Some Calculations in the Unstable Adams-Novikov Spectral Sequence ${ }^{1)}$

By
Martin Bendersky*

§1. Introduction

The unstable Adams-Novikov spectral sequence for a space X is a sequence of groups $\left\{E_{r}(X)\right\}, r=2,3, \ldots$, which converge to the homotopy groups of X, and whose E_{2}-term depends on the complex cobordism groups of X. We investigate this spectral sequence when X is the infinite special unitary group $S U$, or one of the finite groups $S U(n)$, or when X is an odd sphere $S^{2 n+1}$.

The reader is referred to [2] for the construction and properties of the unstable Adams-Novikov spectral sequence. For some purposes, it is convenient to localize at a prime p, in which case the complex cobordism homology theory, based on the spectrum $M U$, is replaced by Brown-Peterson homology, based on the spectrum $B P$. We then have a useful spectral sequence with many of the properties of the stable Adams-Novikov spectral sequence. Namely, the filtrations are less than or equal to the filtrations in the unstable Adams spectral sequence based on mod- p homology. When X is a space for which $H_{*}(X ; B P)$ is free over the coefficient ring $\pi_{*}(B P)$ and cofree as a coalgebra, then the E_{2}-term is isomorphic to an Ext group in an abelian category (see §2; also [2, §7]). Furthermore, this Ext group may be computed as the homology of an unstable cobar complex which we describe explicitly in Section 2. In particular, these considerations apply to the cases $X=S U, X=S U(n)$, or $X=S^{2 n+1}$.

We first consider the situation where X is a p-local H-space with torsion-free homotopy and torsion-free homology. The results of Wilson [10] and the

[^0]general properties of the spectral sequence imply that the spectral sequence collapses, with $E_{2}^{0, *}(X) \approx \pi_{*}(X)$. In this case, the homotopy groups of X (and even the homotopy type of X) are determined by the module of primitives $P H_{*}(X ; B P)$ as an unstable Γ-comodule (see $\S 3$). In particular, this is true for $X=S U$. We also give an explicit description of the generators of $E_{2}^{0, *}(S U)$.

In Section 4, we consider the case $X=S U(n)$. We compute $E_{2}^{1}, *(S U(n))$, which gives information about the pullback of the groups $\pi_{2 k}(S U(k))$ to $\pi_{2 k}(S U(n))$ for $n<k$. We also compute the kernel of the map $E_{2}^{2, *}(S U(n)) \rightarrow$ $E_{2}^{2, *}(S U(n+1))$. In the case of an odd prime p, the non-zero elements in this kernel survive to $E_{\infty}^{2, *}(S U(n))$ to give elements in homotopy related to the unstable image of the J-homomorphism. There is a similar but more complicated result for $p=2$.

In Section 5, we give a vanishing line for $E_{2}^{s, t}\left(S^{2 n+1}\right)$, and also for $E_{2}^{s, t}(S U(n))$. We then show that in a range of dimensions, $\pi_{*}\left(S^{2 n+1}\right)$ and $\pi_{*}(S U(n))$ may be computed as Ext groups in the category of unstable Γ-comodules. These calculations agree with, and extend those of Zabrodsky [11], and Mimura, Nishida and Toda [7].

Throughout the paper, space means simply connected Hausdorff topological space with basepoint, and map means continuous function preserving basepoint. The homotopy relation for spaces and maps is \simeq. The smash product is denoted by \wedge. In an algebraic situation, homomorphism means that the algebraic structure is preserved, and \approx means a homomorphism which is an isomorphism onto. The ring of integers is denoted by \boldsymbol{Z}, and the rational numbers by \boldsymbol{Q}. For a prime number p, the ring of integers localized at p is $\mathbb{Z}_{(p)}$. Except for 4.10 (3) all spaces are assumed to be p-localized. For an integer n, the ring of integers modulo n is \boldsymbol{Z}_{n}.

Acknowledgement

The author wishes to acknowledge the contribution of E. B. Curtis to the final form of this paper.

§2. The Unstable Adams-Novikov Spectral Sequence

In this section, we summarize the main results of [2], which gives the construction and main properties of the unstable Adams-Novikov spectral
sequence. When a prime p is fixed, $B P$ refers to the Brown-Peterson spectrum associated with p. For a space X, the (reduced) homology groups of X with coefficients in $B P$ are denoted by $H_{*}(X ; B P)$. The coefficient ring $\pi_{*}(B P)$ is called A, and the ring of co-operations $\pi_{\%}(B P \wedge B P)$ is called Γ (Γ is the $B P$ analogue of the dual of the Steenrod algebra).

The spectrum $B P$ defines a functor $B P(\cdot)$ from spaces to spaces by

$$
B P(X)=\lim _{n \rightarrow \infty} \Omega^{n}\left(B P_{n} \wedge X\right)
$$

The unit in $B P$ is a map $i: S \rightarrow B P$ of the sphere spectrum S to $B P$, which gives a map

$$
\eta=\eta(X): X \rightarrow B P(X)
$$

This gives rise to functors $D^{s}(\cdot)$ and a tower of fibrations

$$
\begin{equation*}
\cdots \rightarrow D^{s}(X) \xrightarrow{\delta^{s}} D^{s-1}(X) \rightarrow \cdots \rightarrow D^{1}(X) \xrightarrow{\delta^{1}} D^{0}(X)=X \tag{2.1}
\end{equation*}
$$

as follows. Inductively on s,

$$
\delta^{s}: D^{s}(X) \rightarrow D^{s-1}(X)
$$

is the fibration over $D^{s-1}(X)$ induced from the path-space fibration over $D^{s-1}(B P(X))$ by the map $D^{s-1}(\eta)$. The homotopy exact couple of this tower is called the unstable Adams spectral sequence for X with respect to $B P$ and its terms are denoted $\left\{E_{r}^{s, t}(X ; B P)\right\}$. When the ring spectrum $B P$ is assumed, we call this the spectral sequence for X, and write $\left\{E_{r}^{s, t}(X)\right\}$. From [2, §7], we have the following.

Theorem 2.2. For each simply-connected $C W$-space X, the spectral sequence $\left\{E_{r}^{s, t}(X ; B P)\right\}$ converges to the homotopy groups of X localized at p. If $H_{*}(X ; B P)$ is free as an A-module, and cofree as a coalgebra, then

$$
E_{2}^{s, t}(X ; B P) \approx \operatorname{Ext}_{\mu}^{s}\left(A[t], P H_{*}(X ; B P)\right)
$$

Here \mathscr{U} is the category of unstable Γ-comodules (which will be described below). $A[t]$ stands for the free A-module on one generator of degree t; $P H_{*}(X ; B P)$ stands for the submodule of primitives in $H_{*}(X ; B P)$. Furthermore, these Ext groups may be calculated as the homology of an unstable cobar complex $C^{*, *}\left(P H_{*}(X ; B P)\right)$, which will be described explicitly below.

We next recall some facts about $B P$ from [1] and [6]. First

$$
H_{*}\left(B P ; \mathbb{Z}_{(p)}\right) \approx \mathbb{Z}_{(p)}\left[m_{1}, m_{2}, \ldots\right]
$$

$$
H_{*}\left(B P \wedge B P ; \boldsymbol{Z}_{(p)}\right) \approx H_{*}(B P)\left[t_{1}, t_{2}, \ldots\right]
$$

where degree $\left(m_{i}\right)=2\left(p^{i}-1\right)=\operatorname{degree}\left(t_{i}\right)$. The elements t_{i} are chosen so that

$$
\begin{equation*}
\eta_{R}\left(m_{k}\right)=\sum_{i=0}^{k} m_{i} t_{k-i}^{p^{i}} \tag{2.3}
\end{equation*}
$$

where η_{R} is the right unit map. The elements m_{0} and t_{0} are to be interpreted as 1 . Then the Hazewinkel elements v_{i} are defined recursively by the formula:

$$
\begin{equation*}
v_{i}=p m_{i}-\sum_{j=1}^{i-1} m_{j} v_{i-j}^{p^{j}} \tag{2.4}
\end{equation*}
$$

It is shown in [5] that the v_{i} are in the image of the Hurewicz homomorphism $\pi_{*}(B P) \rightarrow H_{*}\left(B P ; \mathbb{Z}_{(p)}\right)$, which is a monomorphism, so the v_{i} may be considered to be in $\pi_{*}(B P)$ also. Then

$$
\begin{aligned}
& A=\pi_{*}(B P) \approx Z_{(p)}\left[v_{1}, v_{2}, \ldots\right] \\
& \Gamma=\pi_{*}(B P \wedge B P) \approx A\left[t_{1}, t_{2}, \ldots\right] .
\end{aligned}
$$

The structure maps for (A, Γ) consists of a product $\phi: \Gamma \otimes_{A} \Gamma \rightarrow \Gamma$, left and right unit maps $\eta_{L}, \eta_{R}: A \rightarrow \Gamma$, a counit map $\varepsilon: \Gamma \rightarrow A$, and a diagonal map ψ : $\Gamma \rightarrow \Gamma \otimes_{A} \Gamma$. The product ϕ and the left unit map η_{L} are built into the description of Γ as a polynomial algebra over A. The right unit map η_{R} is given above (2.3) for the m_{i}, and thereby, using (2.4), for the v_{i} also. The diagonal map ψ satisfies the formula

$$
\begin{equation*}
\sum_{i+j=n} m_{i} \psi\left(t_{j}\right)^{p^{i}}=\sum_{i+j+k=n} m_{i} t_{j}^{p^{i}} \otimes t_{k}^{p^{i+j}} \tag{2.5}
\end{equation*}
$$

The notation $M \otimes_{A} N$ requires that M be a right A-module, and that N be a left A-module. $\quad \Gamma$ is a right A-module by η_{R}, and a left A-module by η_{L}. The notation η_{L} is usually suppressed, and η_{R} is sometimes called η.

