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Painleve Property of
Monodromy Preserving Deformation Equations

and the Analyticity of r Functions

By

Tetsuji MIWA*

§ 1. Introduction

In this paper we shall prove the following two conjectures posed in [1] by

using the Clifford operator method developed in [2].

Conjecture 1. The singularities of solutions to the monodromy preserving

deformation equations are poles except for the fixed singularities.

Conjecture 2. The i function is holomorphic except at the fixed singulari-

ties.

Painleve's six equations were discovered in his classification of second order

ordinary differential equations whose general solutions have no movable sin-

gularities other than poles. We call this property the Painleve property. It is

now well-known [3], [4], [5] that all the Painleve equations are obtained as

monodromy preserving deformation equations. Thus in [i] the authors

naturally conjectured that the general monodromy preserving deformation

equations have the Painleve property.

Ablowitz, Ramani and Segur [6] posed a similar conjecture: Every non

linear ordinary differential equation obtained by an exact reduction of a non

linear partial differential equation of inverse scattering class enjoy the Painleve

property. If we understand the meaning of an exact reduction as the reduction

of a spectrum preserving deformation equation to a monodromy preserving

deformation equation [5], their conjecture follows from our Theorem 1 below.

They also showed in some special examples that the Painleve property can

be proved by exploiting the Fredholm determinant. Oishi [7] obtained similar
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results starting from bilinear differential forms of Painleve equations. The use

of the Fredholm theory in the monodromy problem originated in Hilbert [8].

We refer the reader to an excellent review by Saito [9]. Following Hilbert,

Plemelj solved Riemann's problem [10]. Later Birkhoff [11] generalized the

problem to the irregular singular case and solved it by a similar method.

In our theory of Clifford operators a Fredholm equation appears as the

product formula [12]: The correlation function <9i1)---<jpi I
n )> and the wave

function (^JCxo)^!0'''^?^/*)) are the Fredholm determinant and the Fred-
holm minor of a certain integral equation which describes the quadratic kernel

of the product operator ^i1^--^^. Unfortunately, in general, the usual Fred-

holm theory is not applicable because of the infinite length of contours for

integrations. We avoid this difficulty by the following trick: Double the

singularities so that we can use only finite contours (The twin problem). Then

wipe out the irrelevant singularities by using Hilbert's boundary value problem.

We refer the reader to the work of Ueno [13] which was very suggestive in

thinking of the latter trick.

The notion of T function has its origin in some exactly soluble models in

theoretical physics [14], [15], [16]. In these models the correlation functions

are expressible in terms of solutions to monodromy preserving deformation

equations.

Okamoto [4] discovered that the logarithmic derivatives of 2 point cor-

relation functions in these models serve as Hamiltonians when one writes the

corresponding Painleve equations in Hamiltonian forms. Inspired by this

work Jimbo, Miwa and Ueno [1] introduced the notion of T function for the

general monodromy preserving deformation equations.

The analyticity of T functions was proved by Okamoto [4] in the case of

the six Painleve equations. His method was to use the pole expansion of solu-

tions at movable poles. If one knows the equations for T functions it is rather

easy to show the analyticity of T functions [5]. But for the general monodromy

preserving deformation equations neither the pole expansions nor the equations

for T functions are known. Fortunately, the analyticity of the T functions for

twin problems is a simple consequence of the Fredholm theory. Then we can

prove the general case by collecting the irrelevant singularities into a single

point.

The author thanks to M. Sato, K. Aomoto, K. Okamoto, M. Jimbo and
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K. Ueno for many helpful discussions.

§ 2. Theorems

We shall start with the statement of the problem.

Let a,,. . . , a,, be distinct points in C. We fix another point x0ePl

— {a j,..., an}. For each a^ we attach a nonnegative integer rM, which we call

the rank of irregularity at afl. We choose rM+ 1 diagonal matrices

(2.1) TL^^C^A^^i,.,. U=U., r,).

We set

(2.2) T<*>(x) = Z 71*; "" + n*> log(x - a,) .

