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Let XaPn be an r-dlmensional projective variety. For every integer k

with Og/cgr consider an (n — r + k — 2)-dimensional linear subspace L(/c) of Pn.

Since the dimension of the tangent space of X at a smooth point x e X is equal

to r, the tangent space necessarily intersects L(&) in a space of at least k — 2

dimensions. The closure of the set of all smooth points of X where this inter-

section space has dimension at least k— 1 is called the /c-th polar locus of X and

is denoted by M(L(fc)), following Piene [4].

For a general L(fc)5 every component of M(L(k)) has codimension fc in X and
moreover the rational equivalence class of the cycle defined by M(L(/{)) is in-

dependent of L(fe). We denote this equivalence class by [Mfc] = [M(L(fc))] and call

it the /c-th polar class. The degree nk of [Mfe] is called the /c-th class. The

number /,*0 is nothing but the degree of X. We set ^fe = 0 for any integer k with

/c<0 or k>r.

On the other hand, the dual variety Y in the dual projective space FnV is de-

fined as the closure of the set of tangent hyperplanes. A hyperplane is tangent

to X if it contains the embedded tangent space of X at a smooth point x e X.
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In characteristic 0 the dual variety of Y always coincides with X itself.

We know a good sufficient condition in order that the dual varity of Yis again

X in the case of positive characteristic. It is explained in Section 2 (Wallace

[6]). We say that biduality holds for X if this condition is satisfied or the

characteristic is 0.

The purpose of this article is to verify the next theorem, which generarizes

Proposition (3. 6) in Piene [4].

Main Theorem. LetXaP11 be an r-dimensional projective variety and

let Y be its dual variety with dimension s. Suppose that biduality holds for

X. We denote the k-th class of X by ^ik9 and the j-th class of Y by v,-. Then

jUk = Vj when k+j=r+s— n + 1.

That is, if we reverse the sequence ..., 0, v0, v l5..., vs, 0,... and translate ii

to correspond u0 to v r+s_n+1 , then it coincides with the sequence ..., 0, jU0, nl9

..., j*r, 0,....

We obtain the following as corollaries.

The dimension of the dual variety is equal to n — 1 — r + max {k\ jU f c^O).

Set / = r + s-n + l. Then /^O. The equality / = 0 holds if and only if

X is a linear variety, and then Y coincides with the dual space of X as a linear

space.

The study of polar loci and dual varieties goes back to Severi and Bertini.

It was succeeded by Segre, Todd, Wallace, Porteous, Lascoux, Pohl, Teissier,

Le, Piene and others. In particular Piene showed in her paper [4] with other

results that polar loci and polar classes are invariant under generic projections,

and that the intersection X1 of X with a general hyperplane has the same fc-th

class as that of X except ur, which is 0. Moreover she showed the special case

of above Main Theorem where r = s = n— 1.

Our article is a continuation of Piene's work in [4]. I would like to

thank Professor H. Hironaka for his interest in this work and Professor T.

Shioda to have shown me the interest of the Piene's work.

§ 1. Polar Loci and Polar Classes

In this section we will give the precise definition of polar loci and polar

classes.

We fix an algebraically closed ground field k. Every scheme is assumed



NUMERICAL CHARACTERS OF POLAR Loci 333

to be separated. A reduced irreducible proper scheme of finite type over k

is called a variety.
We freely use the theory of the Chow homology group A. and the Chow co-

homology group A' developed by Fulton in [1], For a possibly singular scheme

X, A.X is the abelian group of algebraic cycles modulo rational equivalence

graded by dimension. A'X is a graded ring where for every vector bundle E

on X the Chern class c(E) = Ic{(E)eA'X is defined. Every proper morphism

/: X-*Y defines graded homomorphisms /#: A.X-+A.Y and /*: A'Y-+A'X.