There is a formal group law associated with $B P$ as follows. Let $\boldsymbol{C} P^{\infty}$ stand for infinite dimensional complex projective space, and let

$$
\begin{equation*}
\mu: \boldsymbol{C} P^{\infty} \times \boldsymbol{C} P^{\infty} \rightarrow \boldsymbol{C} P^{\infty} \tag{2.6}
\end{equation*}
$$

be the map which classifies the tensor product of the canonical line bundles. Then (in unreduced homology),

$$
\begin{aligned}
& H^{*}\left(\boldsymbol{C} P^{\infty} ; B P\right) \approx A \llbracket X \rrbracket \\
& H^{*}\left(\boldsymbol{C} P^{\infty} \times \boldsymbol{C} P^{\infty} ; B P\right) \approx A \llbracket X_{1}, X_{2} \rrbracket,
\end{aligned}
$$

which are respectively the formal power series rings in one and two variables over A. The formal group law F is defined by the formal power series:

$$
F\left(X_{1}, X_{2}\right)=\mu^{*}(X)=\sum a_{i, j} X_{1}^{i} X_{2}^{j}
$$

where the coefficients $a_{i . j}$ belong to $A_{2 i+2 j-2}$. As in [1], let log be the formal power series (over $A \otimes \mathbb{Q}$):

$$
\log (X)=\sum_{i \geqq 0} m_{i} X^{p^{i}}
$$

Let \exp be the formal power series inverse to \log, which satisfies $\log (\exp X)$ $=X$. Then

$$
F\left(X_{1}, X_{2}\right)=\exp \left(\log X_{1}+\log X_{2}\right)
$$

The formal group law F is associative and commutative. Elements z_{i} from Γ may be substituted for the undeterminates, and we write $\sum^{F} z_{i}$ for $F\left(z_{1}, F\left(z_{2}\right.\right.$, ...)). Then formula (2.5) becomes

$$
\begin{equation*}
\sum_{j}^{F} \psi\left(t_{j}\right)=\sum_{j, k}^{F} t_{j} \otimes t_{k}^{p j} \tag{2.7}
\end{equation*}
$$

There is a canonical anti-automorphism $c: \Gamma \rightarrow \Gamma$, which satisfies $c \eta_{L}=\eta_{R}$ and $c \eta_{R}=\eta_{L}$. This gives a formal group law F^{*} conjugate to F, defined by the formula:

$$
\begin{equation*}
\Sigma^{F^{*}} z_{i}=c\left(\Sigma^{F} c\left(z_{i}\right)\right) \tag{2.8}
\end{equation*}
$$

Notation 2.9. Let $c\left(t_{i}\right)=h_{i}$.
The elements h_{i} satisfy the following formulas, which are obtained by applying c to (2.3), (2.5), and (2.12):

$$
\begin{align*}
& m_{n}=\sum_{i=0}^{n}\left(h_{n-i}\right)^{p^{i}} \eta\left(m_{i}\right) \tag{2.10}\\
& \sum_{i+j=n} \psi\left(h_{j}\right)^{p^{i}} \eta\left(m_{i}\right)=\sum_{i+j+k=n} h_{k}^{p i+j} \otimes h_{j}^{p^{i}} \eta\left(m_{i}\right) \tag{2.11}\\
& \sum^{F^{*}} \psi\left(h_{j}\right)=\sum^{F^{*}} h_{k}^{p j} \otimes h_{j} . \tag{2.12}
\end{align*}
$$

We also have $\Gamma \approx A\left[h_{1}, h_{2}, \ldots\right]$.
For each finite sequence of non-negative integers, $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, let

$$
h^{I}=h_{1}^{i_{1}} h_{2}^{i_{2} \cdots} h_{n}^{i_{n}} .
$$

The length of I is the integer $l(I)=i_{1}+\cdots+i_{n}$.
Definition 2.13. For each non-negatively graded, free left A-module M, let $U(M)$ be the sub- A-module of $\Gamma \otimes_{A} M$ spanned by all elements of the form $h^{I} \otimes_{A} m$ where $2 l(I)<$ degree (m).

For an arbitrary non-negatively graded left A-module let

$$
F_{1} \xrightarrow{f} F_{0} \rightarrow M \rightarrow 0
$$

be exact with F_{0} and F_{1} free. Then define

$$
U(M)=\operatorname{coker}\left(U(f): U\left(F_{1}\right) \rightarrow U\left(F_{0}\right)\right) .
$$

It is easily verified that $U(M)$ is independent of F_{1}, F_{0} and f.
Remark 2.14. In [2, (7.4)], the functor $U(\cdot)$ is defined in terms of another functor $G(\cdot)$ (specifically, $U(M)$ is the submodule of primitives in $G(M)$). The discussion of $[2,(8.7)]$ shows that the two definitions of $U(M)$ agree.

There is a Γ-comodule structure on $\Gamma \otimes_{A} M$ by the map

$$
\psi \otimes 1: \Gamma \otimes_{A} M \rightarrow \Gamma \otimes_{A} \Gamma \otimes_{A} M .
$$

An easy induction using (2.12) shows that $\psi \otimes 1$ takes $U(M)$ to $U^{2}(M)$, and hence induces a map

$$
\delta^{U}: U(M) \rightarrow U^{2}(M)
$$

There is also a counit map $\varepsilon^{U}: U(M) \rightarrow M$ induced by the counit map in Γ. In the notation of $[2, \S 5]$, $\left(U, \delta^{U}, \varepsilon^{U}\right)$ is a cotriple on the category \mathscr{A} of nonnegatively graded left A-modules.

A module M in \mathscr{A} with a U-structure will be called an unstable Γ-comodule (see $[2,(7.4)]$). This means that there is a map $\psi: M \rightarrow U(M)$ such that the following diagrams commute:

The category of unstable Γ-comodules will be called $\mathscr{U}(\mathscr{U}$ is called $\mathscr{A}(U)$ in [2]). By construction \mathscr{U} is an abelian category. To simplify notation, we shall write

$$
\operatorname{Ext}_{\mathcal{Z}^{s}, t}^{s, t}(M) \text { for } \operatorname{Ext}_{\mathcal{Z}_{l}^{\prime}}(A[t], M)
$$

for M in \mathscr{U}. These Ext groups may be calculated as the homology groups of an unstable cobar complex $C^{*, *}(M)$. Specifically, for each pair (s, t) of nonnegative integers,

$$
C^{s, t}(M)=U^{s}(M)_{t} .
$$

As is customary, we write $\left[\gamma_{1}|\cdots| \gamma_{s}\right] m$ for the element $\gamma_{1} \otimes \cdots \otimes \gamma_{s} \otimes m$ in $U^{s}(M)$. The complementary degree t of such an element is the integer

$$
t=\operatorname{deg}\left(\gamma_{1}\right)+\cdots+\operatorname{deg}\left(\gamma_{s}\right)+\operatorname{deg}(m)
$$

The differential

$$
d^{s}: C^{s, t}(M) \rightarrow C^{s+1, t}(M)
$$

is given by

$$
\begin{aligned}
d^{s}\left[\gamma_{1}|\cdots| \gamma_{s}\right] m= & {\left[1\left|\gamma_{1}\right| \cdots \mid \gamma_{s}\right] m } \\
& +\sum(-1)^{j}\left[\gamma_{1}|\cdots| \gamma_{j}^{\prime}\left|\gamma_{j}^{\prime \prime}\right| \cdots \mid \gamma_{s}\right] m \\
& +\sum(-1)^{s+1}\left[\gamma_{1}|\cdots| \gamma_{s} \mid \gamma^{\prime}\right] m^{\prime \prime}
\end{aligned}
$$

where $\psi\left(\gamma_{j}\right)=\sum \gamma_{j}^{\prime} \otimes \gamma_{j}^{\prime \prime}$ and $\psi(m)=\sum \gamma^{\prime} \otimes m^{\prime \prime}$. Then, from [2, (9.3)], we have

$$
\operatorname{Ext}_{\mathscr{Z}}^{s, t}(M) \approx H^{s, t}\left(C^{*, *}(M)\right) .
$$

Remark 2.16. As in the stable case, there is a smaller "normalized" cobar complex $\widetilde{C}^{*, *}(M)$. This is obtained from the functor

$$
\tilde{U}(M)=\operatorname{ker}\left\{\varepsilon^{U}: U(M) \rightarrow M\right\}
$$

by

$$
\widetilde{C}^{s, *}(M)=\widetilde{U}^{s}(M) .
$$

The inclusion $\widetilde{C}(M) \rightarrow C(M)$ is a chain equivalence. This gives the following "easy" vanishing line.

Proposition 2.17. If M is a k-connected unstable Γ-comodule, then $\operatorname{Ext}_{\neq \boldsymbol{s}, t}(M)=0$, for $t \leqq 2(p-1) s+k$.

The proof is immediate because $\widetilde{C}^{s, t}(M)=0$ for $t \leqq 2(p-1) s+k$.
This vanishing line will be improved in Section 5 .

§3. The Spectral Sequence for $\mathbb{S} \mathbb{U}$

When the space X is $S U$ (=the infinite special unitary group), the unstable Adams-Novikov spectral sequence simplifies considerably, as shown below; compare with the unstable spectral sequence for $S U$ based on $\bmod p$ homology in [4, p. 191]. In fact, we have the following general result.

Theorem 3.1. Let X be an H-space with torsion-free homology and torsion-free homotopy. Then the unstable Adams-Novikov spectral sequence for X collapses. That is,

$$
E_{2, t}^{s, t}(X) \approx \begin{cases}\pi_{t}(X), & \text { for } \\ s=0 \\ 0, & \text { for } \\ s>0\end{cases}
$$

Before giving the proof of Theorem 3.1, we recall the results of Wilson [10] which are the main ingredients of the proof.