If r^^ 1, we assume that

(2-3) '̂ ..̂ i., («*/*)•

We also assume that

(2-4) f Z #>=0.
^ = 1 a=l

We call a^ (/x=l,..., ri) and tL"/a (/i=l,..., n; j = l5 . . .5 r^; a = l,...? m) the defor-

mation parameters. The parameters t^l (a=l,..., m) are called the exponents

of formal monodromy at a^. We set

(2.5) e<*>(x) =exp r^,a - - +/^> log (jc-

and

(2.6)

We choose a path -j^ in F1 - {«!,..., «„} connecting a^ to x0 and an invertible

mxm matrix C(fl) which we call the connection matrix from a^ to XQ. We

assume that y l 9 . . . , 7H are disjoint and located anticlockwise in this order.

If r 1 we define sectors & > ( } at a\

(2.7)
I

l-l
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We assume that y^ flows into a^ through Sf^. For the moment we fix p and

choose 6 small enough so that

(2.8) Re($(x)^0 (a*/J) for X6^°n^ /+1).

We choose 2rM m x m nilpotent matrices

(2.9) ^"MA&X-i ....... . (1=1,..., 2/v),

such that

(2.10) A<5!) = 0 if

We set

(2.11)

(2.12)

If rM = 0 we set

(2.13)

SJ(M) is called a Stokes multiplier and M(/l) is called a monodromy matrix. The

consistency of monodromy reads as

(2.14) Af(")-M(1) = l.

The Riemann's monodromy problem is to find an m x m matrix Y(x) which

satisfies the following:

(Ml) y(*0) = l.
(M2) Y(x) can be analytically continued in the universal covering of

P*-{al9...,aH}.
(M3) The analytic continuation of Y(x) along y^ is of the form: If

rM = 0,

(2.15)

and if r^l,

(2.16) Y(x)

in y\%l} (/ = !,..., 2^+1). Here G(^ is an invertible matrix independent of x

and

(2.17) Y^)(x) = l+ y^Cjc-fl^

is a convergent (if r^ = 0) or a formal (if rM^ 1) power series.
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Let us denote by D(/0(x) the diagonal part of y(/£)(x) and set

^ oo

;=o

Then F(f (7^1) is diagonal free.

For a given set of matrices G(A° and F^ (ju= 1,..., w; 7 = 1,..., r;i) we define

a rational one form /4(x)dx as follows: The poles of A(x)dx are a t , . . . , an.

The singular part of A(x)dx at a;/ is determined by

(2.19) A(x)dx = &»\ £ /T^'™ «,<)'>( Z Tljtyx-eO-^rf.Y)
J=0 j=0

x( £ F^^x-a^y)"1^^"1 mod(x-^)°.

If an mxm matrix Y(x) satisfying the monodromy property (M1)-(M3)

ever exists, it is unique and solves the following linear ordinary differential

equation :

(2.20) =A(x)Y(x).

The rational coefficient A(x) is determined by (2.19) and satisfies

(2.21) t Resxsaa X(jc)djc = 0.
M = l

Conversely, let us assume that A(x\ given by (2.19), satisfies (2.21). We also

assume that

(2.22) #^#J modZ if r^ = 0.

Then the solution to (2.20), determined by (Ml), enjoys (M2) and (M3). Mow

we fix the reference point x0 and the argument p and vary the paths y^..., yn

continuously. We assume that

(2.23) arg (f 1* ..-#,>,.,) -r^^- modnZ (1 ̂

The correspondence from («„, rL"/., t^i, G^, ^^^-Ms./g.vasa.^m to
(a/t, tL';,., t^i, C$. A^'))1SMSlIplg i /Sr |.,,s^SlI,. ls, iS2rj. is locally biholomorphic.

We denote by ff~ the universal covering of the space of deformation pa-

rameters :

(2.24) {(a,, fL";,a)1g,,g,,,1gJ.Sr(i>1gOIgm6C»+"'S-1'-M|flj<^fl
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The exceptional hyperplanes {all-av = Q} (1^/^v^w) and {r^>a-^^ = 0}

(l:g/,[^fl, l^a^/?:gm) are called the fixed singularities. We denote by JV*

the fiber space over 3~ whose fiber is the space of singularity data (4^«, G$,

FWi^n.i&.ten,.!*^ satisfying (2.4), (2.21) and (2.22). We denote by

Jf p the subspace of rf subject to the condition (2.23).

