/. Then, we may consider that 7c*(mr) = i(mr) in C^j0)(U
fc+r)-

By Malgrange's preparation theorem (cf. Mather [5]), n* has Property (W).

It follows that i has also Property (W).

Since P*: C?(JR*)->£(n) is surjective, then P*®1: Cg)(K*)®JlC2>(lfr)
^C*(n)(^n+0 is surjective. It has also Property (W).

It is clear that the composition of maps which have Property (W) has

Property (W). Hence, 7r* = (P*®l)oj has Property (W). This completes the

proof. Q.E.D.

Corollary, Let M be a finitely generated C^^R^^-module. Let N

be a C%(n)(R
n+r)-submodule of M and A be a finitely generated C$(Rr)-sub~

module via n*.

Then

(a) M

implies

(b) M =

Proof, Let M' = M/N be the quotient C£(n)(J?w+l>module and P: M-*M'

be the canonical projection, then M' is a finitely generated C£(n)(Ji!n+r)-rnodule.

By the condition (a), we have M' = P(^) + 7r*(mr)M'. Since A is a finitely

generated Cy(Hr)-niodule, then dim* M7rc*(mr)M ' < + 00. By Lemma 2.3,

M' is a finitely generated Cg^fiO-module. Hence, we have M' = P(A) by

Nakayama's lemma (cf. [5]). This completes the proof. Q. E. D.

§ 3o Proof of the IMquness Theorem

In order to prove Theorem 1.12, we need some lemmas.

Let 2, Q: (RnxRr, (0, 0))^(£(HW), 0) be ,1-unfoldings of aer^(n)Q. We

define

*?.,: (JR» xR», (0, 0)) — > (£(«»), 0)

by

for any (x, ti) e (Rn x Rr, (0, 0)) and £e[0, 1]. Since 7cF(r^(n)) is an U-aflfine

space, ^f>t is a /1-unfolding of a for any £ e [0, 1],



UNFOLDINGS OF SMOOTH SECTION GERMS 147

Definition 30L In the above situation, suppose that I and Q are infini-

tesimally versal /1-unfoldings of a relative to &E. We say that I and O are

linear versally homotopic relative to &E if $g>r are infinitesimally versal relative

to &E for any fe[0, 1].

Lemma 3.2e For the proof of Theorem 1.12, it is enough to prove the

statement of Theorem 1.12 for A-unfoldings Z and Q which are linear versally

homotopic relative to &E.

Proof. Let I: (RnxRr, (0, 0))-*(E(Rn), 0) be an infinitesimally versal A-

unfolding of a relative to &E, then

a£ B»» v, n v^ -DTI y n
L XN. \J,

' 8ur

Since dimRC$(R", F(l?"))/Tf(0|(n))'1=p^r + g, if necessary by the coordinate

change, we may assume

JRnxO,...,.

We fix elements c^..., cpeC$(Rn
9 V(R'1)) such that {cj,..., {cp} are K-

basis of C^(J2", V(Rn))IT^(Ql(n)Y- If necessary by the coordinate change,
we may assume

R-xO,...,1J aw^

, C2

u

dl

"xO, as+1 a

We now define

1° : (R» x R', (0, 0)) — » (E(R»), 0)

by

- x 0

Since 7i^(r^(n)) is an U-affine space, Z° is a /(-unfolding of CT. Moreover, 1°
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and T are linear versally homotopic relative to ^£.

Since qeC^R", V(Rn)), there exist f e T%(0%(ri))A and A f eJR (i = l,...,p)

such that cx = £1=^^1/5^ | K"xO) + 2:f=s4-iA Ifl / + ̂  If ^=0, then
c1e<^I/aw2 |lZwxO,...,^> l i+rj(^I(w)y i. Hence, we have C$(R», V(RnJ)