Wilson's Spaces $\boldsymbol{Y}_{\boldsymbol{k}}$ (3.2). There are indecomposable H-spaces $Y_{\boldsymbol{k}}(k=1,2$, ...), which have the following properties.
(i) Y_{k} is $(k-1)$-connected, and $\pi_{k}\left(Y_{k}\right)=\boldsymbol{Z}_{(p)}$.
(ii) For $k \neq 2\left(p^{n}+p^{n-1}+\cdots+1\right), \Omega Y_{k+1} \simeq Y_{k}$. For $k=2\left(p^{n}+p^{n-1}+\cdots\right.$ +1), $\Omega Y_{k+1} \simeq Y_{k} \times Y_{p k}$.
(iii) If $f: Y_{k} \rightarrow Y_{k}$ is a continuous map which induces an isomorphism f_{*} : $\pi_{k}\left(Y_{k}\right) \approx \pi_{k}\left(Y_{k}\right)$, then f is a homotopy equivalence.
(iv) If X is a H-space with torsion-free homology and torsion-free homotopy, then X is a product of the Y_{k} 's:

$$
X \simeq \prod_{\alpha} Y_{k_{\alpha}}
$$

(but not necessarily as H-spaces).
(v) Let $B P_{k}$ be the k-th space in the Ω-spectrum for $B P$. Then there are maps i and j

$$
Y_{k} \xrightarrow{i} B P_{k} \xrightarrow{j} Y_{k}
$$

where $j \circ i$ is a homotopy equivalence. Moreover we may consider $B P_{k}=Y_{k} \times Z$ where Z is a space at least k-connected.

Proof of Theorem 3.1. For each of the spaces Y_{k}, consider the following homotopy-commutative diagram:

where $\eta^{\prime}=\eta\left(Y_{k}\right), \eta=\eta\left(B P_{k}\right)$; the map μ is induced by the product in $B P$, and $\mu^{\prime}=j \circ \mu \circ B P(i)$. The properties of $B P$ as a ring spectrum imply that $\mu \circ \eta$ is a homotopy equivalence. Hence $\mu^{\prime} \circ \eta^{\prime}$ induces $\pi_{k}\left(Y_{k}\right) \approx \pi_{k}\left(Y_{k}\right)$, and so by (3.2, (iii)) must be a homotopy equivalence. By the construction (2.1) or [2, (2.4)] this implies that the spectral sequence for Y_{k} collapses. It follows that for any product of the Y_{k} 's, the spectral sequence collapses. By (3.2, (iv)), X is such a space, so the spectral sequence collapses for X.
Q.E.D.

Remark 3.3. Using the facts that $S U$ is an H-space with torsion-free homology and torsion-free homotopy, we see that the spectral sequence collapses for $S U$. For an alternative approach, see Remark 3.8.

We proceed to analyze the image of the $B P_{*}$-Hurewicz homomorphism

$$
\begin{aligned}
\operatorname{im}\left\{\pi_{*}(S U) \rightarrow H_{*}(S U ; B P)\right\} & \approx E_{2}^{0, *}(S U) \\
& \approx \operatorname{Ext}_{\mathscr{Z}}^{0 ; *}\left(P H_{*}(S U ; B P)\right) .
\end{aligned}
$$

Here $P H_{*}(S U ; B P)$ stands for the submodule of primitives in $H_{*}(S U ; B P)$ considered as an unstable Γ-comodule. For later use, we give a description of $P H_{*}(S U ; B P)$. Recall from [8] that there is a map

$$
f: \quad S^{1} \wedge \mathbb{C} P^{\infty} \rightarrow S U
$$

As in [1], let β_{k}, for $k=1,2, \ldots$ be the natural generator of $H_{2 k}\left(\mathbb{C P} P^{\infty} ; B P\right)$. Let $f_{*}\left(\ell_{1} \wedge \beta_{k}\right)=x_{2 k+1}$, which is a primitive element in $H_{2 k+1}(S U ; B P) . \quad H_{*}(S U$; $B P)$ is cofree as a coalgebra, and $P H_{*}(S U ; B P)$ is the free A-module generated by $\left\{x_{2 k+1}\right\}, k=1,2, \ldots$.

To describe the unstable Γ-coaction on $P H_{*}(S U ; B P)$ we proceed as follows. As in [1], by abuse of notation, let β_{k} also stand for the generator of $H_{2 k}\left(\boldsymbol{C} P^{\infty}\right.$; $M U$), and let $b_{k}^{M U}$ be the generator of $H_{2 k}(M U ; M U)$. Then from [1, (11.4)] the formula for the coaction in $H_{*}\left(\mathbb{C} P^{\infty} ; M U\right)$ is

$$
\psi\left(\beta_{k}\right)=\sum_{j}\left(\sum_{s} b_{s}^{M U}\right)_{k-j}^{j} \otimes \beta_{j}
$$

where $\left(\sum_{s} b_{s}^{M U}\right)_{k-j}^{j}$ stands for the terms of degree $2 k-2 j$ in $\left(\sum_{s} b_{s}^{M U}\right)^{j}$. The Quillen idempotent induces a map from $H_{*}(M U ; M U)$ to $H_{*}(B P ; B P)$ which sends $\sum_{s} b_{s}^{M U}$ to $\sum_{s}^{F^{*}} h_{s}$, as shown in [2, (8.3)]. Thus the formula for the coaction in $H_{*}\left(\boldsymbol{C} P^{\infty} ; B P\right)$ is

$$
\psi\left(\beta_{k}\right)=\sum_{j}\left(\sum_{s}^{F^{*}} h_{s}\right)_{k-j}^{j} \otimes \beta_{j}
$$

Then by naturality of f_{*}, the formula for the coaction in $H_{*}(S U ; B P)$ is

$$
\begin{equation*}
\psi\left(x_{2 k+1}\right)=\sum_{j}\left(\sum_{s}^{F^{*}} h_{s}\right)_{k-j}^{j} \otimes x_{2 j+1} \tag{3.4}
\end{equation*}
$$

It would be awkward to calculate the groups $\operatorname{Ext}_{2,}^{0, *}\left(P H_{*}(S U ; B P)\right)$ directly. Instead, we do the following. Define an A-linear map

$$
\phi: P H_{*}(S U ; B P) \rightarrow P H_{*+2}(S U ; B P)
$$

by

$$
\phi\left(x_{2 i+1}\right)=\sum_{k=1}^{i+1} k a_{i-k+1} x_{2 k+1}
$$

where $a_{s}=a_{s, 1}$ (the $a_{i, j}$ are the $B P$-formal group law coefficients). The a_{s} may be computed recursively by $a_{0}=1$, and the formula (see [1, (10.1)]):

$$
\sum_{n \geqq 0} p^{n} m_{n}=\left(\sum_{s \geqq 0} a_{s}\right)^{-1} .
$$

Let ϕ^{k} stand for the k-th iterate of the map ϕ. The following is motivated by Toda's proof of the Bott Periodicity Theorem [8].

Proposition 3.5. For each non-negative integer k, $\phi^{k}\left(x_{3}\right)$ generates $E_{2}^{0,2 k+3}(S U)$.

Proof. The Hopf construction applied to the map $\mu: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ gives a map:

$$
H(\mu): S^{1} \wedge \boldsymbol{C} P^{\infty} \wedge \boldsymbol{C} P^{\infty} \rightarrow S^{1} \wedge \boldsymbol{C} P^{\infty} .
$$

The restriction of $H(\mu)$ to $S^{1} \wedge S^{2} \wedge C P^{\infty}$ will be called ζ. ζ induces a map in homology:

$$
\zeta_{*}: H_{*}\left(\boldsymbol{C} P^{\infty} ; B P\right) \rightarrow H_{*+2}\left(\boldsymbol{C} P^{\infty} ; B P\right) .
$$

By dualizing the formal group law for $B P$, we see that

$$
\zeta_{*}\left(\beta_{i}\right)=\sum_{k=1}^{i+1} k a_{i-k+1} \beta_{i} .
$$

Consider the composite map (which will be called ζ_{k+1}):

$$
\begin{gathered}
\left.S^{2 k+3} \xrightarrow{\text { incl. }} S^{2 k+1} \wedge C P^{\infty} \xrightarrow{S^{2 k+1}(5)} S^{2 k-1} \wedge C P^{\infty} \xrightarrow{S^{2 k-4}(b}\right) \\
\cdots \xrightarrow{S^{2}(\zeta)} S^{3} \wedge C P^{\infty} \xrightarrow{\zeta} S^{1} \wedge C P^{\infty} \xrightarrow{f} S U .
\end{gathered}
$$

The map ζ_{k+1} induces a map of the unstable Adams-Novikov spectral sequences

$$
\left(\zeta_{k+1}\right)_{*}: E_{2}^{0,2 k+3}\left(S^{2 k+3}\right) \rightarrow E_{2}^{0,2 k-3}(S U)
$$

with $\left(\zeta_{k+1}\right) *\left(c_{2 k+3}\right)=\phi^{k}\left(x_{3}\right)$. This shows that $\phi^{k}\left(x_{3}\right)$ is a cycle. By examining the coefficient of $x_{2 m+1}$, where m is the integer $k-1$ reduced modulo $p-1$, we see that $\phi^{k}\left(x_{3}\right)$ is not divisible by p. Therefore, $\phi^{k}\left(x_{3}\right)$ is a generator of $E_{2}^{0,2 k+3}(S U)$.
Q.E.D.

