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Theory of Connexes.

By

Yohei YAMASAKI*

Introduction

The classical games Hex and Bridg-it are generalized to Shannon's switch-

ing game (on vertices), in which a graph structure is given on a finite set consist-

ing of two edge points and several ordinal points and two players occupy ordinal

points alternately. A player called "short" intends to connect the edge points

by a sequence of ordinal points which he has occupied and his opponent called

"cut" obstruct it. Its game theory has been established more generally in the

class of division games, in which we have discussed the game theory without

graphs (see Lehman [1] and Yamasaki [2]).

We are going to give a new generalization of the classical games in a purely

graph-theoretical argument. Namely, we discuss a pair called "connex" of

graph structures over a common set, which naturally yields a division space.

In this paper "Theory of connexes0 I" we give a general theory of connexes and

show that a connex can be essentially embedded into a sphere S2 if the given

graph structures coincide, except for three cases which are determined com-

pletely. In other words, our game theoretical argument characterizes the

graphs obtained from simplicial decompositions of S2 compatible to the anti-

podal mapping without triangle besides 2-simplices.

§ 1. Preliminary

Let n be a set consisting of three elements y •> -L and 9, U its subset con-

sisting of T and -I, and " the involution of U without fixed point. We call an

element of II a player and 9 nobody. These notion will be fixed throughout this

paper.
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Let X and Y be sets and n a player. Then we denote by [X-» Y] the set of

mappings from X to 7, by \X\ or ttZ the cardinal number of X and by #f- the

mapping from 7 to 7x17 given as follows:

Let X be a finite set. Then we denote yx = [X-+IT] and D^ = [X->/7].
An element d of ^ is called a position and an element b of D^ is called a division.
A mapping %* from D* x U to {1, - 1} is called a judge on X if

A pair S* = (X, /*) of a finite set X and a judge /* on it is called a division
space.

Let &* = (X, x*) be a division space and 5 a position on A\ Then we de-

fine another division space &$ = (Xd, %f) as follows:

where b8 U d is a division on X given by

(b,uarl(7r) = b^(7r)ua-1(7i).

Let Z be a finite set. A judge #* on X is said to be regular if

b^OO^^O) implies x*(b1? ^)^X*(>2> ^)»

misere if

br1^)^^1^) implies Z*(bl5 ;r)^x*(b2, ;r)

and trivial if 7* is regular and also misere. A judge /* is trivial if and only if

X*°*'®x ^s constant for each player n.
A division space &* = (X, /*) is said to be regular, misere or trivial if #* is

so, and denoted as &+ = (X, #+), ®~ = (X, /") or ^° = (X, 7°), respectively. A

subset S of X is said to be negligible if ^ J is trivial for each position 5 over X

such that

Let ^+=(X, x+) be a regular division space and n a player. Then a

division b over X is called a 7c-division if #+(rj> TC) is 1. A rc-division b0 over X

is said to be minimal if

X+(b, n) = 1 implies b = b0
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for any division b over X such that

b-H^czbo1^).

We put

X° = {XEX\ {x} is negligible}

and call it the negligible part of £t+. X° is the sole maximal negligible subset

of X. We put also

XE = X-XQ

and call it the essential part of ^+.

Let &f = (Xi9 xf)i=i,2 be division spaces. A pair /=(/*, sgn/) of a map-
ping fx from Xl to X2 and a permutation sgn/ of 17 is called a pseudo-horao-

morphism from ^f to j^f if the diagram below commutes:

where /*> is given by

A pseudo-homomorphism is called a pseudo-immersion, pseudo-contraction or

pseudo-isomorphism when fx is injective, surjective or bijective. A pseudo-

isomorphism is called a pseudo-automorphism when &* coincides with j0f.

The prefix "pseudo-" is omitted if sgn /=*</# and replaced by "anti-" if

Let ^* be a division space. Then the set j^/^* consisting of pseudo-

automorphisms of &* naturally forms a group and its subset s/«sn&* consist-

ing of automorphisms of ^* forms a normal subgroup of ja/*/^* of index 1 or

2. The division space ^* is said to be impartial if the above index is 2 and

strongly impartial if (*«^, ~) is an anti-automorphism.

We prepare several conventions on graphs. A graph is a pair (X, (p) of a

finite set X and a mapping $> from X x X to {0, 1} such that

ii) <p(y, x) = <p(x, y) vx, 3; e Z.

Let (X, (p) be a graph. Then an element of X is called a point. A point x is

said to be adjacent to a point j; if <p(x, y) = 1 . An edge is defined as an undirected
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pair of points adjacent to each other. For any point x of X, we define the

degree e of x by the number of points adjacent to x. A point x is said to be

ramified if e ̂  3 and terminal if e ̂  \ . A terminal point is said to be isolated if

e = 0. The graph (X, (p) is said to be discrete if <p = 0, complete if cp(x, y) = l for

x ̂  y and connected if

for any non-constant division b on X. The graph (X, cp) is said to be cyclic if

it is connected and the degree of x is 2 for any point x. Let Y be a subset of X.

Then we have a subgraph (Y, (p \ yxy), where cp \ Fxy is often omitted. Yis said

to be discrete, complete, connected or cyclic if (Y, (p \ Fxy) is so. Let n^l and

(x0, xj be a pair of points of X. Then a series x1?..., xn_1 in Y is called a chain

in Yfrom x0 to xn if

A series of length 0 is regarded as a chain from a point to one adjacent to it.

The graph (X, (p) is connected if and only if there is a chain in X from any point

of X to any other point of it.

§2. G-Connex

Let G be a finite group. Then we denote by yW/(G) the set consisting of

the subgroups of G and by © the family consisting of subsets g of <^/(G) such

that

implies

Let X be a finite set admitting an action of G. Then we denote by X = G\X

the orbit space and denote by G\ the natural surjection from X to X.