= T%(0(n))A+ (dZldu2 \ R"xO,..., ap)R. This contradicts to

dim* CtfCW, V(Rn))ITl(Q(n))A = p. Hence, A^O and let sign (AJ

We also define

I1 : (R« x R', (0, 0)) - > (£(R»), 0)

by

Then 2J1 is the A -unfolding of a which is linear versally homotopic to I"0 relative

tofr£ .
By repeating this procedure, we can define yl-unfoldings

2V: (R- x R', (0, 0)) - > (B(R-), 0) (7 = 1,..., p)

by

such that r-7' and Ij~l are linear versally homotopic relative to <&E. In this

situation, we say that Z is piecewise linear versally homotopic to Z* relative to

&E-

With the same argument, Q is piecewise linear versally homotopic to

QP-. (RnxRr, (0, 0))->(JE(Rn), 0) which is defined by

Q*(x, u) = (x, 7rF((7)(x) + If=1 cjtf^x)).

Then, there is a ^-isomorphism

^ = (!,/): QP^IP

which is defined by

/: Rr-»Rr ;/(«!,..., ur) = ((s\/s1)ul,..., (er
p/ep)up9 up+1,..., ur)

and 1 e ^E. This completes the proof. Q. E. D.

By the above lemma, we only consider the case that I and Q are linear ver-

sally homotopic yl-unfoldings of a.
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We now define

0 : («» xR'xR, (0, 0, 0)) - > (E(R»), 0)

by

<f>(x, u, 0 = (x,

Then <P is an (r + l)-dimensional /L-unfolding of (7 such that <P(x, w, 0) = I"(x, w)

and $>(x, w, l) = (2(x, M).
We let

It may be regarded as a C^(n)(H'I+r+1)-submodule of C$(Rn
9 V(Rn)). Since

<C#(H", K(l?»))>K(,l) is a finitely generated l?(n)-module, then e^(JRll+r+1, V(R»))

is finitely generated over C%(n)(R
n+r+l).

We denote by 5(n + r + 1) x 9(E(ri) + r + 1) the set of pairs (X, 7) of smooth
vector field germs along nn and nE(n} at origins respectively, where nn: (Rn

xlt+1, (0, 0))-KK», 0) and nE(n): (E(Rn)xRf+1, (0, 0))-»(£(JR»), 0) are canoni-
cal projections.

We also define

then it is a CJ)
(n)(l?'Hl'+1)-module, because 0|(n) nas an ^(n)-module structure.

We may regard 5|(?i + r+ l ) as a Cf(n)(JI'I+r+1)-submodule of 9(n + r + l)x

&(E(n) + r+\).

Next, we construct a homomorphism between these modules as follows:

Rr+i - > TE(Rn)

by
dx$((xo, v), (u, O)^^))^)-

Let

»)) = Cg3(««+'-+1, E(Rn)xE(Rn))

" x «» x

be the canonical projection. We define

T

by
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See the following diagram :

TR" x R'+l - t? - » TE(R")

Then, we define a Cg'(n)(J?"+''+1)-homomorphism

Tg:
by

Since dimfl<Ctf(jR«, F(U«))>K(n)/(C£(/?», F(H-)) + T5(0g(n)))< + oo, there

exist 6lv.., b.e(C$(R; K(fi"))>j«.) such that

Lemma 3.3. v^C^R"^1, F(R«)) =ntr71(fi|(«+/- + 1))

Proof. Since Z is infinitesimally versal relative to

c^(fl", K(fi»))
Hence, by the formula (f ), we have

Let fcEC3(K«+r+1, F(l?")), then ft | R" x 0 e <C#(K", F(l?"))>R(n) and there

exist (X, F)e0|(n), &,»/,., /i,ejR (i = l,..., r;y'=l,..., s; /=!,..., ^) such that

We now let

h'=h-n(X, Y)-Eri=^i-~ -Zl

then /z/e^(Hn+r+1, V(R»)) and / i / | ^ w xO = 0- Hence, by the Hadamard's
lemma, we have the following:
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Then,

Hence, we can apply the corollary of Lemma 2.3 to this situation. Then,

we have the following :

This completes the proof. Q. E. D.

We now have tools to prove Theorem 1.12.

Proof of Theorem 1.12. Because [0, 1] is compact and <P is linear versal

homotopy between I and Q, it is enough to prove 00 and $t are 0^-isomorphic

for sufficiently small t>0.