Remarks 3.6. (i) The above proof also shows that the composite map ζ_{k+1} is a generator of $\pi_{2 k+1}(S U)$. This reproves a theorem of Toda [8].
(ii) Some examples of the generators of $E_{2}^{0, *}(S U)$ for the prime $p=2$ are the following

$$
\begin{aligned}
& \phi\left(x_{3}\right)=2 x_{5}-v_{1} x_{3} \\
& \phi^{2}\left(x_{3}\right)=6 x_{7}-6 v_{1} x_{5}+3 v_{1}^{2} x_{3} \\
& \phi^{3}\left(x_{3}\right)=24 x_{9}-36 v_{1} x_{7}+30 v_{1}^{2} x_{5}-\left(12 v_{2}+9 v_{1}^{2}\right) x_{3} .
\end{aligned}
$$

Theorem 3.7. Let Y be an H-space with torsion-free homology and torsion-free homotopy. Suppose that X is a space such that $H_{*}(X ; B P)$ is cofree as a coalgebra over A, and that

$$
P H_{*}(X ; B P) \approx P H_{*}(Y ; B P)
$$

as unstable Γ-comodules. Then $X \simeq Y$.
Proof. By (3.1), the unstable Adams-Novikov spectral sequence for Y collapses. Both X and Y satisfy the assumptions of (2.2), so $E_{2}^{*, *}(X) \approx E_{2}^{*}, *(Y)$. Thus the spectral sequence collapses for X too, and $\pi_{*}(X)$ is free over $\mathbb{Z}_{(p)}$. Also, $H_{*}\left(X ; \mathbb{Z}_{(p)}\right)$ is free over $\mathbb{Z}_{(p)}$ because of the isomorphisms:

$$
\begin{aligned}
H_{*}\left(B P ; \mathbb{Z}_{(p)}\right) \otimes_{Z_{(p)}} H_{*}\left(X ; \mathbb{Z}_{(p)}\right) & \approx \pi_{*}\left(B P \wedge K\left(\mathbb{Z}_{(p)}\right) \wedge X\right) \\
& \approx H_{*}\left(B P ; \mathbb{Z}_{(p)}\right) \otimes_{A} H_{*}(X ; B P) .
\end{aligned}
$$

Therefore, by $[1,(5.23)], X$ is an H-space with torsion-free homotopy and torsion-free homology. By (3.2, (iv)), X and Y are each a product of the Y_{k} 's. As $\pi_{*}(X) \approx \pi_{*}(Y)$, the factors which occur for X are the same as those which occur for Y.
Q.E.D.

Remark 3.8. It is possible by a lengthy calculation to determine the coaction in the space $Y=Y_{3} \times Y_{5} \times \cdots \times Y_{2 p-1}$, and then to show that

$$
P H_{*}(S U ; B P) \approx P H_{*}(Y ; B P)
$$

as unstable Γ-comodules. Thus (3.7) implies that

$$
S U \simeq Y_{3} \times Y_{5} \times \cdots \times Y_{2 p-1}
$$

Making use of (3.2, (iv)), we have that $\Omega^{2} Y_{3} \simeq S^{1} \times Y_{2 p-1}$, and that for $2 \leqq j$ $\leqq p-1, \Omega^{2} Y_{2 j+1} \simeq Y_{2 j-1}$. Thus

$$
\begin{aligned}
\Omega^{2}(S U) & \simeq S^{1} \times Y_{2 p-1} \times Y_{3} \times \cdots \times Y_{2 p-3} \\
& \simeq S^{1} \times S U
\end{aligned}
$$

which is the (complex) Bott periodicity theorem.

§4. Calculations of $\mathbb{E}_{2}^{1}, *(\mathbb{S} \mathbb{U}(n))$

Let $S U(n)$ be the spectral unitary group in n variables. $H_{*}(S U(n) ; B P)$ is
free as an A-module, and cofree as a coalgebra. The submodule of primitives $P H_{*}(S U(n) ; B P)$ will be called $M(n)$. By (2.2), we have

$$
E_{\Sigma_{2}^{s}, t}(S U(n)) \simeq \operatorname{Ext}_{\neq \prime}^{s, t}(M(n)) .
$$

As an A-module, $M(n)$ is freely generated by the elements $x_{3}, x_{5}, \ldots, x_{2 n-1}$ defined in Section 3. The unstable Γ-comodule structure $\psi: M(n) \rightarrow U M(n)$ is given by formula (3.4). The groups Ext ${ }_{z \ell}^{s, t}(M(n))$ are the homology of the unstable cobar complex. By sparseness, we have

$$
E_{2}^{\mathrm{s}, t}(S U(n))=0, \quad \text { for } t \text { even }
$$

Consider the fibration

$$
S U(n) \rightarrow S U(n+1) \rightarrow S^{2 n+1}
$$

Passing to $B P_{*}$-homology, and then taking primitives, we obtain a short exact sequence of unstable Γ-comodules:

$$
0 \rightarrow M(n) \rightarrow M(n+1) \rightarrow A[2 n+1] \rightarrow 0
$$

This induces a long exact sequence of Ext groups, which, after identifying them as E_{2}-terms, becomes

$$
\begin{equation*}
\cdots \rightarrow E_{2}^{\S}, t(S U(n)) \rightarrow E_{2}^{s, t}(S U(n+1)) \rightarrow E_{2}^{\S, t}\left(S^{2 n+1}\right) \xrightarrow{\delta} \cdots \tag{4.1}
\end{equation*}
$$

where δ has bidegree $(1,0)$. The indexing (s, t) is such that $t-s$ is the homotopy dimension, whereas in [2], as in the stable case (e.g. [6]), $t-s$ is stem dimension.

Proposition 4.2.

(i) $E_{2}^{s, t}(S U(n)) \approx E_{2}^{s, t}(S U(n+1))$, for $t<2 n+2 s$.
(ii) $E_{2}^{0, t}(S U(n)) \approx 0, \quad$ for $t \geqq 2 n$,

$$
E_{2}^{0,2 i+1}(S U(n)) \approx Z_{(p)}, \quad \text { for } \quad 1 \leqq i<n .
$$

(iii) $E_{2}^{1,2 n+1}(S U(n)) \approx \boldsymbol{Z}_{(p)} /(n!) \boldsymbol{Z}_{(p)}$.
(iv) For $n<k$, the inclusion $S U(n) \rightarrow S U(k)$ induces a monomorphism

$$
E_{2}^{1,2 k+1}(S U(n)) \rightarrow E_{2}^{1,2 k+1}(S U(k))
$$

Proof. Statements (i) and (ii) follow immediately from the long exact sequences (4.1), the easy vanishing line (2.17) for $E_{2}^{s, t}\left(S^{2 n+1}\right)$, and the calculation of $E_{2}^{0, *}(S U)$. Part (iii) follows from (3.5) and (4.1). Part (iv) follows from (4.1) and the fact that $E_{2}^{0, t}\left(S^{2 n+1}\right)=0$, for $t \neq 2 n+1$. Q.E.D.

The calculation of the rest of the 1 -line for $\operatorname{SU}(n)$ is the calculation of which elements of $E_{2}^{1,2 k+1}(S U(k))$ pull back to $E_{2}^{1,2 k+1}(S U(n))$, for $n<k$. The
difficulty in working directly with the cobar complex $C^{*, *}(M(n))$ is the formal sum which occurs in the expression for the differential. That is,

$$
\begin{aligned}
d\left(x_{2 k+1}\right) & =1 \otimes x_{2 k+1}-\psi\left(x_{2 k+1}\right) \\
& =-\sum_{j=1}^{k-1}\left(\sum_{s}^{F^{*}} h_{s}\right)_{k-j}^{j} \otimes x_{2 j+1}
\end{aligned}
$$

To overcome this difficulty, we introduce a map $\bar{e}: \Gamma \rightarrow \mathbb{Q}$ as follows. From Section 2, we see that $\Gamma \otimes_{\boldsymbol{Z}} \mathbb{Q}$ is a polynomial algebra over \mathbb{Q} generated by the m_{k} and the $\eta_{R}\left(m_{k}\right), k=1,2, \ldots$.

Definition 4.3. Let $\bar{e}: \Gamma \otimes_{z} \mathbb{Q} \rightarrow \mathbb{Q}$ be the homomorphism defined on the generators by

$$
\begin{aligned}
& \bar{e}\left(m_{k}\right)=1 / p^{k} \\
& \bar{e}\left(\eta_{R}\left(m_{k}\right)\right)=0
\end{aligned}
$$

for $k=1,2, \ldots$ Also, let $\bar{e}: \Gamma \rightarrow Q$ denote the restriction of this map to Γ.
Lemma 4.4. For the Hazewinkel elements v_{i} in Γ, we have $\bar{e}\left(v_{1}\right)=1$, $\bar{e}\left(v_{i}\right)=0$ for $i>1$.

Proof. $v_{1}=p m_{1}$, so $\bar{e}\left(v_{1}\right)=1$. For $i>1$, the v_{i} are defined by formula (2.4), and it follows by induction on i that $\bar{e}\left(v_{i}\right)=0$ for $i>1$.
Q.E.D.

In the unstable cobar complex $C^{*, *}\left(S^{2 n+1}\right)$, we have $C^{0, *}\left(S^{2 n+1}\right) \approx A$. For a in $A, d(a)=\eta_{R}(a)-a$, so

$$
\bar{e}(d(a))=-\bar{e}(a) .
$$

Therefore, $\bar{e}(d(A)) \subset \mathbb{Z}_{(p)}$. Passing to the homology of the unstable cobar complex, we obtain a well-defined map

$$
e: E_{2}^{1, *}\left(S^{2 n+1}\right) \rightarrow \mathbb{Q} / \mathbb{Z}_{(p)}
$$

which is (up to sign) an unstable analogue of the complex Adams e-invariant localized at p. The description of $E_{2}^{1, *}\left(S^{2 n+1}\right)$ in $[2, \S 9]$ shows that e is a monomorphism. Thus the order of any element α in $E_{2}^{1, *}\left(S^{2 n+1}\right)$ is the same as the order of $e(\alpha)$ in $\boldsymbol{Q} / \mathbb{Z}_{(p)}$.