We fix a finite group G in the rest of this paper. A pair (X , <P) of a finite

set X admitting an action of G and a mapping $ from Xx XxII to {0, 1} is

called a G-bigraph if

®(9(*\ 000, n) = <f>(x, y,n) *g e G

and (X, $<v!x.f) is a graph for each player n. From now on we denote #<vjxjr

by (pK.

Let (X9 $) be a G-bigraph, n a player and d a position on X. Then we de-

fine the stabilizer ideal g[3, n\ of (5, TC) by
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iff 3v4: non-empty //-invariant (^-connected subset of (d°G\)~1(n}.

We define also another G-bi graph (Xs, <Pd) as follows:

Xd = (doG\Tl(0)

where G acts on it as on a G-invariant subset of X,

iff jc and y are distinct and they are in the same ^"-connected component of

(3oG\)-'(7r)u{x, y}.

Lemma 2-1. Let (X, €>) be a G-bigraph, d a position on X and ba a

division on Xd. Then

where ga[ba, n} is the stabilizer ideal of (ba, n) with respect to the G~bigraph

(X8, ^a).

Proof.

H e g[ba U 5, n:]

«s> 3A: non-empty H-invariant (^"-connected subset of

((ba U 3>G\)-1(w)

' 3Ad: non-empty //-invariant cpg-connected subset of

(VG^-H*)
or 3A : non-empty //-invariant cp^-connected subset of

Lemma 2-2. Let (X, <P) be a G-bigraph, n a player and bx and b2 divi-

sions on X such that

Then

Proof. We define a position 5 on X and a division ba on Xa as follows :
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Then we have by the previous lemma,

9[>i » n] = 9[d U ba, TT] ID g[d, TC] = g[b2, TT] ,

which completes our proof.

A triplet ftf = (X, $, #+) of a finite set X admitting a group action of G, a

mapping <f> and a regular judge %+ on X is called a 6-connex if (X, $) is a G-

bigraph and

g[b, 7r]=3g[b', TT] implies %+(b, 7r)^+(b', TT).

Let ^=(X, 4>, %+) be a G-connex. Then we denote the division space

(X, x+) by tf+. We put

and call an element of them an essential point and a negligible point of <% respec-

tively. These notion will be fixed throughout this paper. A Z/2Z-connex is

simply called a connex.

Lemma 2-3. Assume that G is of prime order. Let &=(X, 0, x+) be a

G-connex and n a player. Suppose that there exists a n-division b0 such that

g[b0, 7c]^G.

Then #+(b, n) = lfor any division b on X or

X+(b,7r) = l iff g[b,7r]^0.

This lemma is easily verified and its proof is omitted.

Lemma 2-4. Assume \G\=2. Let &=(X, #, %+) be a connex, n a player

and b0 a minimal n-division on X. Suppose

X+(*,n) = l iff g[b,7c]9G.

We put ^^(booGVr^Tr). Then one of the following two conditions holds:

i) |bo H71)! = 1 and (A, (pn | A*Z) ls a connected graph,

ii) IboK71)!^, the action of G is fixed- point-free on A and (A9 (pK\A*z)

is a cyclic graph.

Proof. We easily have IboK^)!^!- First suppose IboKrc)^!. Then

(A, (pn\zxx) must be a connected graph of one or two points. Next suppose

|bo1(^)l^2. We easily see that the action of G is free on A, because of the
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minimality of b0. We can find a series x = x0, xl9..., xm = a(x) in A satisfying

with minimal length m where a is the generator of G. Since b0 is a minimal

Tr-division, G\(xt) is distinct from G\(x_/) for 0 < / < j ^ m. Therefore A = WfJb1 & •
{xj and (yl, cp71 1 ^x/?) must be a cyclic graph, because of the minimality of b0

(see Figure 1).

Figure 1.

Now our proof is completed.

Theorem I. Let <g = (X, $, %+) be a G-connex and d a position over X.

We define a triplet (£8=(X8, <Pe, #a) as follows:

(Xd, <Pd) is the G-bigraph introduced from (X, $, 8)

&Kba, n) = X+(bd U 5, n)for a division ba on Xd .

Then &d is a G-connex.

Proof. We have to prove only

9aP>a, ^] => 9a[^a, ^] implies ^(b^, n) ^

Let bg and b^ be divisions on Xd such that

Then by Lemma 2-1 ,

9 l>aU3,7c]
2ge[ba, TE] U g[S, 7i] = g[ba u 3,

Therefore

Now our theorem is verified.
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§ 3. Homomorphisms

Let *, = (£„ *„ tf)/=i.2 be G-connexes. Then a triplet /=(/G,/* sgn/)
of a group automorphism /G of G, a mapping/* from 5\ to X2 and a permuta-

tion sgn/ of 77 is called a pseudo-homomorphism if the following conditions

hold:

i) the following diagram commutes where ( ) denotes the group action,

ii) if .Icj^ is cpf-connected, then /*G?) c X2 is (p|gn/ (^-connected,

iii) (/*, sgn/) is a pseudo-homomorphism from <g\ to ^J where

A pseudo-homomorphism /==(/G,/*, sgn/) is called a pseudo-immersion if/1

is injective and is called a pseudo-contraction if/* is surjective and

3>2(*2, j>2, *0 = 1 implies 3Xj 6/*(x2),
 3 J^ e/*(j?2)

^i(xl9 >?!, sgn/(7t)) = l.

A pseudo-homomorphism / is called a pseudo-isomorphism if it is a pseudo-

immersion and also a pseudo-contraction. A pseudo-isomorphism from ^

to ^ is called a pseudo-automorphism of ^j. The prefix "pseudo-" is omitted

if sgn/=#V7C and replaced by "anti- if sgn/= ".