The cap product n : A'X®A.X-+A.X satisfies:

tnteAj-tX if £eAlX and teAjX

(the projection formula)

/*(/*£ nf) = £n/*r for £eA'Y and teA.X

and

t for £,riGA'X and teA.X.

s(£) = c(£")~1 is called the Segre class of the vector bundle E. Here E"

denotes the dual vector bundle of E. Let a: P(E)-+X be the projective bundle

associated with the vector bundle E. It is well-known that

sk(E) n [*] =^(c1(^F(E)(i))-
1+& n [P(£)]), *=o, i, 2,... .

Here [T], [P(£)] denote the fundamental classes of X, P(E) respectively

and e = rank F.

We write the ^-dimensional projective space Pn in the "coordinate free"

way as P(V) with an («+l)-dimensional vector space V identified with

H°(Pn, GPn(\)). Let Zc P(F) be an r-dimensional projective variety. Pl
x(L)

denotes the sheaf of principal parts of the line bundle L = 0F(F)(1)|X, that is,

Here qt denotes the restriction of the /-th projection pt: X x X-*X to the closed

subsceme defined by J2, the square of the ideal of the diagonal.

Vz denotes 0Z®V for a fc-schemeZ. A surjective homomorphism Fz->2
k

for a vector bundle Q with *=rank Q is called r-quotient. A sheaf homo-

morphism

a'Vx

is defined by the equality
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,.
k ffx

with xeX,ye &x>x and 0 e V=H°(Pn, 0Fn(l)) .

Let xeX be a closed smooth point. Set ^4 = 0XjX and fix an isomorphism

LX^A. Pick a basis of F, say $0» 0 i » - - - > 0n- Their images by the morphism

FX):c-^Lx = A are denoted by the same letters. Pick a regular system of para-

meter of A, say tl9...9 tr. {1, dt ls..., J*r} is an ^4-free basis of Pj^L)^, where df£

denotes the class of the element f,.®l — l®f f - . Let {1, D i ?...3D r] denotes the

dual basis. D l5. ..,!),. are regarded as differential operators of 4. With the

above choice of bases the diagram

V*.* -^ n(L)x

An+1 M > Ar+1

commutes. Here M is defined by the matrix.

00, (j)l , . . . ,

D±<l>09 Drft,...,

The linear subspace of P(F) spanned by the row vectors of M evaluated at

xeX is nothing but the embedded tangent space Tx. Therefore for a smooth

closed point xeX, the embedding P(P^(L) (x))^P(V) defined by the surjective

homomorphisrn ax®k: F->Pi(L)(x) coincides with the inclusion TJC
C->F(F).

Let U denote the maximal smooth open subschema of X. The morphism

g: u - >G

defined by the (r + l)-quotient

can be identified with the so-called Gauss map.

Now fix an integer fc with Og Jcgr. Let L(fc)=P(F/F') be an (n-r + fe-2)-

dimensional linear subspace of F(F). Let (r + l)-quotient VG-+Q denote the

tautological sequence of vector bundles on G = Grassr+1(F). We denote by

Ik the scheme of zeroes of the morphism

induced by the morphism V'G-*Q which is the composition of the inclusion
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7^= j/(g)<r?GC-»i/G with VG-*Q. The scheme Ik is one of the Schubert varieties
k

and codim (Ik, G) = k. It is known that the next equality holds in A.G

(Porteous [5]).

[£fc] = e,c(Q)n[G].

The inverse image g~l£k is the scheme of zeroes of the morphism

denoted by Mk(U). It is easy to see that x belongs to Mk(U) if and only if the
dimension of the intersection of the tangent space Tx with L(k} is at least fc — 1.