Since #(x, 0, f) = a(x)9 then 34>(x, 0, t)/dt = Q. Hence, 54>/3r etn,.C^(l2w+r+1
9

F(U"))5 then there exist (Xl9 Yt) e 0%(n + r + 1\ & emr (I = 1,... , m) and ^, Cfc

emrCg)(llr+1) 0" = !,..., r; fe = l,..., s + ̂ ) such that

There are K{ eQ(M«+I-+1) and Tz
t e Cg>(KB+«/+r+1)

such that

and

T'

where (ji,..., yq>) denotes a coordinate of V(Rn) about the origin.

Let £i = Zf=i £i K\ and ^* = Zf=i £!TL then ^ e mrCo)(ISw+l"+1), A, e

TnrCS>(JRB+«'+r+1) and

M £ ^ ^"^ » K @ i X""1 fl' 1 ^

5/

+ Z 5=1 ̂  -̂ 7- + EJUi C A^wj
We now define
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and

then these are vector field germs at origins which satisfy the conditions of Lemma

2.1.

Hence, 4>0 and <Pf are ^-isomorphic for sufficiently small t > 0. This com-

pletes the proof. Q. E. D.

§ 4. Applications

Here, we give some applications of Theorem B.

A) The case R(n) = C$(R").

A-l)
A-l-a) We let

^£(M) = ^(M) = {(ft, /i x L) | ft is a local diffeomorphism on M and L is a

parallel transformation on Rp}

and r^(M) = JT£(M), then ^-equivalence of elements of r$(ri) is exactly the

right equivalence of smooth map germs (Rn, 0)-»(jR^, 0).

It is clear that the infinitesimal map of a smooth map germ /: (Rn, 0)-»

(RP
9 0) relative to ^ is given by the differential map of/:

df:B(n) - >Cg>(«M»0.

The image of dfis the QCU'O-submodule ofC$(Rn, Rp) which is generated

by (dfldXi(i = l,...,n). We write it J(f) and call it Jacobian module of/.

Hence, (C$(Rn, Rp\ &(n\ C$(Rn)) is essential.

A yl-unfolding of /is the ordinary unfolding which has defined by Mather

(M). Then we have the following theorem.

Theorem 4.1 (Thom-Mather-Zakalyukin [4], [8]). Let F:(RnxR''9 (0, 0))

->(Rp, 0) be an unfolding of smooth germ f: (Rn, 0)-»(J^, 0).

then F is a versa! unfolding of f relative to &.
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A-l-b) We let
^E(M)=j3^/£ (M) = {(/?, H) | H is a local bundle automorphism

which covers /?.}

and F^(M) = rg(M), then the ^-equivalence of elements of /^(n) is the jf-

equivalence of smooth map germ (H", 0)-»(jRfI, 0) which has been introduced

by Mather. (See Section 2 in [5]. The definition of the Jf -equivalence is not

given as above, but it has been implicitly shown in [5] that jT-equivalence is

equivalent to the above j/^/^-equivalence.) By this reason, we write siftcf\(n)

= Jf(n, p).

The triple (CjftJR", R*\ Jf(n, p\ Cg>(JRfl)) is clearly essential.
By the easy calculation, it is proved that the image of the infinitesimal map

of/: (K", 0)-»(JR», 0) relative to Jf (/?, p) is given by

Theorem 4.2 (Martinet [3], Golubitsky-Schaeffer [2]). Let F:(RHxRr,

(0, 0)-KI^, 0) be an unfolding of a smooth map germ f: (R«, 0)->(J»P, 0). //

F fs cr versa I unfolding of f relative to JT.

A-2) E(R") = R»xR».

Let ^E(R") = ^(1?'I) = {(/1, hxh)\h is a local diffeomorphism on Rn} and
= r%(R"), then two elements/, g e T%(n)0 is ^-equivalent if and only if

there exists invertible germ /?: (jR11, 0)->(l?", 0) such that h°f=goh.