Let ^ be a G-connex. Then the set j^/^ of pseudo-automorphisms of ^

naturally admits a group structure. The subset ja^/n^ of automorphisms of

ja*W^ is a normal subgroup of j/«/^ of index 1 or 2. The G-connex ^ is

said to be impartial if the above index is 2 and strongly impartial if (/</G, «vjp, ")

is an anti-automorphism of ^. As is easily seen ^ is strongly impartial if

(t7, **/£, ") is an anti-automorphism for a group automorphism tr of G.

Proposition le Assume that G is of prime order. Let ^ = (^,4^,

/«")/= 1,2 ^e G-connexes and /=(/G, /*, ^VJ a homomorphism from (^l to ^2-

Then there exists a sole triplet (#,/i,/2), MjP ̂  isomorphism, of a G-connex

<£, a contraction f^from (^l to *% and an immersion f2 from <g to &2 such that
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Proof. We put

, y, n)—l iff x j ^ y and ^i(x1; j> t , n)=\

for a pair (x,, y 1)ef*-\X)xf *"($),

where b2o/f = b, to construct ^=(X, <£, x+)- Here X is G-stable, since /G is

surjective. We put also

to construct /i=(/G,/f, *</n) anc^ /z^'^o/fj ^"^/i)- ^ i§ easy to see

there exists no other desired triplet (^,/i,/2), because Im/f must coincide

with Imfx. Now we have to prove only

g[b, TT] =3 g[b', TT] implies ^+(^?

Let b and b; be divisions on X such that g[b, 7c]=)g[b', TT]. Then we fix divi-

sions b2 and b2 on X such that b2
o/f = b and b^/f = b'. First assume

Then we easily obtain

which implies

X+(t>, 7T)

^X«l>

Next assume

Then we have

which implies

g2[b2, 7r]=>g2[b2,

Now we have

which completes our proof.
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A G-connex ^ is said to be primitive if any immersion to ^ is an isomor-

phism. If |G|=2, then the automorphism of G is trivial, and we omit /G of a
pseudo-homomorphism (/G, fx

9 sgn/) of connexes.

Theorem 2. Assume |G|=2. Let &=(X, $, x+) be a connex. Then

there exists a sole pair (&0, /), up to isomorphisms, of a primitive connex

&0 = (X0, <P0, XQ) and an immersion f=(f*y sgn /) from <£Q to ^.

Proof. We put

where b0 = b | XQ. Let n be a player. First assume that there exists a ^-division

b on X such that

Then we put

^o(*o> )>o» n)=0

Next assume that every ^-division satisfies

Then we put

iff $(x0, j0, 7c) = l and (b0oG\)(x0) = (b0
oG\)(jo) = 7r for a minimal re-division b0

over X.

We put

/*(x0) = 5c0.

Now by Lemma 2-3 and Lemma 2-4, <^7
0 = (^0> ^o> Zo) is a primitive connex

and (/^, te/u) is an immersion from ^0 to ^. The uniqueness follows from

Proposition 1 immediately.

§ 4. Mass Spaces and Their Connexes

A strongly impartial connex tf=(X, $>, %+) is said to be tame if

X+(b, TT) = I iff g[b, 7c]9G.

By Lemma 2-3, there exists a sole strongly impartial connex ^ = (Z, $, %+)
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which is not tame, where X is a set of two points with a nontrivial action of G9

$ = 0 and

In the rest of this paper, we deal with tame connexes only. We assume that

G is a cyclic group of order 2 and denote the generator of G by a. For any

tame connex eg=(X, $, #+), we define a graph (X, (p) by (p = (pT = (p-L. From

now on, we identify a tame connex with a graph (X, (p) admitting a group action

of G such that the following %+ is a judge on X :

X+(b97r) = l iff g[b,7r]9G.

We identify also a homomorphism /= (/*, * </n) with fx while there is no con-

fusion.

Let & = (X, (p) be a tame connex and F a G-invariant subset of X. For

any connected subset C of X — F9 we define the support Supp^(C) of C with

respect to the frame F by

where C0 is the connected component containing C in X — f. For any subset

A of F9 we define the web WebF (A) of A by

Web F (I) = {x e X - F | SuppF ({*}) c= 1} ,

and denote WebF(I) U A by IFF(I).

Lemina 4-1. Let <£ = (X, cp) be a tame connex, F a G-invariant subset of

X and C a connected subset of X — F. Assume that Suppj?(C) is a non-empty

complete subset of F. Then C is negligible.

Proof. We have to show our assertion only in case where C is a connected

component. Suppose that there exists an essential point XQ of C and a minimal

T -division b such that

b°G\(x0)=T.

Then we choose a chain xl9..., xl,1 in X from x0 to a(x0) satisfying / = |b~1(T)l-

Suppose that this chain is in C. Then SuppF(C) is a non-empty G-invariant

connected set since C is G-invariant. Therefore we have

9[b', T] = 9[b', 1]3G

for the division b; given by
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b'(x)=T iff JceC,

a contradiction. Now the relevant chain is not in C. Let j be the minimum

and k the maximum of the number / such that xt^C. Then we have

By Lemma 2-4, (^°G:\)~1(T) is cyclic. Then a(xk)^Xj. On the other hand

a(xk) is a point of Supp^(C). Then a(xfc) is adjacent to Xj and (boG\)"1(j) is

not cyclic. Now our lemma is verified (see Figure 2).

Figure 2.