We construct another fiber space Jit over 3~ . We denote by Jit p the fiber

space over &" whose fiber is the space of monodromy data (t^l, C$, A^n)i ^tt^n,

isMSiM*/^ satisfying (2.4), (2.10) and (2.14). We fix jc0 = o>. We also

choose the paths yl9...,yn so that they are continuously varying. Then by

solving the system (2.20) we define a holomorphic map from each connected

component of jVp to Jit p. We define Jt by patching these holomorphic

maps (with different p's and for different components).

We denote by ̂  the holomorphic map from Jf to Jt thus obtained. ^ is

one to one and locally biholomorphic. In Section 3 we shall prove

Theorem 1. The inverse of & is meromorphic.

This is equivalent to say that Y(x) is meromorphic on Jt .

It is known [1] that a horizontal leaf in Jt represents a solution to the

monodromy preserving deformation equation, if the former has a non void

intersection with the image of e/T, and vice versa. Thus Theorem 1 asserts

that the singularities of a solution to the monodromy preserving deformation

equation are poles except for fixed singularities.

Let us denote by dt the exterior differentiation on 3~ . We define a 1-form

on Jf by

(2.25) co=~ Z ResJC=a yo*)(x)-
H=l u

It is known [1] that CD is drclosed. Theorem 1 asserts that co is meromorphic.

In Section 4 we shall prove

Theorem 2. The poles of CD are simple and the residues are positive inte-

gers.

We define i on each horizontal leaf in Jt by

(2.26) dtlogr = cD.

Then Theorem 2 asserts that T is holomorphic.
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§3. Proof of Theorem 1

In [2] we have shown that the solution Y(x) to the monodromy problem

for small parameters fL^a, A<#> (1 ̂ fJL^n, 0^ j^/> I^a, j8^m, l^ /^2r^) is

given by the following expressions in terms of free fermion fields i^J(x), ^x(x)

and certain Clifford operators cp^ :

In fact, applying the Wick's theorem to the right hand side we obtain a Neumann

series for Y(x)^. Then we can verify the monodromy property. The Neumann

series does not converge for general values of parameters. This difficulty is not

merely a technical one because the solution should have poles at certain values

of the deformation parameters.

A more natural approach to give a precise meaning to (3.1) is to apply the

Wick's theorem to <^i1)-"</>i,ll)) and <^J(x0)^i1)-"^lJ
IVj8(:x)) separately, and to

express Y(x)(xp as a quotient of two holomorphic functions. For example,

with an appropriate choice of integration contours we obtain the following

expression for the correlation function <<p (
1

1 )---<p£| l )>:

(3.2) <<pi1)---(^')> = f ^- ± ± \dXi- (dx{x
1=0 !>• ni,...,m = l a i , . . . , az = l J J

___ -1— K ("""<>A

Unfortunately, the usual Fredholm theory does not work because the contours

given in [2] are of infinite length.

To overcome this difficulty we recall our previous results [16], [17] on some

physical models. The contours employed there flow into certain sectors where

the integrand is exponentially decreasing otherwise they are compact. Hence

in these models the analyticity of the correlation functions ( = the T functions)

are obvious.

If we treat general monodromy data we cannot expect to use such good

contours. We exploit the following tricks instead :

i) Doubling of singularities.

ii) Hilbert's boundary value problem.

Namely, we first solve a monodromy problem with doubled singularity. We
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call it the twin problem. The doubling enables us to use good contours in the

above sense. Then we solve a boundary value problem in the sense of Hilbert

and Plemelj [8], [10] to wipe out the irrelevant singularities.