Let Mk be the schematic closure of Mk(U). We call Mk the k-th polar locus

of X for every integer k with Orgfc^r . As a set Mk coincides with the closure

of the set

Proposition 1.1 (Piene). For a general (n — r + k — 2)-dimensional linear

space L(fc)5 the class [Mfc] of Mk in A.X is independent o/L(fc). I f n : Z-*X is

any proper birational morphism such that the (r + T)-quotient a\v extends to

an (r + 1)- quotient b: KZ-*>P, there is an equality

Remark 1.2. We say that the (r + l)-quotient a\v extends to an (r+i)-

quotient b: VZ-*P if the following conditions are satisfied. First of all b is

surjective and P is a vector bundle over Z. Moreover there exist a non-empty

open set U' aU and an isomorphism h which makes the next diagram com-

mutative. We set U=n~1(U/).

P\0

We can choose such a proper birational morphism n\ Z-+X. For example

let Z be the closure in X x G of the graph of g: C/~>G? the morphism n be the

projection to X and the honiomorphism b of vector bundles be the pullback of

the tautological sequence on G by the restriction of the projection XxG->G

to Z.

Proof. See Piene [4].

For every integer k with Og fe^ r, the class [Mfc] e A.X which is independent
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of the choice of the general L(fc) is called the k-th polar class. In particular

§2. The Dual Variety

As in the previous section, let X^P(V) be an r-dimensional projective

variety in an n-dimensional projective space and let U be the maximal smooth

open subscheme of X. We will define the dual variety of X.

First of all we take a proper birational morphism n: X-+X such that the

(r + l)-quotient a\v: Vv-*Px(L) \ v has an extension on X. (See Remark 1.2.)

Let b: V%-*P be the extension of a \ v. We set K = Ker (fo), which is a vector

bundle on X. Associated with (n — r)-quotient FJ->KV (v denotes the dual

bundle), the inclusion Z = F(Kv)cF(FJ) = J x F(FV) is defined. Let Y denotes

the image of Z by the projection XxP(V^)-*P(V^) equipped with the reduced

scheme structure. Y is called the dual variety of X.

Let us call each morphism as in Figure 2. 1 . For a non-empty open sub-

scheme U',

Y=the closure of

Thus if we take such U' that n\n-i(U,): n~\U')-+U' is isomorphic, we see

that Y is independent of the choice of n. And for such U' and for a closed

point x£TTl(U' fl I/), the fibre aTl(x) consists of all hyperplanes which contain

the tangent space Tn(^ of U at n(x). Therefore when we regard all hyperplanes

which contain one of the tangent spaces of U as the subset of the dual projective

sapce P(FV), 7is the closure of that set equipped with reduced scheme structure.

Let s be the dimension of Y.

Example 2.1. Let Z be a linear variety. The tangent space Tx at a closed

point x e X coincides with X itself. Thus Y is the set of all hyperplanes which

contain X. 7 is nothing but the dual space of X as a linear subspace of P(F).

We note in this case that dim X + dim Y= n — i.
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Example 2.2. Let XaP(V) be the hypersurface defined by an irreducible

homogeneous polynomial F(t0, tl9...9 /„). Then 7 is the variety defined by the

system of polynomials which we can obtain by eliminating variables t0, tl9...9 ttt

from the equalities

F(t09tl9...9tn) = Q

UQ=-^ — (tQ, f i v - j O? • • • ? w» = -pT-(^05 * i 5 - - ' > *ii) •
OtQ 01n

Example 2.3. Let f0, fls r2, *3 be the homogeneous coordinate of F3. Pick

an irreducible homogeneous polynomial F(t0, tl9 t2) with three variables.

Consider the surface X defined by the equality F = 0. Let X^ denote the inter-

section of X with the plane £3 = 0. X is the cone over X^ with the vertex

p = (0, 0,0,1).

P= (0,0,0,1)

Figure 2.2.

Let M0, MI, M25 M3 be the dual coordinates of f0, ^, t2, t3. Then the dual

variety Y of X is contained in the plane i/3 = 0 which is the dual space of the point

p and Y is isomorphic to the dual curve of Xl in the sense of Pliicker. We note

that in spite that dim X = 29 Y has dimension at most one.