Lemma 4-2. Let F'cFczJf and C a connected subset of X — F. Then we

have

Proof. Let y0 be a point of If F(Supp^ (C)). We consider an arbitrary

chain y l ,...,>;„_! in X — F' to a point j;n of F'. Then, we jfind the minimal num-

ber k such that yk e F, which is a point of Suppj? (C). Therefore we find a chain

$!,..., wm in JT-F from a point w0 of C to yk. Now wl5..., wm, j

;;„_! is a chain in Jf — F' from w0 to yn (see Figure 3). Hence
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Figure 3.

Thus our lemma is verified.

Let <%Q = (XQ, (PQ) be a tame connex and /=(/*, *«/#) an immersion from

^0 to &. Then /is called a V -immersion, if <p0 = <p°(/* x/*) and Supp^(^) is

complete with respect to 9 for a connected subset A of X — F where F = Im/1.

We define a tame connex ^ = (X9 <p) by |J?| = 1 and cp = Q. Then we have

the following theorem.

Theorem 3, Let & be a tame connex with a G-invariant point. Then tf

has a \7-immersion from Jt .

The proof is easy and is omitted.

We define a series of division spaces. Let m be a strictly positive integer.

Then we define the mass space ^ Jm - 1 = C^» X+) as follows :

\X\=2m-l

r(b, 7c) = l iff Ib

For m = 1, 2, 3, we define tame connexes -^2m-i =(^? ^) as follows (see Figure 4
and Figure 5):

iff

for m = l

for m = 2

and zVj for m = 3.
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Figure 4.

Figure 5.

Lemma 4-3. ^f2m-i» m = l, 2, 3 are primitive tame connexes whose divi-

sion spaces are ^Jm-i-

Lemma 4-4. An immersion from ~*fl9 Jf^ or Jg$ is a ^-immersion.

These lemmata are easily verified and the proofs are omitted (see Figure 6).

Figure 6.
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Proposition 2. For m = l, 2, 3, ̂ 2m-i ls the sole tame connex without
G-invariant point whose division space is ^2m_ l5

 UP to isomorphism. For

m^4, there is no tame connex whose division space is isomorphic to ^Jm-i-

Proof. We shall show the latter assertion only. Assume that there exists

a tame connex & = (X, cp) whose division space is isomorphic to ^Jm-i f°r an

integer m such that m^4. Let Y U {x1? x2, x3} be a subset of X consisting of
m + 2 elements. Then by Lemma 2-4, (G\)~1(Y [j {xt}) is cyclic for each i.

We find points yl9..., ym.^\ xi9 x2 and x3 of (G\)^(Y U {x1? x23 x3}) satisfying

and

Since m^4, there exists a subset Z of X consisting of xl3 x2, x3, G\(yi) and m — 4

other elements. Thus (G\)-1(Z) has a ramified point y± (see Figure 7). This

contradicts Lemma 2-4. Now our proposition is verified.

Figure 7.

Let & = (X, cp) be a tame connex and (x0, x^) a pair of essential points of

X adjacent to each other. Then we obtain a tame connex <%' and a contraction

/from ^ to <£' such that /(jc0) =/(;<;!) and /is injective on X — G{jc0, jCi). We
call <%' and / the contracted connex and the contraction attached to (Jc0, x±).

for i=0, 1 and Z=Z0 u Zj. We have
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{3c0, xJczFcil*

by an argument of division spaces.

Lemma 4-5. Let & = (X, <p) be a tame connex and <%' a contracted connex

attached to a pair (x0, Xj). Assume that &' has a \7-immersion from J{5.

Then <% also has a V-immersion from ^?5.

Proof. As is easily seen |Z|=4. First suppose that |Z0| or JZJ, say

|Z0| is 4. Then (G(Z0 U {XQ}), (p) is a connex isomorphic to Jt5 and x1 must be

negligible.

Next suppose 2^|Z f |^3 for each i. Then we can divide Z into a disjoint

pair of two points subsets 70 of Z0 and 5^ of Z^ Now we find a division b on

X given by

boG\(x)=T iff x

Thus we have

boG\(x)=l if x

and therefore

g[&, T]=g[b,
a contradiction (see Figure 8).

Figure 8.

Suppose finally that (|Z0|, |Z1|) = (3, 1) or (1, 3), say (3, 1). We choose an

arbitrary point z0 of Z0 and define a division b on X by

boG\(x)=T iff xeG((Z0-{z0})U{x1}uI)

where

! = WebF(Z1u{x0s;c1}).
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Then we easily obtain

g[b,

Hence b is a J_ -division. We have a minimal JL -division b0 satisfying

Since G((Z0 — {z0}) U {$}) is connected for ii e {z0, x0, zj, we have

Then by Lemma 2-4 there exists a chain in bo1(_L)c:b~1(_L) from XQ to a^),

which contradicts Lemma 4-4 and the fact that (b°G\)~1(_L) is disjoint to A

(see Figure 9). Now our lemma is verified.

Figure 9.

A tame connex <& = (X9 cp) is said to be spherical if it is obtained by the set

X of vertices and the adjacency function (p of a simplicial decomposition of a

sphere S2 admitting the natural action of the antipodal mapping.

Theorem 40 Let ^ be a tame connex. Then ^ has a "\7-immersionfrom

one of ^ Jt^ Jt$ or a primitive spherical connex.

From now on in the rest of this paper, our purpose is to prove this theorem.
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Lemma 4-6. Let ^ = (X9(p) be a primitive spherical connex. Then X

is connected and every complete subset of X is the set of vertices of a simplex.

Proof. The first assertion is an immediate consequence of Lemma 2-4.

Let A be a complete subset of X consisting of three points. Then its triangle

separates the sphere into two domains. Now a point is negligible if it is in the

domain distinct from that containing a(A) by Lemma 4-1.

Figure 10.

Now our lemma is verified.

§ 5. Spindle Connexes

For any integer n^2, we define the spindle connex 5f2n
==(%-> 9) °f gize

as follows (see Figure 11):

(E, q>) is a cyclic graph consisting of 2n points

where a acts antipodally ,

Figure 11.
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and

)=1 iff *e£ for 0 e G .