Let us consider twins of deformation parameters (a^, ^j> a)i<j^ r M 5 i<a<,, J

and (fr^s^Ji^^r^i^agm- We assume that al9...,an, bl9...,bn are distinct
and tL^iX ^ t^j, s^ja + s*!?^ (a * j8). We also assume that

(3.3)

For each (f.il) we can choose a permutation o(l*l) e <5m so that

(3.4) Re<#(*)<0 for x s.t. ai'g(x-afl) = p+ — (/-I)

if and only if

Taking a small positive constant & we set

(3.5)

We choose n distinct paths r(a^ bu) (ju = !,..., n) which comes from b^ and

flows into dp We fix contours /^ and 7/^° (1^/c^m-l) as follows. /<">

is a closed path surrounding F(aM, 6J anticlockwise. We take 7(^ (/i= 1,..., n)

so that the regions &>^ surrounded by /(^ are disjoint. II(^l} is a path in ̂ (Ai)

which connects y^° and yj^' in the same direction with r(a/f, 6J. They

should be disjoint and located anticlockwise (resp. clockwise), viewed from a^

(resp. bj, in the order II{^\ 11^,..., //^Jj,//^,..., //,^}. Tf we ignore the
fine structure //(/n,..., //iff}, we write simply J/^n. The contours 7<*>'s and

//(M0's divide F into 1 +Z^=i max(l, 2rM) pieces. We denote by «9*<0) the

region containing oo. We denote by y^^ the region containing the segments

} and {x

We choose a point x0 in £?(0\ We set

(3.6) 4"}W
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Now we consider the following monodromy problem.

The twin problem: Find an m x m matrix Z(x) such that

(Tl) Z(x0)=l,

(T2) Z(x) is single-valued holomorphic in ̂ (Q},

(T3) Z(x) can be continued holomorphically to c^(/ll),..., <?(n2rn+1\

successively, and in ^(/l/), when x — tf/t|-»0 (as well as |x —b / ( |-»0) it has an

asymptotic expansion, which is independent of /.

We shall solve the twin problem by exploiting Clifford operators. We

use free fermion fields \l/J(x), i//*(x) (xe5^0)), $(f\x) 0J°°(x)

(t>(£l\x), ^l}(x)(xell^l}). The expectation value is defined as follows:

and

if 0. = ^a5 (j)^1) or 0^^ and if 0* = ^J5 0*(M) or </>*( / i l).

(3.8) <i/^*(x)^(x')> = — -^—7- (5a/? (x^x').

(3.9) <^*
"* 27T X-X' '

(3.10) <0*f

(3.11) <^*(x)^»(x')> = <*:<"I)(x)^(x')> =0.

(3.12)
^271 X-.X'

(3.13) <0?(")(x)^v')(x')> = <0J(Ml)(x)0Jv)(x;)> = 0.

(3.14)

We set

(3.15)

(3.16)

(3.17)
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and define a Clifford operator cp^ by

(3.18) pi

In (3.18), if x and x' belong to the same contour, we take x' to be on the right

bank of the contour for x.

We shall construct the solution Z(x) in the form

(3 19)V J • l V )

Let us consider (^i0---^0) first. We set

(3.20) Ky(x, y)=-^^ *ff\y)

where K(^v)(y) is defined on the contours as follows:

(3.21)

if

= ^Af if
^ 0 otherwise.

The Wick's theorem gives us the following expression for <9i1)-"9ir)>:

, % ^ °° ^ i ^ ' « '»
(3.22) <(pa)...<p<;.)>=I:

iVI- Z I
Z=0 *• / i i , . . . ,/ti = l a i , . . . , a i = l

%k) (xjt xk))Jik=1 ..... , .

Here the integration is over (U" i/0") U (W/=i 2ru //^J))- Tne Fredholm
t = l,...,m-l

theory assures that <<p(
1

1)---<pj,;')>is holomorphic with respect to the parameters

a,, &„, ri"/., s .̂«, A^» and C^ (l£n£n, Ogjgr,, l£«,pgm, l^/^2rM).

Similarly, <!/'*(^o)9'i1)"-<?'i"V/-'c)) is expressed as a Fredholm minor:

(3.23) <

= S -^ t f U*i- \dx,
1=0 *• /i! ..... ni=l a i , . . . , a i = l J J

x det
_ _ _ _ _

2n x0-x . "** 2n x0-xk
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Applying the argument in the proof of Theorem 2.3 in [2] we can show

that (3.19) with (3.22) and (3.23) gives us the solution to the twin problem,

which is meromorphic with respect to the parameters.

For the moment we assume that

(3.24)

We should wipe out irrelevant singularities bl9...9bn. We fix x0 to be oo.