Definition 4.5. For each pair (k, j) of positive integers, we define a rational number $b_{k, j}$ as follows. For each $j \geqq 1$, let

$$
\left(Y+\frac{Y^{p}}{p}+\frac{Y^{p^{2}}}{p^{2}}+\cdots\right)^{j}=\sum_{k \geqq j} b_{k, j} Y^{k}
$$

in the formal power series ring $Q \llbracket Y \rrbracket$.

The properties of \bar{e} which will be used in the proof of (4.7) are the following. Recall from (2.9) that $h_{k}=c\left(t_{k}\right)$, where c is the canonical anti-automorphism.

Lemma 4.6. (i) $\bar{e}\left(h_{k}\right)=1 / p^{k}$,
(ii) $\bar{e}\left(\sum^{F^{*}} h_{s}\right)_{k-j}^{j}=b_{k, j}$.

Proof. Apply the canonical anti-automorphism c to (2.3) to obtain

$$
m_{k}=\eta_{R}\left(m_{k}\right)+h_{1}^{p k-1} \eta_{R}\left(m_{k-1}\right)+\cdots+h_{k} .
$$

As \bar{e} is 0 on the image of η_{R}, part (i) follows. For part (ii), we have

$$
\begin{aligned}
\bar{e}\left(\sum^{F^{*}} h_{s}\right)_{k-j}^{j} & =\bar{e}\left(\sum h_{s}\right)_{k-j}^{j}=\left(1+\frac{Y^{p-1}}{p}+\frac{Y^{p^{2}-1}}{p^{2}}+\cdots\right)_{k-j}^{j} \\
& =\left(Y+\frac{Y^{p}}{p}+\frac{Y^{p^{2}}}{p^{2}}+\cdots\right)_{k}^{j} \\
& =b_{k, j} .
\end{aligned}
$$

Q.E.D.

The matrix $B=\left[b_{k, j}\right]$ is lower triangular, with diagonal entries $b_{k, k}=1$. Hence there is a well-defined inverse matrix $C=\left[c_{k, j}\right]$ which is also lower triangular. For each $2 \leqq n \leqq k$, let $\omega_{k}(n)$ be the integer defined by

$$
\omega_{k}(n)=\underset{n \leqq j \leqq k}{\operatorname{maximum}}\left\{\text { order } c_{k, j} \text { in } \boldsymbol{Q} / \boldsymbol{Z}_{(p)}\right\}
$$

Theorem 4.7. For each $2 \leqq n \leqq k$,

$$
E_{2}^{1,2 k+1}(S U(n)) \approx \omega_{k}(n) \mathbb{Z}_{(p)} / k!\mathbb{Z}_{(p)} .
$$

Proof. From Section 2 (see also [2]), we know that $E_{2}^{*, *}(S U(n))$ may be calculated as the homology of the unstable cobar complex $C^{*, *}(M(n))$. Let g_{k} be the element $-d\left(x_{2 k+1}\right)$ in $C^{1,2 k+1}(M(k+1))$; that is

$$
\begin{aligned}
g_{k} & =\psi\left(x_{2 k+1}\right)-1 \otimes x_{2 k+1} \\
& =\sum_{j=1}^{k-1}\left(\sum^{F^{*}} h_{s}\right)_{k-j}^{j} \otimes x_{2 j+1} \\
& =\sum_{j=1}^{k-1} \gamma_{k, j} \otimes x_{2 j+1}
\end{aligned}
$$

where $\gamma_{k, j}=\left(\sum^{F^{*}} h_{s}\right)_{k-j}^{j}$. The long exact sequence (4.1) shows that the homology class of g_{k} generates $E_{2}^{1,2 k+1}(S U(k))$.

Next, let integers $\tau_{k}(n)$ for $1 \leqq n<k$ and rational numbers $a_{k, j}(n)$ for $1 \leqq n$ $\leqq k$, all $1 \leqq j$, be defined as follows. First, let $a_{k, j}(k)=\bar{e}\left(\gamma_{k, j}\right)$. Then recursively for $1 \leqq n<k$, let

$$
\tau_{k}(n)=\operatorname{order} \text { of } a_{k, n}(n+1) \quad \text { in } \boldsymbol{Q} / \boldsymbol{Z}_{(p)}
$$

$$
a_{k, j}(n)=\tau_{k}(n)\left(a_{k, j}(n+1)-a_{k, n}(n+1) a_{n, j}(n)\right) .
$$

We shall show by downward induction on n that for $1 \leqq n \leqq k$, there are elements $g_{k}(n)$ in $U M(n)$ of the form

$$
g_{k}(n)=\sum_{j=1}^{n-1} \gamma_{k, j}(n) \otimes x_{2 j+1}
$$

where the $\gamma_{k, j}(n)$ are in Γ with $\bar{e}\left(\gamma_{k, j}(n)\right)=a_{k, j}(n)$, and such that the homology class of $g_{k}(n)$ in $E_{2}^{1,2 k+1}(S U(n))$ represents the generator. This is true for $n=k$, because $g_{k}(k)=g_{k}$. Then assume inductively for $n<k$ that there is an element $g_{k}(n+1)$ as asserted. Consider the map

$$
E_{2}^{1,2 k+1}(S U(n+1)) \xrightarrow{\rho_{*}} E_{2}^{1,2 k+1}\left(S^{2 n+1}\right) .
$$

Then $\rho_{*}\left(g_{k}(n+1)\right)=\gamma \otimes x_{2 n+1}$, where γ is in Γ, with $\bar{e}(\gamma)=a_{k, n}(n+1)$. Then $\tau_{k}(n)=$ order of $\gamma \otimes x_{2 n+1}$ in $E_{2}^{1,2 k+1}\left(S^{2 n+1}\right)$, so there is an element $a_{k}(n+1)$ in A, with

$$
d\left(a_{k}(n+1)\right)=\tau_{k}(n) \cdot \gamma \otimes x_{2 n+1} .
$$

Then the element

$$
\begin{aligned}
g_{k}(n) & =\tau_{k}(n) g_{k}(n+1)-d\left(a_{k}(n+1) x_{2 n+1}\right) \\
& =\sum_{j=1}^{n-1} \gamma_{k, j}(n) \otimes x_{2 j+1}
\end{aligned}
$$

generates $E_{2}^{1.2 k+1}(S U(n))$, and satisfies

$$
\bar{e}\left(\gamma_{k, j}(n)\right)=a_{k, j}(n)
$$

Next we define rational numbers $b_{k, j}(n)$ for all pairs of integers (k, j) with $k \geqq n$ as follows. First, $b_{k, j}(k)=b_{k, j}$ as defined in (4.5). Then recursively for $n<k$, let

$$
b_{k, j}(n)=b_{k, j}(n+1)-b_{k, n}(n+1) b_{n, j}
$$

Observe that the result of row-reducing the k-th row of the matrix $B=\left[b_{k, j}\right]$ by using rows $k-1, k-2, \ldots, n+1$ takes the k-th row

$$
\left\langle b_{k, 1}, b_{k, 2}, \ldots, b_{k, k-1}, 1,0, \ldots\right\rangle
$$

to the row

$$
\left\langle b_{k, 1}(n+1), \ldots, b_{k, n}(n+1), 0, \ldots, 0,1,0, \ldots\right\rangle .
$$

Hence, in the matrix C ($=$ the inverse of B), we have $c_{k, n}=-b_{k, n}(n+1)$. In particular, these two rational numbers have the same order in $\mathbb{Q} / \mathbb{Z}_{(p)}$. We
assert that

$$
a_{k, j}(n)=\omega_{k}(n) \cdot b_{k, j}(n)
$$

which we shall show by downward induction on n. The statement is true for $n=k$, as $a_{k, j}(k)=b_{k, j}(k)$, and $\omega_{k}(k)=1$. Assume inductively that

$$
a_{k, j}(n+1)=\omega_{k}(n+1) b_{k, j}(n+1) .
$$

Then

$$
\begin{aligned}
a_{k, j}(n) & =\tau_{k}(n)\left(a_{k, j}(n+1)-a_{k, n}(n+1) a_{n, j}\right) \\
& =\tau_{k}(n) \omega_{k}(n+1)\left(b_{k, j}(n+1)-b_{k, n}(n+1) b_{n, j}\right) \\
& =\tau_{k}(n) \omega_{k}(n+1) b_{k, j}(n) \\
& =\operatorname{order}\left(a_{k, n}(n+1)\right) \cdot \omega_{k}(n+1) \cdot b_{k, j}(n) \\
& =\operatorname{order}\left(\omega_{k}(n+1) b_{k, n}(n+1)\right) \cdot \omega_{k}(n+1) \cdot b_{k, j}(n) \\
& =\max \left\{\omega_{k}(n+1), \operatorname{order}\left(b_{k, n}(n+1)\right\} b_{k, j}(n)\right. \\
& =\omega_{k}(n) b_{k, j}(n) .
\end{aligned}
$$

Finally, we consider the map

$$
\left(i_{n, k}\right)_{*}: E_{2}^{1,2 k+1}(S U(n)) \rightarrow E_{2}^{1,2 k+1}(S U(k))
$$

induced by the inclusion $i_{n, k}: S U(n) \rightarrow S U(k)$. By (4.2, (iv)), $\left(i_{n, k}\right)_{*}$ is a monomorphism, and by the above,

$$
\left(i_{n, k}\right) * g_{k}(n)=\omega_{k}(n) \cdot g_{k} .
$$

Thus $E_{2}^{1,2 k+1}(\operatorname{SU}(n)) \approx \omega_{k}(n) \boldsymbol{Z}_{(p)} / k!\boldsymbol{Z}_{(p)}$ as asserted. Q.E.D.