We call p and a(j?) the polar points. As is easily seen ^2-2 i§ isomorphic to ^3.

Lemma 5-1. A spindle connex is primitive and an immersion from it

is a ^-immersion.

The proof is elementary and is omitted.
In the rest of this section we fix an integer n ̂  2, a tame connex ^ = (X, (p)

without G-invariant point and a pair (x0, xx) of essential points of X adjacent
each other. Suppose that the contracted connex *€' has a V -immersion c from

c9*2» sucn that * sends polar points to f(x0)=f(xi) and its antipodal point where
/is the contraction attached to the pair (x0, Xj).

Lemma 5-2, One of the following two cases occurs.

(I) Zf is connected for i = 0, 1 and Z0 D 2t is discrete,

(II) n = 3 and Zf is discrete for i = 0, 1.

Proof. Assume first that Z£ n a(2f) is empty for each i. Then Z1=a(Z0)

and there exist a point z0 of Z0 and zt of Zx adjacent each other. If n = 2, then
(I) occurs. We suppose n^3. Then one B of the two connected components
of Z— G{z0, zj is contained in Z0 and the other in Zl . If it were not the case,
say z e B n Z0 and z; e a(F) n Z0, then there should exist a division b on X

given by

boG\(5c)=j iff 5ceG{z0? zl5 xj,

therefore

Figure 12-1. 12-2.

a contradiction (see Figure 12-1). We may assume



796 YOHEI YAMASAKI

Z0 = BU{z0, 0(20}

and

2 t=a(fl)U{a(zo), zj.

If Z^ is connected for each i, then (I) holds. We may assume that the following

C is connected :

C = Bv{zl9ot(z0)}.

Suppose ?i§4. Then C can be divided into disjoint pair (C0, Cx) of connected

subset C0 and Cl such that each of them has at least two points. Thus there
exists a division b on X given by

boG\(x)=T iff x6G.(C0U{x0}),

hence

a contradiction. Now n must be 3 and then (II) holds (see Figure 12-2).

Next assume that Z0 n oc(Z0) or Zt n a(Zt) is non-empty, say Z0 n a(Z0)

has a point z0. We denote the two connected components of Z — G{z0} by B

and a(5). Then Zt is contained in B U G{z0} or in a(5) U G{zQ}, because of

the division b over X defined as follows (see Figure 13-1).

boG\(5c)=T iff xeG{z0 , x0] .

Figure 13-1. 13-2.

We may assume that Zl is contained in B U G{zQ}. If there exists z'Q eZ0 such
that each of the two connected components of Z — G{z'Q} has non-empty inter-

section with Zl9 then

for the division b on X given by
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Now we obtain (I) and our lemma is verified (see Figure 13-2).

Lemma 5-3« In case (II), ^ has a V-immersion from ~/f5.

This lemma is an immediate consequence of Lemma 4-3 (see Figure 14).

i

Lemma 5-4. Assume that (I) occurs. Let C be a connected subset of

X — F. Assume that Suppj? (C) contains x^ (resp. x0) and a point z0 eZ0 (resp.

z1 eZi). Then z0 (resp. z^) is a terminal point of Z0 (resp. Zj).

Proof. Suppose that the assertion does not hold, say Xj and a non-terminal

point z0 of Z0 is contained in SuppF (C). If a(z0) e Zl5 then we have

for the following division b on X (see Figure 15-1):

boG\(x)=T iff x 6 G - ( C u { x

Figure 15-1. 15-2.

If a(z0)^Z1:, then a(z0) e Z0 and we choose a point z'0 e Z0 adjacent to z0 so that

it is in the same connected component of Z —{z0, a(z0)} with Zlt In such a
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case, we define the following division b on X:

boG\(x)=T iff xeG{x0,zJ}

and obtain

9B>, T] = 9P>, l]eG,

because Zf is non-empty. Now our lemma is verified (see Figure 15-2).

Lemma 5-5. Assume that (I) occurs. Let C be a connected subset of

X — F. Then SuppF (C) is complete or

•(*)

^C)c:{xo, Xi, z0, Zj}
/or a point z0 eZ$ and a point

Zt eZf adjacent to it

Proof. We suppose that our assertion does not hold. By Lemma 5-1,

(C)) is complete. For conveniences sake, we may assume

{xo, xl9 z0, z'0}

where z0 e ZJ and z'0 is a point of Z0 adjacent to z0. Then by the above lemma,

z0 is adjacent to a point of Zf . If

SuppF(C)d{x0, S19 z0},

then (*) occurs. We assume

*!, z0, z

Then Z0 = {z0, ZQ} by the above lemma. Therefore we have

aCz^cZi.

Case (1). Assume that there exists a connected subset C' of X — F such

that

First we show that C' is disjoint to C. We may assume that C' is chosen maxi-

mally. If C' intersects C, then C'^C and we have Cr^>{zr
Q9 zj which con-

tradicts the fact that/(Suppj? (C')) is complete. Now C' must be disjoint to C.

Then we have

for a division b on X defined as follows (see Figure 16-1):

b°G\(x)=T iff S
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Figure 16-1. 16-2.

Case (2). Assume that there is not subset of X — F whose support contains

{jc0, zj. We define a division b on X by

boG\(x)=T iff JceG{x l 9z0}.

Then we easily have

g[b, T]£G.

Hence b is a _L -division. We have a minimal 1 -division b0 satisfying

Since G{xl5 z0, x0} and G({xJ U Z) are connected, (b0°G\)"1(I.) contains x0

and intersects Z. Then by Lemma 2-4 there exists a chain in bo1(-l-)c:^~1(.l)

from x0 to a point of the connected component of Z — G{zl} not containing ZQ,

which contradicts the above lemma and the fact that there is no point of X — F

whose support contains x0 and z±. Now our lemma is verified (see Figure 16-2).