The objective of this section is to verify Theorem 2.4.

When a non-empty open smooth subscheme U1 c:X is given, for every point

y 6 F"v of the dual projective space, we define the y-contact locus. It is the closure

of the set of all points of Ut such that the tangent space of X at that point is
contained in the hyperplane Hy corresponding to y.
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Tangent space

Contact locus

Variety

Figure 2.3.

A morphism of schemes /?: Z-*X Is called generically smooth if the

restriction of /? to a dense open subscheme of Z is smooth. In characteristic

0 every morphism of varieties is generically smooth.

Theorem 2.4 (Wallace [6]). Assume the same situation as in Figure 2.1.

First assume that f$ is generically smooth. Then,

(1) the dual variety of 7, i.e., the twice dual variety of X coincides with X.

Let U and 17* be the maximal smooth open subschemes of X and Y re-

spectively. U1 denotes the maximal open subscheme of U such that ft|re-i(t7l)

is an isomorphism. Let l/f = 17*\/?(J) where J is the set of ramification points

of the morphism p. We set U2 = {xe U1 \a~1(x) D ̂ (Uf) ^ (/>}, U$={yE

UfirKjOnorKl/i)^}. Then,
(2.1) for every y e 17*, y-contact locus in X is the dual linear space of the

tangent space of Y at y,

(2.2) for every xe U2, x-contact locus in Y is the dual linear space of the

tangent space of X at x.

(3) Conversely under the assumption of (1) and (2.1), it follows that ft

is generically smooth.

We say biduality holds for X if ft is generically smooth. It is easily checked

that this definition is independent of the choice of the birational morphism

n: X-»X.

Corollary 2050 Assume that biduality holds for X. Let r = dimX and

5 = dim Y.
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(1) The y-contact locus for a general point of Y has dimension n~s—l.

The x-conlact locus for a general point of X has dimension w — r — 1 .

(2) The inequality r + slj^n — l holds. And the equality r + s = /t —1

holds if and only if X is an r-dimensional linear variety. In that case Y

coinsides with the dual linear space of X.

Proof. (1) is easily deduced from Theorem 2.4 (2). By Theorem 2.4

a contact locus is a linear subspace of a tangent space. Thus comparing the

dimension we have the inequality n — s — 1 :gr. Ff the equality holds, at general

points the contact locus and the tangent space coincide. Then the tangent space

and the variety also coincide. As for the latter half of (2), see Example 2.1.

Q.E.D.

Proof of Theorem 2.4. Pick j;0 e l/J ^ (/). Pick z0 e p-*(y0) fl or^l/j) and

set x0 = a(z0). Choose a sufficiently small smooth affine neighbourhood A^

Of XQ.

Pick a basis of V9 say c/>0, </> 1 , . . . , (j)n and let Dl9 D2,..., Dr be independent

vector fields on J V j . We fix an isomorphism of the structure sheaf @x\Nt and

the line bundle n*L\Ni with L — 0P(y}(\}\ x. As it is shown in Section 1,

(r+l)-quotient

< * \ u - V v >Pl
x(L)\v

is represented on N1 by the matrix

Pick a free basis of the global sections on N{ of the sheaf K = 7U*Ker (a \ v:

VU~*PX(L)\U)> say ei>-~9 en-r- The morphism K-+V% is represented by the
matrix

, \

with these bases. Then,

(2.1)

with [0]=(0(), 0i </'„) and for every vector field D on /V,
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(2.2)

with [D0] = W0, D^i,..., £></>„). Pick dual bases of el9...9 en.r, (t>0,

for Kv and FJ respectively and morphism V^-*K* is represented by the matrix

*[#]. There is an isomorphism

a-i(jV1) .—; ATjXP"-'-1

UJ UJ

(*, [«!£?! + ••• + *„_,.£?„_,,]) i — > (A:, (u^: u2: • • • : « „ _ , ) ) .