From these calculations, we can determine the kernel of the homomorphism

$$
E_{2}^{2, *}(S U(n)) \rightarrow E_{2}^{2, *}(S U(n+1)) .
$$

Recall from [2], that $E_{2}^{1,2 k+1}\left(S^{2 n+1}\right)$ is shown to be a cyclic group of order $\sigma_{k}(n)$ where $\sigma_{k}(n)$ is as follows. If $k-n \neq 0 \bmod 2 p-2, \sigma_{k}(n)=1$. Otherwise, write $k-n=(2 p-2) \cdot p^{m} \cdot q$, where q is prime to p. Then for an odd prime p,

$$
\sigma_{k}(n)=\min \left\{p^{n}, p^{m+1}\right\}
$$

and for $p=2$,

$$
\sigma_{k}(n)=\left\{\begin{array}{l}
2, \quad \text { if } k-n \text { is odd } \\
2, \quad \text { if } k=3, n=1, \\
4, \quad \text { if } k-n=2, n \geqq 2, \\
\min \left\{2^{n}, 2^{m+2}\right\}, \quad \text { otherwise } .
\end{array}\right.
$$

Corollary 4.8. For $k<n$, the kernel of

$$
E_{2}^{2,2 k+1}(S U(n)) \rightarrow E_{2}^{2,2 k+1}(S U(n+1))
$$

is a cyclic group of order $\sigma_{k}(n) / \tau_{k}(n)$, where $\sigma_{k}(n)$ is as above, and $\tau_{k}(n)$ is the integer defined in the course of the proof of Theorem 4.7.

Proof. From the long exact sequence (4.1), we must determine the cokernel of

$$
E_{2}^{1,2 k+1}(S U(n+1)) \rightarrow E_{2}^{1,2 k+1}\left(S^{2 n+1}\right) .
$$

We have calculated that for $k<n$, the order of the image is $\tau_{k}(n)$. Therefore the cokernel has order $\sigma_{k}(n) / \tau_{k}(n)$ as asserted.
Q.E.D.

Remark 4.9. The results of Bousfield [3] concerning products in the unstable homotopy spectral sequence with coefficients in a ring may be generalized to a ring spectrum (in place of the ring). The statements of [3, (8.2)] apply to our situation. In particular, the differentials are seen to act as derivations with respect to the action of $E_{r}^{*, *}\left(S^{2 n+1}\right)$ on $E_{r}^{*, *}(S U(n))$. The coboundary map

$$
\delta: E_{2}^{s, t}\left(S^{2 n+1}\right) \rightarrow E_{2}^{s+1, t}(S U(n))
$$

has the form $\delta(\alpha)= \pm \alpha \otimes d^{\prime}\left(x_{2 n+1}\right)$, for α in $E_{2}^{s, t}\left(S^{2 n+1}\right)$. Thus δ is map of spectral sequences. For an odd prime p, the elements of $E_{2}^{1,2 k+1}\left(S^{2 n+1}\right)$ are all permanent cycles [2], and their coboundaries are permanent cycles in $E_{2}^{2,2 k+1}(S U(n))$. When non-zero, these represent non-zero elements of $\pi_{*}(S U(n))$. A similar but more complicated statement holds for $p=2$, taking into account the differential d^{3} on $E_{2}^{1, *}\left(S^{2 n+1}\right)$.

Examples 4.10. Some examples (of the upper left-hand corners) of the matrices of (4.5) are the following:
(1) For $p=2$,

$$
B=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{3}{2} & 1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{3}{4} & 2 & 1 & 0 \\
0 & \frac{1}{4} & \frac{7}{8} & 3 & \frac{5}{2} & 1
\end{array}\right)
$$

$$
C=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & -1 & 1 & 0 & 0 & 0 \\
-\frac{7}{8} & \frac{5}{4} & -\frac{3}{2} & 1 & 0 & 0 \\
\frac{13}{8} & -\frac{9}{4} & -9 & -2 & 1 & 0 \\
-\frac{15}{16} & \frac{5}{2} & \frac{1}{4} & \frac{5}{2} & -\frac{5}{2} & 1
\end{array}\right)
$$

(2) For $p=3$,

$$
\begin{aligned}
& B=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 1 & 0 & 0 & 0 \\
0 & \frac{2}{3} & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & \frac{1}{9} & 0 & \frac{4}{3} & 0 & 1
\end{array}\right) \\
& C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & 0 & 0 & 0 \\
0 & -\frac{2}{3} & 0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & -1 & 0 & 1 & 0 \\
0 & \frac{7}{9} & 0 & -\frac{4}{3} & 0 & 1
\end{array}\right) .
\end{aligned}
$$

(3) The methods of this section also apply to the unstable Adams-Novikov spectral sequence based on $M U$ (instead of $B P$). In this case, the definition of \bar{e} becomes

$$
\begin{aligned}
& \bar{e}\left(m_{k}\right)=1 / k+1 \\
& \bar{e}\left(\eta\left(m_{k}\right)\right)=0
\end{aligned}
$$

where the $m_{k}=\left[\boldsymbol{C} \boldsymbol{P}^{k}\right] / k+1$ in $\pi_{2 k}(M U)$. The matrix B of (4.5) is defined by

$$
\left(Y+\frac{Y^{2}}{2}+\frac{Y^{3}}{3}+\cdots\right)^{j}=\sum_{k \geqq j} b_{k, j} Y^{k}
$$

The matrix C is the inverse of B, and then $\omega_{n}(k)$ is the least common multiple of the orders of $c_{k, j}$ in $\boldsymbol{Q} / \boldsymbol{Z}$ as $n \leqq j \leqq k$. The analogue to Theorem 4.7 becomes:

$$
E_{2}^{1,2 k+1}(S U(n)) \approx \omega_{k}(n) \mathbb{Z} / k!\mathbb{Z}
$$

For this, the integral case,

$$
\begin{aligned}
& B=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 1 & 1 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{11}{12} & \frac{3}{2} & 1 & 0 & 0 \\
\frac{1}{5} & \frac{5}{6} & \frac{7}{4} & 2 & 1 & 0 \\
\frac{1}{6} & \frac{137}{180} & \frac{15}{8} & \frac{17}{6} & \frac{5}{2} & 1
\end{array}\right) \\
& C=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{6} & -1 & 1 & 0 & 0 & 0 \\
-\frac{1}{24} & \frac{7}{12} & -\frac{3}{2} & 1 & 0 & 0 \\
\frac{1}{120} & -\frac{1}{4} & \frac{5}{4} & -2 & 1 & 0 \\
-\frac{1}{720} & \frac{31}{360} & -\frac{3}{4} & \frac{13}{6} & -\frac{5}{2} & 1
\end{array}\right) .
\end{aligned}
$$

§5. Some Calculations in $\mathbb{E}_{2}^{*}, *\left(S^{2 n+1}\right)$

In this section, we describe a method of making resolutions of unstable Γ-comodules which are convenient for calculations. We use these resolutions to establish vanishing lines for unstable Ext groups. In particular, we give a vanishing line for $E_{2}^{*, *}\left(S^{2 n+1}\right)$. We also make some calculations of $E_{2}^{2, *}\left(S^{2 n+1}\right)$ in low stems, which together with the calculations of $E_{2}^{1, *}\left(S^{2 n+1}\right)$ of [2], give some of the unstable groups $\pi_{*}\left(S^{2 n+1}\right)$.

Throughout this section, a prime p is fixed, $B P$ is the Brown-Peterson spectrum associated with $p, \pi_{*}(B P)=A$, and $\pi_{*}(B P \wedge B P)=\Gamma$. The category of connected A-modules is called \mathscr{A}. The category \mathscr{U} of unstable Γ-comodules is defined in Section 2 by the cotriple $\left(U, \varepsilon^{U}, \delta^{U}\right)$ on \mathscr{A}. Let $J: \mathscr{U} \rightarrow \mathscr{A}$ be the forgetful functor. Then for M in \mathscr{A} and N in \mathscr{U}, there are natural isomorphisms α and β :

$$
\begin{equation*}
\operatorname{Hom}_{\mathscr{U}}(N, U(M)) \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} \operatorname{Hom}_{\mathscr{\Omega}}(J(N), M) . \tag{5.1}
\end{equation*}
$$

If $f: N \rightarrow U(M)$ is a map in \mathscr{U}, then $\alpha(f)=\varepsilon^{U} \circ f: J(N) \rightarrow M$ is a map in \mathscr{A}. If $g: J(N) \rightarrow M$ is a map in \mathscr{A}, then $\beta(g)=U(g) \circ \psi: N \rightarrow U(M)$ is a map in \mathscr{U}. Specifically, if x is in N, with $\psi(x)=\sum_{i} \gamma_{i} \otimes x_{i}$, then

$$
\begin{equation*}
\beta(g)(x)=\sum_{i} \gamma_{i} \otimes g\left(x_{i}\right) . \tag{5.2}
\end{equation*}
$$

In particular, a map $f: N \rightarrow U(M)$ in \mathscr{U} is determined by the map $g=\varepsilon^{U} \circ f$ by formula (5.2).