§ 6, Spherical Connexes

In this section we study a contraction where the contracted connex has a

V -immersion from a primitive spherical connex besides the ones treated in the

last section. We fix a tame connex <& = (X, q>) without (/-invariant point. We

assume that the contracted connex has a V -immersion from a primitive spherical

connex for each pair of essential points of X adjacent each other. We fix also

a pair (x0, x^ of essential points of X adjacent to each other. For this pair we

assume a(Z) ̂  Z.

Let &0 = (X0, cpo) be a connex having a V-immersion from a primitive

spherical connex and S a subset of XE
0. Then we denote by [S] the subset of

the unit sphere S2 covered by the simplexes whose vertices are in S.

Lemma 6-1. Assume a(Z)nZ = 0. Then [/(F)] is homeomorphic to
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the pioduct [0 1] x S1 of the closed interval and the unit circle, where its

boundary is [/(Z)] U [a/(Z)].

This lemma is verified by elementary argument of topology and its proof is

omitted (see Figure 17).

Figure 17.

Lemma 6-2. Assume a(Z)nZ^0. Then the number of connected com-

ponents of Z — a(Z) coincides with that o/a(Z) n Z, which is an even number.

Proof. The upper half of this lemma is obvious since Z is cyclic. The

number of the connected components of a(Z) n Z is even, because a(Z) n Z is

G-invariant and has no G-invariant connected component.

Lemma 6-3. Assume that a(Z) n Z has 21 connected components for a

positive integer L Then F* — a(Z) n Z has 21 connected components. Let S

be a connected component of F* — a(Z) n Z. Then there are two points u and

v o/a(Z) n Z adjacent to a point of S in each, where the connected component of

a(Z) n Z containing u is disjoint to that containing v. [/(S U {u, v})~] is

homeomorphic to the closed square [0 I]2, where its boundary is ^f(S1 U

{u, v}J] U [/(S2 U {w, v})~] for a connected component Sl of Z —a(Z) and one S2

o/a(Z)-Z.

Proof. We observe the embedding of X'E into the unit sphere S2. The

complement of [/((a(Z) n Z) U G{x0})] in S2 is a union of 21 open squares (see

Figure 18-1).

Thus our lemma is verified by an elementary argument of topology (see Figure

18-2).
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Figure 18-1. 18-2.

Lemma 6-4. Let u be a point of Z — a(Z), v a point of Z non-adjacent to

w, and w a point of F*~Z adjacent to both u and v. Then F*-~{usv3 w] has

two connected components Q and R, where [_f(Q U {u, v, w})] or [f(R U {#, v,

w})]5 say the former, is homeomorphic to the closed square [0 I]2 and the other

is not.

This lemma follows immediately Lemma 6-1 and Lemma 6-3. We denote

the above component by Q(u, v; w) (see Figure 19).

Figure 19.

Let p=(i, zf) be a pair of f e{0, 1} and z£6Z f — a(Z). Then we call it a

place. We denote by ^p = (5^, ^>p) the contracted connex of # and by /p the

contraction attached to the pair (zf, xf). We define F^=f^l(XB
v) and F*

= Fp — G{zi? jcj. The place p is said to be of type A if

of type B if

and of type C if
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In the rest of this section we fix the place p also.

Lemma 6-5. Let y be a point of F* — ?^. Then there exists an element

g eG such that

Suppj^({y}) = 0{x,, zi9 z, w}

where z is a point of Zt non-adjacent to zi and w is a point of F* — Z adjacent to

both zt and z. Furthermore

F* n WebF (SuppF ({?}))= g&Zt, 2, w) .

Proof. We put S = Suppf ({$}), which is not complete by Lemma 4-1.

Then we define g so that f^(S) contains gf^(xt). For instance we assume 0 = 1.

If there is a chain wi,. . ., wj _ 1 in f(F* - S) from f ( y ) to a/(xf), then we choose wy

for l^j^l— 1 so that /(wj-) = wj, where w lv.., w,..! or w1?...3 w f-i, X!_ f form

a chain in F — S from j; to a point a(x^) of Fp and this contradicts the fact that

S is the support of {$}.

We assume that there exists a point w of S— WP(Z U {x0, %i}), because we

can find a chain mentioned above if there is not such a point. Then w is not

adjacent to xh since weF* — Z. We assume that there exists a point z of

S — {xt, zi9 w}, if it were not the case we can find a chain as above (see Figure

20-1). If z is adjacent to zi9 then f({zt, z, w}) is the set of vertices of a 2-simplex

by Lemma 4-6 and we can find a chain as above. Then z is not adjacent to zi9

hence z e Zr-. Now we have

Sc{xf, zi9z, w}.

We obtain

yeQ(z£, z; w),

if it were not the case we can find a chain as above (see Figure 20-2).

Figure 20-1. 20-2.

Since Q(zt, z; w) and Q(zi9 z; w) U {x0, Jct} are connected we have
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5 = {xi9 z,, z, w}

n Web,p (SuPPl?p

Lemma 6-6. Let z be a point of Zt non-adjacent to zt and w a point of

— Z adjacent to both zi and z. Then we have

Proof. We may assume that z and w are taken so that Q(zi9 z; w) is maxi-

mal. Then {z, w}cFp by the above lemma. There are exactly two points

u1 and u2 of F* adjacent to both zt and w since/(zf) and/(w) are essential points

of a primitive spherical connex. We define a point Vj for j = 1, 2 by

if fi^e^
a^D-fz^^w} if w^Fp.