The affine coordinate M J /M I with j = 2, 3,..., n — r on the open set JVczP""1"1

defined by w^O is also denoted by the same letter. Here we set ul = i. We

may assume that ZQEN^^ xN. 1-quotient VZ-^0Z(\) is represented on Nl x N

by the matrix

(2.3) with [w] =

The morphism jS is defined on ATjL x JV by

Choose a sufficiently small smooth affine neighbourhood JVf of j0 e 7. Let

Df, Df,..., D* be independent vector fields on Nf. The tangent space of Fat

j^0 e Nf is nothing but the space spanned by the column vectors of the value at

y0 of the next matrix

Next we show that on a neighbourhood JVj of z0 e Z,

(2.4) M[r*y]=o
holds, First the equalities (2.1) and (2.3) imply that

(2.5) MOT = MWM=o.

Since j8 is smooth at z0 e Z, D^ can be extended to the vector field D* on Nl

for every j = l, 2,...,s. In view of the fact (d(f)i/8uj) = Q (i=0, 1,. . .9n,j =

2, 3,..., n —r) and the equality (2.2), we see that for every vector field D on Nl
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with [5(/>] = (5</>0, 50J,..., D(/)n). Thus in particular

(2.6) [%>] m = [%>] DA] [H]=0, j = l, 2,..., 5 .

Differentiating the equality (2.5) by DJ, we obtain that

This equality and (2.6) yield

M[5jy]=0, 7 = 1, 2,..., s.

The last equality and (2.5) conclude the equality (2.4).

By (2.4) the value at z 6 p'l(y0) n NI satisfies

(2.7) W(«(z)

Let C be the image of the morphism

which may be assumed to be isomorphic. Let S be the linear subspace defined

by the (s + i) linear equalities whose coefficients are one of the column vectors

of [(r*y)0>0)]. The equality (2.7) shows C c S.
Since the rank of the matrix [T*!F] is s + 1, dim S = n — 1 — s. The dimen-

sion of C is not less than n — 1— s = dimZ — dim Y because /? is surjective and
a U ~ 1 ( y o ) n ^ i *s assumed to be isomorphic. Thus for a sufficiently small niegh-
bourhood JV3 of n(xQ), C D N3 = S n JV3. Since z0 is an arbitrary point of

P~~i(yQ) n a"1(C/1), this concludes that the j0-contact locus Cyo i.e., the closure

of the set of points of U1 whose tangent spaces are contained in the hyperplane

corresponding to y0 is the dual linear space of the tangent space of Y at j;0.

Consider the restriction of the fibre space /?: Z-»7 to the open set

Cfi = a-1(^i)nj8"1(^*)- Its fibre at a P°int };et/* is a dense subset of all
hyperplanes containing the tangent space Ty of Y at y. Hence the relation

between X and the fibre space oc\Gi: U1~^X is the same as between Y and the

fibre space ft \ Cl : UI-+Y, which conclude (1), X is the dual variety of Y. Since

the relation between a and ft still hold only under assumption (1) and (2.1) and

a is obviously generically smooth, we can conclude (3).

Applying for (Y, a) what we have verified for (X, /?) in the above, we can

also conclude (2.2). Q. E. D.
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§ 3, The Main Theorem

Let X c=P(K) be a variety of dimension r in a projective space of dimension n.

For every integer k with 0 ̂  fc ̂  r, let

be the fc-th polar class of X. In particular recall [M0] =

Notation 3.1. \oc denotes the degree of the 0-dimensional component of

the element a of the Chow homology group. That is,

\ a = s^a e A0 Spec (fc) = Z

where s: X-»Spec(fc) denotes the structure morphism.

Definition 3.2. The fc-th class fik of X is defined as the degree of the fc-th

polar class [Mfc], that is, nk = \c1(L)r~k fl [MJ with L = 0P(K)(1) |*for an integer

fc with 0 g fc g r, and ^fc = 0 if k < 0 or fc > r. We note that ^0 = degree of X.