Recall that $A[t]$ is the free A-module on one generator c_{t} of degree t, with trivial Γ-coaction. Then for any A-module M,

$$
\operatorname{Hom}_{\mathscr{U}}(A[t]) \approx \operatorname{Hom}_{\mathscr{A}}(J(A[t]), M) \approx M_{t} .
$$

Acyclic Resolutions (5.3). Suppose that M is in \mathscr{U}. Then an acyclic resolution of M by models is a sequence

$$
0 \rightarrow M \xrightarrow{\partial-1} U\left(M^{0}\right) \xrightarrow{\partial_{0}} U\left(M^{1}\right) \xrightarrow{\partial_{1}} U\left(M^{2}\right) \rightarrow \cdots
$$

which is acyclic, and the maps $\partial_{-1}, \partial_{0}, \partial_{1}, \ldots$ are in \mathscr{U}. From this, we obtain a complex

$$
M^{0} \xrightarrow{d^{0}} M^{1} \xrightarrow{d^{1}} M^{2} \rightarrow \cdots
$$

where, for each $i \geqq 0, d$ is the map

$$
d^{i}(x)=\varepsilon^{U_{\circ}} \partial_{i}(1 \otimes x)
$$

Then, by standard homological algebra in the abelian category \mathscr{U}, we have:

$$
\begin{equation*}
\operatorname{Ext}_{\mathcal{Z}}^{s, t}(M) \approx\left(\operatorname{ker} d^{s} / \operatorname{im} d^{s-1}\right)_{t} \tag{5.4}
\end{equation*}
$$

Our next step is to find convenient resolutions for certain kinds of modules.
Definition 5.5. An A-module M is called quasi-free if $M \approx F / R$ where F is a free A-module with homogeneous basis $\left\{x_{\alpha}\right\}$, and R is a sub- A-module of F which is generated by homogeneous elements $\{r\}$, each of which is of the form

$$
r=\sum_{\alpha} c_{\alpha} x_{\alpha}
$$

where the c_{α} are in $\boldsymbol{Z}_{(p)}$.
The usefulness of quasi-free modules is the following.
Proposition 5.6. Let M be a quasi-free A-module. Let n be a fixed positive integer, and let N be the sub-A-module of M spanned by the elements of M_{m} for $m<n$. Then

$$
M \approx N \oplus M / N
$$

as A-modules.
Proof. Write $M \approx F / R$ as given in the definition (5.5). Then let

$$
\begin{aligned}
& F_{0}=\operatorname{span}\left\{x_{\alpha} \mid \text { degree }\left(x_{\alpha}\right)<n\right\} \\
& F_{1}=\operatorname{span}\left\{x_{\alpha} \mid \text { degree }\left(x_{\alpha}\right) \geqq n\right\} \\
& R_{0}=\operatorname{span}\{r \mid \text { degree }(r)<n\} \\
& R_{1}=\operatorname{span}\{r \mid \text { degree }(r) \geqq n\} .
\end{aligned}
$$

Then it is immediate that $F=F_{0} \oplus F_{1}, R=R_{0} \oplus R_{1}$, and $N \approx F_{0} / R_{0}, M / N$ $\approx F_{1} / R_{1}$. Thus

$$
\begin{aligned}
M & \approx F_{0} / R_{0} \oplus F_{1} / R_{1} \\
& \approx N \oplus M / N .
\end{aligned}
$$

Q.E.D.

Proposition 5.7. Let M be an unstable Γ-comodule, which is quasi-free as an A-module, and suppose that connectivity $(M)=k-1$, with $k \geqq 2 p-1$. Then

$$
\begin{array}{lll}
\operatorname{Ext}_{2 s, t}^{2 s}(M)=0, & \text { for } & t<2(p-1) p s+k \\
\operatorname{Ext}_{2 s}^{s+1, t, t}(M)=0, & \text { for } & t<2(p-1)(p s+1)+k
\end{array}
$$

Proof. By downward induction on the connectivity of M. If M is highly connected, (5.7) holds by the Miller-Zahler vanishing line for stable Γ-comodules ([6], [12]). Assume inductively that (5.7) holds for connectivity $\geqq k$ and let M be an unstable Γ-comodule, quasi-free as an A-module, with connectivity (M) $=k-1$, and $k \geqq 2 p-1$. We construct an acyclic resolution of M by models as follows.

Let $S^{2 p-2} M$ be the $\left(S^{2 p-2} M\right)_{2 p-2+n}=M_{n}$. For x in M, let $S^{2 p-2} x$ denote the corresponding element in $S^{2 p-2} M$. The unstable Γ-comodule structure on M is a map $\psi: M \rightarrow U(M)$. Recall from (2.13) that $U(M)$ is spanned by
the elements $h^{I} \otimes x$ where x is in M, and $2 l(I)<\operatorname{degree}(x)$. Thus coker ψ is spanned by the same $h^{I} \otimes x$ but excluding the $1 \otimes x$. We define an A-linear map

$$
f: \text { coker } \psi \rightarrow S^{2 p-2} M
$$

by

$$
\begin{aligned}
& f\left(h_{1} \otimes x\right)=S^{2 p-2} x \\
& f\left(h^{I} \otimes x\right)=0, \quad \text { for } \quad h^{I} \neq h_{1} .
\end{aligned}
$$

It is easy to see that f is well defined.
Let N be the sub- A-module of coker ψ spanned by the elements of degree strictly less than $2(p-1) p+k$. Then by (5.6),

$$
\operatorname{coker} \psi \approx N \oplus(\operatorname{coker} \psi / N)
$$

Let $M^{1}=S^{2 p-2} M \oplus(\operatorname{coker} \psi i N)$, and let

$$
(f \oplus \lambda): \text { coker } \psi \rightarrow M^{1}
$$

be the map where f is as above and λ is the natural projection. Then $g=$ $\beta(f \oplus \lambda)$ is a map

$$
g: \operatorname{coker} \psi \rightarrow U\left(M^{1}\right) .
$$

We claim that (i): g is one-one; and (ii): g is subjective in degrees $<2(p-1) p$ $+k$. Note that M quasi-free (as an A-module) implies that $U(M)$ and coker ψ are quasi-free also. Consider

Suppose that x_{1} is in N and x_{2} is in ($\left.\operatorname{coker} \psi / N\right)$ and that $g\left(x_{1} \oplus x_{2}\right)=0$. Then the projection of $\varepsilon g\left(x_{1} \oplus x_{2}\right)$ on coker ψ / N is x_{2}, so $x_{2}=0 . \quad N$ is spanned by elements of the form $h^{I} \otimes x$ which have degree $<2(p-1) p+k$. Thus N is spanned by elements $h_{1}^{n} \otimes x$, where $0<n<p$. Then

$$
g\left(h_{1}^{n} \otimes x\right)=\left(n h_{1}^{n-1} \otimes S^{2 p-2} x\right)+h_{1}^{n} \otimes \varepsilon g(1 \otimes x)
$$

Statements (i) and (ii) now follow readily by induction on n.
We next construct an acyclic resolution of M by models

$$
0 \rightarrow M \xrightarrow{\hat{\partial}_{-1}} U(M) \xrightarrow{\hat{\partial}_{0}} U\left(M^{1}\right) \xrightarrow{\hat{\partial}_{1}} U\left(M^{2}\right) \longrightarrow \cdots
$$

as follows. The map $\partial_{-1}=\psi$, the coaction map for M. The map ∂_{0} is the composite

$$
U(M) \xrightarrow{\lambda} \operatorname{coker} \psi \xrightarrow{g} U\left(M^{1}\right)
$$

where λ is the natural quotient map and g is defined above. Let $M^{2}=\operatorname{coker} \partial_{0}$, and for $i>2$, let $M^{i}=U^{i-2}\left(M^{2}\right)$. For $i \geqq 1$, the ∂_{i} are the maps in the cobar resolution for M^{2}. Then by (5.4),

$$
\operatorname{Ext}_{{ }_{\mu}}^{s, t}(M) \approx\left(\operatorname{ker} d^{s} / \operatorname{im} d^{s-1}\right)_{t}
$$

of the sequence

$$
M \xrightarrow{d^{0}} M^{1} \xrightarrow{d^{1}} M^{2} \xrightarrow{d^{2}} \cdots .
$$

By construction, $M_{t}^{1}=0$, for $t<2(p-1)+k$ and $M_{t}^{2}=0$, for $t<2(p-1)+k$. Therefore

$$
\begin{array}{lll}
\operatorname{Ext}_{\mathscr{Z}}^{1 \cdot t}(M)=0, & \text { for } t<2(p-1)+k, \\
\operatorname{Ext}_{\not / 2}^{2, t}(M)=0, & \text { for } t<2(p-1) p+k .
\end{array}
$$

For $s \geqq 3$, we have isomorphisms

$$
\operatorname{Ext}_{\mathcal{Z}}^{s, t}(M) \approx \operatorname{Ext}_{\mathcal{Z}_{\mathcal{Z}}^{s-2, t}}\left(M^{2}\right) .
$$

The statement of (5.7) follows by induction.
Q.E.D.

Corollary 5.8. For $n \geqq p-1$,

$$
\begin{array}{lll}
E_{2}^{2 s, t}\left(S^{2 n+1}\right)=0, & \text { for } & t<2(p-1) p s+2 n+1 \\
E_{2}^{2 s+1, t}\left(S^{2 n+1}\right)=0, & \text { for } & t<2(p-1)(p s+1)+2 n+1 .
\end{array}
$$

Definition 5.9. For each pair of positive integers (m, k) with $m<p$, let $M_{m}(k)$ be the free A-module with generators

$$
\left\{x_{2 m+1+2(p-1) i}\right\}, \quad 0 \leqq i<k .
$$

The Γ-coaction on $M_{m}(k)$ is given by formula (3.4). (The coaction is defined because Γ is sparse, i.e. $\Gamma_{t}=0$ if $t \not \equiv 0 \bmod (2 p-2)$.)

Corollary 5.10.

$$
\begin{array}{lll}
\operatorname{Ext}_{2}^{2 s+1, t}\left(M_{m}(k)\right)=0, & \text { for } & t<(2 p-2)(p s+k)+2 m+1, \\
\operatorname{Ext}_{2 / 2}^{2 s+2, t}\left(M_{m}(k)\right)=0, & \text { for } & t<2(p-1)(p s+k+1)+2 m+1 .
\end{array}
$$

Proof. The short exact sequence of unstable Γ-comodules

$$
0 \rightarrow M_{m}(k) \rightarrow M_{m}(k+1) \rightarrow A[2 m+1+2(p-1) k] \rightarrow 0
$$

induces a long exact sequence of Ext groups. Then (5.10) follows by induction, using (3.3) and (5.8).
Q.E.D.