Since ^ has a V -immersion from a primitive spherical connex, there exists j

such that z = £,-, where w ̂  £ Fp . We put y — uj to apply the above lemma. Now

our lemma is verified.

Lemma 6-7. There exists a homeomorphism from S2 to S2 which sends

Proof. We see that F* n F^ is connected and that its complement in F

has at most two connected components. Then we obtain our conclusion

taking care of the orientation of every face (see Figure 21).

Figure 21.

Lemma 6-8. Assume that p is of type C. Then Zf_f consists of a point

zl.i adjacent to zi and any other point of Z1_i is adjacent to zl_i (see Figure

22).
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Figure 22.

Proof. We see that Supp/? ({xi-f}) contains Z1^i\^ {xt}. Since x1,i is

an essential point, Zf_£ is non-empty. On the other hand, a point of it is

adjacent to zi and points of Z1_i — {zi} are adjacent to each other, because

/p(Suppj? ({^i-J)) is complete. Now our lemma is verified.

Lemma 6-9. Assume that p is of type B. Then ZJL,- is disjoint to a(Z)

and (1 —i, Zi_ j ) is of type A for any point z^^i o/Zf_f.

This lemma is an immediate consequence of Lemma 6-5 (see Figure 23).

Figure 23.

Lemma 6-10. Z0 and Z1 are connected and Z0 n Z1 is discrete.

Proof. If p is of type C, then our conclusion holds by Lemma 6-8. We

may assume that p is of type A by the above lemma. Hence Z^fcF* by

Lemma 6-5. Now our assertion holds by Lemma 6-7 and the fact that ^p

has a V-immersion from a primitive spherical connex (see Figure 24).
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Figure 24.

Lemma 6-11. Let C be a connected subset of WebP(Z U {3c0, xj). We

put S = Suppj?(C). Assume that f$(S) is not a complete set of at most three

essential points. Then one of the following three cases occurs:

i) Sc:WFnF (Suppj?nF (A)) where A is a connected subset of Z — F^9

ii) p is of type A and Sc{zi5 x0, x1? MO, wj where (w0, wJeZJ xZf

and UL is adjacent to UQ,

iii) p is of type C and Sa{zi9 x0, xl5 zl_i, z} where z1^ieZf^i and z is

the terminal point of Zt besides zt.

Proof. We observe ^p and obtain our assertion by Lemma 4-2, Lemma

6-7 and the above lemma, according to the type of p (see Figure 25).

Figure 25-1. 25-2.

§ 7. The Proof of Theorem 4

In the rest of this paper, we shall prove our Theorem 4 by induction on the

dictionary order of the number of vertices and edges. Let ^ = (X9 (p) be a tame
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connex. We assume that the induction hypothesis holds for any tame connex

with smaller order and that ^ has no V-immersion from Jt, Jt± or ~^5- We

choose a minimal y -division b0 on X so that IboHT)! *s maximal. By Lemma

4-4 and Proposition 2, IboHT)! ̂ 2. If IboHT")! = 2, then <g has a V-immersion
from ^3 by Lemma 4-4 and Proposition 2. In the rest of this paper, we as-

sume IboKT)!^. We fix a pair (x0, jcj) of points of (boGVT^T) adjacent to
each other. We consider the contraction / attached to this pair and adopt the

notions in Section 4 and Section 6.

Lemma 7-1. Assume Z = a(Z). Then <& has a V'-immersion from a

spherical connex.

Proof. By Lemma 5-5, we study Wp({z09 zl5 Jc0, xj) for (z0, z^eZj?

x Zf where fj is adjacent to z0. First suppose |Z$| = 1 or |Zf | = 1, say Z$ = {z0}.

Then contracting the two connected components of Z — {z0, a(z0)} in each and

jq to a(z0), we obtain a connex, which has a V-immersion from a primitive

spherical connex since the images of z0, x0 and the terminal points of Zj remain

essential (see Figure 26-1).

Figure 26-1.

In this case our assertion holds.

Next suppose |Zf|^2 for z' = 0, 1. Let (z0, z^eZJxZf and assume that

Zj is adjacent to z0. Then a(z0) e Zj or aCzj) e Z0, say the former. Contracting

jct to a(z0), the connected component of 2 —G{z0} intersecting Z0 to Jc0 and the

other component to z1? we obtain a connex, which has a V-immersion from a

primitive spherical connex since the images of z0, a(z0) and the two connected

components of Z — G{z0} remain essential (see Figure 26-2).

Thus we obtain a V-immersion from a spherical connex to &. Now our

lemma is verified.
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Lemma 7-2. Assume a(Z)=£Z and that there is no place (f, zt) of type C

satisfying Z|L£ca(Z). Let L be a connected subset of Z such that \L\ is 1 or

2. Then there exists a place p =(i, zc) of type A satisfying LcF* and

(L) L U {zi}<£21..t if L U {z,} is connected.

Proof. We have to find only a place p=(i, zt-) of type A or B satisfying

Lap* and the property (L), because we find another place satisfying the de-

sired properties by Lemma 6-9 if such a place p of type B is given (see Figure

27).

Figure 27.

First suppose a(Z) n Z^0. Then we choose a point z in a connected com-

ponent of Z —a(Z) disjoint to L by Lemma 6-2. We choose ie{09 1} so that

(i, z) is a place satisfying (L) by Lemma 6-10. If (i, z) is not of type C, then

we put p=(i, z). If (i, z) is of type C, then we put p=(l —f, zl_i). In any

way, LciFf and the property (L) is satisfied (see Figure 28-1).

Figure 28-1. 28-2.