Main Theorem 3.3. Let XaPn be an r-dimensional projective variety In

an n-dimensional projective space. Assume that biduality holds for X.

Let Y be the dual variety of X, and let s be its dimension. Let [tk denote the

k-th class of X and let v;- denote the j-th class of Y. Then the inequality

^n—i holds and if k+j = r + s-n + l, tJien jnk = Vf.

Whole this section is devoted to verify Main Theorem 3.3.

Following Section 2, we construct X the closure of the graph of the Gauss

map, Z and morphisms a, a, n, p. Applying the same procedure to F, we obtain

F, FFand morphisms y, 7, p, 5.

Closely reexaming the proof of Theorem 2.4, we know that the open set

(71=a-
1(^i)nj8"1(l/f)ciZ is isomorphic to the open set Ul=5~1(U1) n

y~1(Uf)c:W. (Of course U} = U, if X is the closure of the graph of the Gauss
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map.) And moreover there exists an isomorphism 0: U1-^Ul such that <50 = a,

Set L = 0P(n(l)|x, L* = 0P(K-,)(l)|y. Let P,K be the same as in the

beginning of Section 2. By Proposition 1.1, for every integer k with Oglfcgr,

Since c(P) =

Hence

(3.1)

(Lr* n Tr^a^/J'cjCL*)"-'-^* n [Z])

= Ja*fi(L)'-* •£*c1(L*)"-'-i+* n [Z] .

For an integer k with /\<0, since

we have

*C!(L)r-fc - ̂ c^L*)"-11-1^1 n [Z]

= c^Ly-* n at(/j*c1(L*)»-'-1+fc n [Z])

Set l=r + s—n+l. We know similarly that for an integer k with r — n

(3.2) v / . ^ C j C L ) 1 - * ••y*cJ(L*)w-p-1+fc n [W] .

Consider

^ = ((5,7): M^ - >P(F)xP(Fv).

Let St be a linear subspace of F(F) of dimension n — r + /c, and S2 be a linear
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subspace of P(V) of dimension r+1 — k. The equalities (3.1) and (3.2) show

By Kleiman 's Transversality Lemma (Kleiman [2]), we may assume that for

general Sl9 S2, the supports of M = £~l(Sl x S2) and JV = f;-1(S1 x S2) (M and N

are regarded as schemes,) have dimension 0 and MaU^Nc&i since for example

the intersection (Z\L?1) n M is proper and necessarily empty. By Corollary 11

in Kleiman [2], we can assume moreover that every point in their supports has

multiplicity 1, which implies that the regular sequence generating the defining

ideal of St x S2 in 0P(y^P{y^ is still a regular sequence on Z or W. Thus all

higher Tor-modules appearing in the definition of C*[Si x S2] and */*[$! x S2]

vanish. We have

jUfc = the number of points in C'H^i x $2) >
Vj.^the number of points in rj~l(Sl x S2) .

Since U\ and Ul are isomorphic through 6, we conclude ^k = vt^k. As for the

inequality r-f-sgrn — 1, see Corollary 2.5. Q.E. D.

Corollary 3.4. Under the same assumption as in Theorem 4.2,

dim y=n-l-

Proof. Since / j r + s_B + 1 = v0^0 and since jUfc = 0 if k>r + s — n + 1 by

Theorem 3.3, it is obvious. Q. E. D.

Remark 3.5. The assertion in Wallace [6] Section 2.1 is false. It asserts

that for a generic point x E X and a generic hyperplanc H such that H contains

the tangent space Tx of X at x, {*' e U \ Tx, = Tx} = {x'eU\ Tx,aH}. Here U

is the smooth part of X. As a counter-example, choose X=P1 xP2C-»P5 (the

Veronese embedding). Calculation shows that the left-hand side is a single

point {x}, but the right-hand side is a line.
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