Take a Jordan curve L which encircles &1? . . . , bn anticlockwise and separates

them from al9...9 an. We denote by D+ (resp. D_) the inside (resp. outside)

of L. The problem is to find matrices R+(x) and jR_(x) which are holomorphic

(up to the boundary L) in D+ and £>_, respectively, such that

(3.25) R.(x)Z(x) = R+(x) if

(3.26) #_(;

The solution 7(x) to the original monodromy problem, which is normalized at

x = oo, is given by

£_(x)Z(x) *eD_
(3>27) ^v" l#+(x) xeD+.

The reader is referred to [8], [9] and [10] as for the standard argument

below. The solution jR_(x) should satisfy the following integral equation on

the curve L:

(3.28)

where the kernel H (y, x) is given by

(3.29)

We use the notation

(3JO)

We denote by A(X) and A(y9 x\ A) the Fredholm determinant and the Fredholm's

first minor, respectively :

(3.31)
°° f —;y ™ r r / Xi'-Xi

^—1 I Al ir—\ \ j \ j TTI *

= I- j\ L \ dx1--- \ dxl Hi
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f111\ A( n V (~W(3.32) A(y, x; tyxp=^ ^-jj^-
z=o t i

If 4(1)^0 the integral equation (6.20) is solvable and the solution #_(*) is

given by

(3.33) *.(*) = !

Note that Z(x) satisfies a linear ordinary differential equation of the form

with the additional condition

(3.35) £ trace A^= ± trace £„ 0 = 0 .
H=l n=l

From (3.34) we have

(3.36) H(X, x)=
V=l j=0

Using (3.35) and (3.36) we can verify that

(3.37) 4(A) = /I(-A).

Hence if ^(1)^=0, then we have A(- 1)^0. Thus the solution R-(x) to the

integral equation (3.33) really solves the boundary value problem (3.25) and

(3.26).

We note that d(l), which is holomorphic if (3.24) is valid, cannot be identi-

cally zero. In fact, if A<#° = 0 and C<$ = 5^ (1 ^ p ̂  n, 1 ^ a,j8 ^ m, 1 ^ / g 2^),
Z(x) is given explicitly by

(3.38) Z(x)a/?=ri8^(x)(5a/?.
/z=l

In the limit b^ s(J*)ttt, r^ f a->0(l^/£^n, 0^jg/> l^a^m), we have 4(1) =1.

Thus we have proved that the solution Y(x) to the monodromy problem

(M1)-(M3) is meromorphic with respect to the parameters provided that (3.24)

is valid. Now we shall eliminate this restriction.

Before proceeding to the general case we comment on a simpler case when

the Stokes multipliers are trivial, i.e. A^7) = 0 ( l^ ju^n, lg/^2?^, l^a,/?gm).

In this case the contours of type II are absent in the Fredholm determinant
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expression for {^i1^--^!^). Hence choosing each b^ closely to aM we can show
(3.24). Thus we can prove the meromorphy of Y(x), restricted to the submani-

fold where the Stokes multipliers are trivial, even at the exceptional hyperplane
/f(/0 _f(A«) —0)lr-rM,« l-rn,p~~V)'

In order to treat the general case we introduce a parameter K and set

(3.39) pW

where

(3.40) <

If K is small, p(?c)^0. Hence for some positive integer p we have

(3.41) %£ (0*0.

First let us assume that p = i. Then we have

(3.42) <9i1)-"^0°
)(*i)^

for some jU0, a0 and xl9 x2 e /<"») y (Wi=if...f 2^/4"°°). We set
fc=l,...,m-l

(3.43) Z'(x)

= 2ni(x-x ) <^*^o)yi1)"^aoo)(^i)^goMo)(^)yyoo)"-^

We claim that Z'(x) satisfies (T1)-(T3) with additional apparent singularities

(where Z'(x) is not invertible holomorphic) at x = xl and x = x2. The verification

of (Tl), (T2) and the local behavior at x — a^ (l^^^n) are the same as for Z(x).

Let us consider the local behavior of Z'(x) at x = x2. Applying the Wick's

theorem we obtain

(3.44) <

x det
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If ^*(M0)(JC2)==^*(Mo)(X2)j the singular part of (3.44) at x = x2 is

«> f_V n m r r
(3.45) Z-V- Z Z \dy,-\dyi1=0 I- jfi , . . . ,jui = l a1} . . . ,aj = l J J

x det -xk

Hence at x = x2

(3.46) Z'(x)C<"o)-i(x-x2)^» (^-(

is holomorphic.