In this case, 0%(n) = 0(n) and the infinitesimal map

7} :

of /relative to & is given by

It is clear that 0(n) is a C^fH^-module, but rr is not a Q(J?")-honiomor-

phism. Hence, (C^(K», H"), ^(w), CffR")) is not essential.

Jn fact, there exists the example for which the versality theorem cannot hold.

(Belitskii [I].)

A-3) E(M)=T(M).
In this case, F%(n) is the set of vector field germs on JR" at the origin. The

most natural equivalence relation between germs of vector fields is the smooth

equivalence.
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If we let ^T(M) = {($, d0)|0 is a local diffeomorphism on M}, then the

^-equivalence is the smooth equivalence between vector field germs.

For any £ £ T^(n) = 6(ri), the infinitesimal map

is given by Lie derivative:

Since Lie derivative is not a Cf (I?n)-homomorphism, then (r*(n), ^r(w),

CSftlt11)) is not essential.
In fact, it is known that the versality theorem does not hold for the category

of unfoldings of vector field germs relative to smooth equivalence. (See [1].)

A-4) E(M)= A T*(M).
p

In this case, Fcj(n) = Qp(n) is the set of germs of differential p-forms.

Let ^0(M) = {(0, A ̂ 0)1^ is a local diffeomorphism on M}, then the

^-equivalence on Qp(ri) is the smooth equivalence between germs of differ-

ential p-forms.

By the same reason as the case of vector field germs, (Qp(ri), &n(n\ Co>(RnJ)

is not essential.

But, we have not known the example for which the versality theorem cannot

hold. It is conjectured that there exists the example of differential form for which

the versality theorem cannot hold.

A-5) E(M) = 0 T*(M) (fc < dim (M)) .
k

In this case, Pffc(M) = F|(M) is the set of local Pfaffian systems.

For any co = (co1?..., cofe)ePffc(M), there exists the local coordinate system

(17, (x1?..., x,,)) and smooth functions a{ : U -»J? (i = l,..., k\ / = !,..., ri) such

that

C0i(x i ,.-.,*„)= S "= i aj
t(x)dxj .

Definition 4.3. We say that x0 E U is a singular point of CD if rank (a-j(x0))

<fe.

The most natural equivalence relation between germs of PfafSan systems is

the equivalence relation which is given by coordinate transformations on M,

The same reason as the case A-4), this equivalence relation cannot make the

essential triple.

But, if only pay attention to singularities of Pfaffian systems, it is enough to
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consider the equivalence relation which preserve rank of (a{ (x)) and make the

essential triple.
One of the candidate of such an equivalence relation is given by the follow-

ing essential pseudo-group :

gp(M) = {(h~1
9 ®H*)\His a local vector bundle automorphism on TM

k

which covers /?} .

A-6) For any vector bundle E(M), let

D:rf(n)— >Tf(n)

be a linear partially differential operator.

Let r%(riy° = D-\<o) for CD e Ff (n), then C?(RW, 7(«B)) = D-1(0).

Generators of C£(Rn, V(Rn)) over CjftR11) are given by et: Rn->V(Rn)

(i = l,...,dim(7(RB))) which are defined by e4(x) = (0,...,0, 1, 0,...,0) for any
x e (R», 0). Since e, e Cg(R"9 F(l?n)) for any z, then

Hence, for the essential pseudo-group &E(M) which satisfies conditions in

Definition 1.11, the following versality theorem holds.

Theorem 44 Let a E rg(n)g siicfe

Ler Z: (R"xRr, (0, 0)) -» (£(RB), 0) be a D-unf aiding of a. If

C#(RB, K(*B))C^?(0S(»))+^ ^^^ « versa/ D-unfolding of a relative to &E.

For example, let E(M) = MxR and D = J be a Laplace operator (i.e.

A=d2/dxl + --+d2/dx%), then r^(n)ff is the set of germs ueCJftR11) which are

solutions of the Poisson's equation Au = g. In this case, C$(Rn) = nv(A~1(Q)) is

the set of harmonic function germs at the origin.