Next suppose a(Z)nZ=0. We take a point w of Z — L and choose je

{0, 1} so that q=( j, w) is a place satisfying (L) by Lemma 6-10, If q is of type



808 YOHEI YAMASAKI

C, then we take another point of Z — L adjacent to w to obtain a place of type A

or B by Lemma 6-8, because |Z| ̂ 4 by Lemma 4-6. Then we may assume that

q is not of type C. If LaF*, then we put p =q. We assume

where we may assume that q is chosen so that the connected component S of

Z — Fq intersecting L is maximal. We take a non-terminal point z of Z — S

and choose k e {0, 1} so that (/c, z) is a place satisfying (L) by Lemma 6-10. If

(k, z) is not of type C, then we put p =(k, z) (see Figure 29).

Figure 29-1. 29-2.

If (k, z) is of type C, then we put p=(l-k, z1_k) for z^^eZf.^ where p is a

place of type A satisfying (L) and z1_k is a non-terminal point of Z — S by

Lemma 6-5 and Lemma 6-8. Thus we have

by Lemma 6-6 and the fact that S is maximal (see Figure 28-2). Now our

lemma is verified.

Lemma 7-3. Assume a(Z)^Z and that there is no place (/, zt) of type C

satisfying Zf_fca(Z). Let C be a connected subset of X — F. Then SuppF(C)

is contained in one of the following two types of sets:

V) complete set of at most three points,

CO #{#o> #!, 3c0, JcJ where geG, uj is a point of ZJ for j = 0, 1 and u± is

adjacent to UQ.

Proof, We put S = Supp^(C). As f ( S ) is a complete subset of X'E we

may assume that there exists g e G, j e {0, 1} and points u and v of Zf such that

v is adjacent to v and
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Sc:g{u, v, X0, xj.

For conveniences sake we assume g = l. We assume also that S contains x^j

and a point of Z,-. We put L = S n Z and choose a place p = (i, zt) of type A

satisfying Lc=F* and the property (L) by the above lemma. We apply Lemma

6-11 for p. Then iii) is impossible and ii) implies D) by our hypothesis on p.

First suppose i=j. Then i) is impossible, because x1__ /-e/{* —Z. By

Lemma 6-10 S is a complete set of at most three essential points if /P(S) is so.

Next suppose i=£ j. Then i) implies that S n Z consists of a terminal point

of F*. Hence S is a complete set of at most three points. Suppose that there

exists a point, say w, of S n ZjLj and that /P(S) is a complete subset of X\.

Then u is adjacent to zi and zi^Zl^i by the property (L). If L = {w}, then D)

holds. Suppose LBV. Then v is adjacent to xt since |Z|^4 by Lemma 4-6.

Thus we obtain f $ ( x \ - t ) is negligible by Lemma 4-1 and Lemma 6-10 (see

Figure 30).

This contradicts the fact that p is of type A. Now our lemma is verified.

Lemma 7-4 Assume a(Z)^Z and that there is no place (i, zf) of type C

satisfying Zf_fcoc(Z). Then ^ has a V-immersion from a spherical connex.

Proof. By the above lemma we have to determine only Wp({ii09 ul9 x0, x^)

for (#0, fi^eZJ xZf such that u^ is adjacent to w0. We put L = {w0s wj and

choose a place p=(i, z£) of type A satisfying LcF* and the property (L) by
Lemma 7-2. Then we obtain a V-immersion from a primitive spherical connex

to ^, where

{U0, U19 XQ, X^dF^

and /p is injective on -IFP({MO, wl9 x0, xj).
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We obtain a V-immersion from a spherical connex to ^, triangulating the

rectangles by the above method (see Figure 31).

Figure 31-1. 31-2.

Lemma 7-5. Assume a(Z)^Z and that there exists a place p=(i, zt) of

type C such that Zf_fcza(Z). Let C be a connected subset of Webj?(2u {XQ,

xj). Then Supp(C) is complete or

C0, Xl9 Zi9 Zi-j , ,

where z1^ieZf^.i and z is the terminal point ofZt besides zt.

Proof. If JC!_^Supp^(C), then our assertion is obvious. Suppose

xl,iESuppp(C). Then Supp^(C) has no non-terminal point of Zt by Lemma

6-11 (see Figure 32).

Figure 32.

Lemma 7-6. Assume a(Z)^Z and that there exists a place p = (i, zt) of

type C such that Zf_fc:a(Z). Then <£ has a V'-immersion from a spherical

connex.

Proof. By the above lemma we have to determine only WF({XO, xl5 zf}

zj-i, z}) where zt.| is the sole point of ZfL£ and I is the terminal point of 2j
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besides £/. Let S and T be the connected components of Z — {zi_i9 a(z !_£)}.

Then we define a contraction /c so that the inverse image of a point under /c

is a point or one of the followings:

g{xt9(x(zl^}
g ( W F ( S ( j a ( T ) 0 { z l . h ofo..,)})-^!-,, aCz^)})

where # e G (see Figure 33).

Figure 33-1. 33-2.

We obtain a V-immersion from a spherical connex to #, triangulating the

rectangle by the above method. Now our lemma is verified.

Proof of Theorem 4. Let the assumptions be as in the beginning of this

section. Then ^ has a V-immersion ^ from a spherical connex <€± by Lemma

7-1, Lemma 7-4 and Lemma 7-6. On the other hand <^1 has an immersion

co from a primitive connex ^0 by Theorem 2, which is tame.

Suppose first that ^ is primitive. Then ^ is isomorphic to ^V

Next suppose that ^ is not primitive. Then ^0 has a V-immersion from

a primitive spherical connex by induction hypothesis, therefore ^0 is spherical.

As ^0 has only one embedding into S2 in topological sense the triangulation

according to ^0 is a refinement of the one according to e^l. Therefore C0 is a

V-immersion (see Figure 34).

Figure 34-1. 34-2.
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Now <% has a V-immersion C^CQ from the primitive spherical connex ^0.
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