If iA*^°)(x2) = ^*0
(Mol)(x2) for some j80 then A^> ^ 0. We define an m x m

matrix C by

(3.47)

0 otherwise.

The singular part of (3.44) at x = x2 is

(3.48) - Z (~)' £ f _ (dy1-(dyl

"^aa,-^--^— «£k)(**))*-i i
xdet x •* ^ '

2ni x2-x

Hence at x = x2

(3.49)

is holomorphic. Thus we have proved that at x=x2, Z'(x) has an apparent
singularity whose exponents of formal monodromy are zero except for single
-1.

By the same argument we can show that as a function of x0, Z'(x) has an
apparent singularity at x = x1 whose exponents of formal monodromy are zero
except for single —1. Since Z'(x) is normalized so that Z'(x0) = l, this implies
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that at x = xl9 Zr(x) has an apparent singularity whose exponents are zero ex-

cept for single 1.
If p^2, by a similar argument we obtain an m x m matrix Z'(x) satisfying

(T1)-(T3) with additional apparent singularities, the same number of poles and

zeros,

Now we can use Z'(x) instead of Z(x) in the boundary problem (3.27). We

choose L so that not only fe/( ( l^ ju^n) but also all the apparent singularities

are inside of L. The final step in the proof of Theorem 1 is to show that the

corresponding Fredholm determinant A'(\) does not vanish identically with

respect to the parameters a» b^ #/,«, *<?£„

Let cv, £av, D
(v) (Igv^p) and cv, — £av, D

(v) (p + i^v<*2p) be the data

of additional apparent singularities. For Z'(x) constructed above the con-

nection matrix D(v) at cv is specified by (3.46) or (3.49). We denote this special

value by D(
0
V\ We shall show that for a generic choice of D(v) there exists a

solution Z'(x). The solution to the twin problem is meromorphic with respect

to the parameters. Thus Z'(x) is also meromorphic with respect to the parame-

ters including D(v).

A little care should be taken, since the exponents at cv has an integer

difference. At x = cv, Z'(x) is of the form

(3.50) Z'(x) =H(V>Z/(V)(x)(x — c )± £ avl)(v)5

^ oo

J = l J

We define B^ (j^O) by

(3.51) A^L=H(

We have the constraints

(3.52) (Bk>

On the other hand, if we solve (3.51) assuming(3.52), (Z}(v))avjs (l^vgp, av

and (Z}(v))^av (p + lgv^2p, av^/0 are undetermined.

Let us consider the analytic space of singular data jV" consisting of those

for the twin problem, H^ (l^v^2p\ (Z;(v))av/? (Igvgp) and (Zi(v\av (p + 1

gvg2p), which are subject to the constraints (3.52). We also consider the
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analytic space Jt' of monodromy data consisting of those for the twin problem

and D(v) (l^v^2p). The map from Jf' to Jt' which maps a singular data to

the corresponding monodromy data is analytic and one to one. Hence the

intersection of the image of Jf' and the fiber which contains the point (a^

dense in the latter.

Now let us continue Z'(x) with respect to t^)tOL9 si^ and

a,/?^m). If they are small enough, Theorem 2.3 of [2] assures

that we can solve the monodromy problem & with the data a^ fl^U ^«$> c$
as well as 0>" with the data b^ sl^ja, A<£°, C$. Then for a generic choice of

£)(v> the monodromy problem &' with the data b^ s<?j>a, A^°, C^} and cv, ±EXv,

D(v) admits a solution. Hence by the lemma in Appendix we know that an

analytic continuation of Z'(x) can be identified with the solution F(x0, x ; ̂  + ^')

to the composite problem 0>t + 0>'. Then considering the limit £-*0, we can

show that A'(l) does not vanish identically. Thus we have proved Theorem 1.