Theorem 45. Let f be a germ of solutions of Poisson's equation Af=g

such that dimR C$(Rn)IJ(f)< + 00. Let F be a A-unf aiding off. If C$(Rn)

c: J(/) -f Pp., then F is a versal A-unfolding of f relative to &.

When # = 0, then the above theorem seems to be applied for the qualitative

study of phenomenons which are described by Harmonic function's potentials.

B) The case R(n) = C§(Rn).

Here, let G be a compact Lie group which acts linearly on I?" and C$(Rn)

be the set of germs of smooth G-invariant functions at the origin.
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B- 1 ) E(M) = MxRp (M: G-manifold) .

B-l-a) We let

^£(M) = ^G(M) = {(/?, / i xL) h is a "local" equivariant diffeomorphism of

M and L is a parallel transformation.} .

(Here, G acts on Rp trivially).

Let r^(n) be the set of G-equivariant section germs of E(R"), then it is the

set of G-invariant map germs (jRn, 0)->H*. We write it Cg(Rn, JR*). In this

case, the ^-equivalence on C$(JRM, Rp) is the G-right equivalence between G-

in variant map germs.

The infinitesimal map

7}:0G(n)

of/ relative to 0?G is given by

where 0G(n) = {£ E 0(n) \ £(gx) = Tg°£(x) for any x e (Ra, 0) and geG}.

By the theorem of Schwartz ([7]), C§(R") is the sub Jt-algebra of C$(Rtt)

of finite type. Since C§(R", Rp) ^ Cg(JRB) x C§(R») x • • • x Cg(JRB), then (Cg(JR",

^), ^G(w), C§(R")) is essential.

If we denote the set Tf(9E(n)) by JG(/), then we have the following theorem.

Theorem 4.6. (Poenaru [6]). Let F be a G-unfolding offe Cg(jRn, Up).

// Cg(JK", Rp) = Jc(f)+ Fp, r/?e/? F /s a versa! G-unfolding off relative to

B-l-b) ^M)=j**/g(M) = {(/?,//)!// is a "local" G-vector bundle

automorphism on MxRp which covers /?.]. (Here, G acts on Hp linearly).

Let R" be a G-vector space. Let F^(n) be the set of G-equivariant section

germs at the origin, then it is the set of G-equivariant map germs :(JR", 0)->JRp.

We write it Q(J?lf, It").
In this case, the ^-equivalence on Cc(Rn, Rp} is the equivariant JT-

equivalence between G-equivariant map germs. By this reason, we denote

Proposition 4.7. C%(Rn, RP) is a finitely generated C$(R")-module.

Proof. Let(jR*0* be a dual of RP, G also acts on (JR*)* linearly, for(^r • w)(v)

= w(g~~lv) for any we(Rp)* and veRp. We consider the diagonal action on
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If /GCS(K", Rpl it induces /'e C{bi0)(«"x(Kp)*) by f ' ( v , w) = w(/(u)).
Since Cf0t0)(R

n x (JR*)*) is the subring of C^f0)(*" x(lt*)*) of finite type (see

[7]), there exist pl,...,pkeCfw(R"x(R*)*) such that P*(C?(J2k)) = Cf0,or
(Rnx(Rp)*). Then, we have /'(y, w) = H(pl(v, w),..., pk(v, w)) for some He

c™(Rk).
Since/' are linear for w, we have the following:

f ' ( v , w)-£f= 1 5i(//)P(i;>0)flw(pi)ll,,o)(w),

where d£ denotes the derivative associated to /-th variable.

We can consider <^W(P/)(JC,O)(W) as elements of €%(&', Rp). This completes
the proof. Q.E.D.

It is clear that (Q(K", R*\ jTG(n, p), Cg(Jtn)) is essential.

Theorem 4.7. Let ¥ be a G-unfolding of an equivariant map germ

/: (R-, 0)->(», 0).

// Cg(K^^) = JG(/)+/^1np)C^K^^)nCg(ll^^ then F is a

versal G-unfolding relative to 3TG.

C) The case R(n) = R.

In all above case, if we take finite jet spaces, then the versality theorems

always hold.
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