§ 4 Proof of Theorem 2

First we shall show that the i function for the twin problem is analytic

except at the fixed singularities. The asymptotic series for the solution Z(x)

to the twin problem is of the form

at x = aft

at x = b,,9

( u+ Z +

(4-D Z W~{G«ZL>

where S^(x) is an m x m diagonal matrix with

(4.2) S^(x)xx = L"|. -* +#> log (, -«,)

Set

(4.3) eu' = - ; Res^,, trace
fi=l **

- ± Rfis«.»M trace 2^
/f=l C/Jt

Then by the same argument as in Section 5 of [2] we can show that
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(4.4) a)'

The difference between the 1-form cotwin of the definition in [1] for the twin
problem and co' defined above causes the following discrepancy between the t

function rtwin for the twin problem and <<pi1 )---^m" )> :

(4.5) ^in = <9^'"9^>n flW
M=l a=l

where i^ is the T function for the monodromy problem whose solution is

s^\x). Thus itwin is analytic except at the fixed singularities. Hence the one

form cotwin for the twin problem has only simple poles with residues of positive

integers.
Now we denote by &' (resp. 0>t) the monodromy problem with the data

«v ^},«> #f}\ C{$ (resp. tbfl, *'#/., A#>, C<$). We shall use the notation
in Appendix. The asymptotic series at a^ for Y(xQ, x; &t+&') reads

(4.6) Y(x0, x; &>, + &') ~GW(t)2M(

Then the poles of the meromorphic 1-form

(4.7) w (t) = - ± ReSjc=flAi trace Z^ (x9

are simple and their residues are positive integers.

Theorem 1 assures that the closed 1-form ov for &' is meromorphic. Let

us prove that the poles of co^ are simple and their residues are positive integers.

if {a^ ̂ AJi^^u^iw ^«£m is not contained in tiie P°le locus, then y(x0, *,
&') exists. Then, for a generic choice of b^ and sLMjsa , F(x0, x, &t) also exists.

Then the lemma in Appendix implies

(4.8)

Because the residues of a>(t) are constant, co^ has only simple poles. Finally,

since the residues of a>(t) are positive integers, so are the residues of <D^. Thus

we have proved Theorem 2.

Appendix

Let us consider two different monodromy problems 0>t (t>0) and &' with

the following monodromy data:
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We take Jordan curves Ct and C' with anticlockwise orientation which encircles

ta !,..., tan and a {,...,(*'„', respectively. We assume that the regions surrounded

by Q and C' are disjoint, and that OeC is not contained in C'.

We denote by 7(x0, x; ^,) (resp. 7(x0, x; «^')) the solution to the mono-
dromy problem &t (resp. ^'). Similarly we denote by 7(x0, x; ^r-h^') the

solution to the composite problem ^>r + ^' whose data are the union of those of

0>t and «^'.

Lemma. Assume that 7(x0, x; ^,) awrf 7(x0, x; ^') exfsf. Then for

small t 7(x0, x, ^f + ^') gx/sfs awJ the following limit is locally uniform:

(Al) lim Y(x0, x;

Before proceeding to the proof we prepare the following. Let 7(x) be any

solution to the monodromy problem (M2) and (M3). Using free fermion

fields i/^*(x), \j/x(x) ( l^a^m) satisfying (3.8), we set

(A2) <p=:

The integration contours for x and x' in (A2) are Jordan curve C which encircles

all the singularities anticlockwise. When x and x' coincides with each other

we deform the contour for x' outwardly. If we take x0 and x outside of C, we

have

(A3) 2ni(x - x0) <^*(x0)(^(x)> = (7(x0)^ 7(x))a, .

We denote by <pt (resp. q>') the Clifford operator defined by (A2) with 7(x)

replaced by 7(oo, x; &t) (resp. 7(oo, x; &')). Then if <(M>'>^0 the solution

7(x0, x; ̂  + ̂ ') is given by

— 0 -- , ,.

Since we have

(A5) r(oo, x9 ̂ f) = 7(oo5 y 9

in the limit f-»0 we have

(A6) lim <pt = : exp (( dxdx' f -^
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Using (A6) we have

(A7) lim <*A*(

(A8) lim<(M>'> = l .
r-*0

The latter implies that for small t

(A9)

Hence (A3) and (A4) prove the lemma.
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Added in Proof'. By a letter from Professor B. Malgrange I learned that he also proved
the Painleve property for the Schlesinger equation.