Corollary 5.11. Let $n \leqq p-1$. Then for each $s \geqq 0$,

$$
\begin{array}{ll}
E_{2}^{2 s+1, t}\left(S^{2 n+1}\right)=0, & \text { for } t<2(p-1)(p s+1)+2 n+1 \\
E_{2}^{2 s+2, t}\left(S^{2 n+1}\right)=0, & \text { for } \\
t<2(p-1)(p s+2)+2 n+1 .
\end{array}
$$

Proof. This is the statement of (5.10) with $k=1$.
Q.E.D.

Remarks 5.12. (i) In [7], spaces $B_{m}(k)$ are constructed, with

$$
P H_{*}\left(B_{m}(k) ; B P\right) \approx M_{m}(k) .
$$

(In [7], $B_{m}(k)$ is denoted $B_{m}^{k}(p)$.) As a consequence of [7, (3.5)], the unstable Adams-Novikov spectral sequence for $S U(n)$ breaks up into a direct sum of ($p-1$) spectral sequences, with

$$
E_{2}(S U(n)) \approx \underset{1 \leqq m<p}{\oplus} \operatorname{Ext}_{\mathcal{L}_{\mathcal{L}}}\left(M_{m}(k(n, m))\right)
$$

where $k(n, m)=\left[\frac{n-m-1}{p}\right]+1$.
(ii) The vanishing line (5.11) cannot be improved on S^{3} as $\beta_{1}^{r} \alpha_{1}^{2} \neq 0$ in $E_{2}\left(S^{3}\right)$ for all r. (β_{1} and α_{1} denote the classes in E_{2} which represent the corresponding homotopy elements.) This is not the best possible for higher spheres; see Theorem 5.16, below.

Corollary 5.13. For $t-s<2(p-1)(p(p-1)+k)+2 m-1$,

$$
\operatorname{Exx}_{\boldsymbol{\mu}_{\boldsymbol{\mu}}^{s, t}}\left(M_{m}(k)\right)=E_{\infty}^{s, t}\left(B_{m}(k)\right)
$$

and there are no extensions if $t-s<2(p-1)(p(p-1)+k-1)+2 m$.
Proof. Sparseness.
Q.E.D.

Example 5.14. If $n<p-1$, and $q<2 p(p-1)+2 n+1$,

$$
\pi_{q}(S U(n)) \approx E_{2}(S U(n))
$$

and all non-zero elements occur in filtrations 0,1 and 2. Compare with [12; (5.7.4)].

Remarks 5.15. The above applies to any space X such that $H_{*}(X ; B P)$ is free as an A-module and cofree as a coalgebra, and such that $P H_{*}(X ; B P)$ as an unstable Γ-comodule is isomorphic to a direct sum of $M_{m}(k)$'s. In particular, for p an odd prime, by $[7 ;(4.1)]$, these methods apply to $\operatorname{Spin}(n)$ and to $S p(n)$.

We leave the details to the reader.
To illustrate the method (5.7) of resolving unstable Γ-comodules, we show the following (see $[9 ;(7.1)]$).

Theorem 5.16. Let a prime p be fixed. For q in the range $2 n+1<q$ $<2 p^{2}+2 n-4$, the p-localized group $\pi_{q}\left(S^{2 n+1}\right)$ is zero except in the following cases:
(i) For $0<k<p$,

$$
\pi_{(2 p-2) k+2 n}\left(S^{2 n+1}\right) \approx \mathbb{Z}_{p}
$$

Also (the case when $k=p$),

$$
\begin{aligned}
& \pi_{(2 p-2) p+2 n}\left(S^{2 n+1}\right) \approx \mathbb{Z}_{p}, \\
& \text { for } n=1, \\
& \approx \mathbb{Z}_{p^{2}}, \\
& \text { for } n>1 .
\end{aligned}
$$

(ii) For $n<k<p$

$$
\pi_{(2 p-2) k+2 n-1}\left(S^{2 n+1}\right) \approx \mathbb{Z}_{p}
$$

Also (the case when $k=p$),

$$
\begin{aligned}
& \pi_{(2 p-2) p+2 n-1}\left(S^{2 n+1}\right) \approx \mathbb{Z}_{p}, \quad \text { for } n=1 \text {, or } n \geqq p, \\
& \approx \mathbb{Z}_{p^{2}}, \text { for } 1<n<p \text {. }
\end{aligned}
$$

Proof. We prove (5.16) for $n<p$. The proof for $n \geqq p$ is similar. For the range $2 n+1<t-s<2 p^{2}+2 n-4$, by (5.11), we have $E_{2}^{s, t}\left(S^{2 n+1}\right)=0$ for $s>2$. Hence in this range,

$$
\begin{aligned}
\pi_{q}\left(S^{2 n+1}\right) & \approx E_{2}^{1, q+1}\left(S^{2 n+1}\right), \\
& \approx E_{2}^{2, q+2}\left(S^{2 n+1}\right),
\end{aligned} \quad \text { for } q \text { even }, ~ q \text { odd } . ~ \$
$$

We shall calculate $E_{2}^{*}, *\left(S^{2 n+1}\right)$ in this range by an acyclic resolution of $A[2 n+1]$ as follows. Let M^{0} be the free A-module with one generator x of degree $2 n+1$. Let M^{1} be the free A-module with one generator y of degree $(2 p-2)+2 n+1$. Let M^{2} be the A-module generated by elements z_{1}, z_{2}, \ldots, z_{p-n}, where degree $\left(z_{i}\right)=(2 p-2)(n+i)+2 n+1$, modulo the ideal of relations:

$$
\begin{gathered}
p z_{1} \\
(n+k) v_{1} z_{k}-p(n+k+1) z_{k+1}
\end{gathered}
$$

We note that these relations imply that in M^{2},

$$
p^{i} z_{i}=0, \quad \text { for } \quad 1 \leqq i<p-n
$$

$$
p^{p-n+1} z_{p-n}=0 .
$$

Let M^{3} be the sub- A-module of $\Gamma \otimes_{A} M^{2}$ generated by the elements $\left\{h_{1}^{k} \otimes z_{i}\right\}$, where $1 \leqq i \leqq p-n$ and $k>0$, and with relations induced from those in M^{2}. Let

$$
\partial_{-1}: A[2 n+1] \rightarrow M^{0}
$$

be the map with $\partial_{-1}\left(c_{2 n+1}\right)=1 \otimes x$. By [2, § 8], in the range of dimensions under consideration, $U\left(M^{0}\right)$ has an A-basis consisting of the elements:

$$
\begin{array}{lll}
h_{1}^{k} \otimes x, & \text { for } & 0 \leqq k \leqq n, \\
h_{1}^{k} v_{1} \otimes x, & \text { for } & n \leqq k<p-1 .
\end{array}
$$

Let $\partial_{0}: U\left(M^{0}\right) \rightarrow U\left(M^{1}\right)$ be the A-linear map defined by

$$
\begin{aligned}
& \partial_{0}\left(h_{1}^{k} \otimes x\right)=k h_{1}^{k-1} \otimes y, \quad \text { for } \quad 0 \leqq k \leqq n, \\
& \partial_{0}\left(h_{1}^{k} v_{1} \otimes x\right)=k v_{1} h_{1}^{k-1} \otimes y-p(k+1) h_{1}^{k} \otimes y, \quad \text { for } \quad n \leqq k<p-1
\end{aligned}
$$

Let $\partial_{1}: U\left(M^{1}\right) \rightarrow U\left(M^{2}\right)$ be the A-linear map defined by

$$
\begin{aligned}
& \partial_{1}\left(h_{1}^{k} \otimes y\right)=0, \quad \text { for } \quad 0 \leqq k<n, \\
& \partial_{1}\left(h_{1}^{k} \otimes y\right)=\sum_{i=0}^{k-n}\binom{k}{i} h_{1}^{i} \otimes z_{k-n-i+1}, \quad \text { for } \quad n \leqq k<p-1 .
\end{aligned}
$$

Finally, let $\partial_{2}: U\left(M^{2}\right) \rightarrow U\left(M^{3}\right)$ be the composite

$$
U\left(M^{2}\right) \xrightarrow{\lambda} U\left(M^{2}\right) / \operatorname{Im} \partial_{1} \approx M^{3} \xrightarrow{\psi} U\left(M^{3}\right)
$$

where λ is the natural quotient map and ψ is the coaction map for M^{3}.
It is readily verified that

$$
0 \rightarrow A[2 n+1] \xrightarrow{\hat{c}-1} U\left(M^{0}\right) \xrightarrow{\hat{\theta}_{0}} U\left(M^{1}\right) \xrightarrow{\hat{\partial}_{1}} U\left(M^{2}\right) \xrightarrow{\partial_{2}} U\left(M^{3}\right)
$$

is an acyclic resolution of $A[2 n+1]$ in the range of dimensions under consideration. Thus, by (5.4), in the range $t-s<2 p^{2}+2 n-4, E_{2, t}^{s, t}\left(S^{2 n+1}\right)$ may be calculated as the homology of the complex

$$
M^{0} \xrightarrow{d^{0}} M^{1} \xrightarrow{d^{1}} M^{2} \xrightarrow{d^{2}} M^{3} .
$$

The maps d^{i} are given in (5.3), which in this case become:

$$
\begin{aligned}
& d^{0}\left(v_{1}^{k} x\right)=p k v_{1}^{k-1} x \\
& d^{1}\left(v_{1}^{k} y\right)= \begin{cases}0, & \text { if } n>1, \\
0, & \text { if } \quad n=1, k<p-1, \\
p^{p-1} z_{p-1}, & \text { if } \quad n=1, k=p-1 .\end{cases}
\end{aligned}
$$

Furthermore, the kernel of d^{2} is generated by the elements $\left\{v_{1}^{m} p^{k-1} z_{k}\right\}$ for $m \geqq 0, k \geqq 1$. The relations in M^{3} imply that

$$
\begin{aligned}
& v_{1}^{k} z_{1}=p^{k} z_{k+1}, \quad \text { for } \quad k<p-n-1, \\
& v_{1}^{p-n-1} z_{1}=p^{p-n_{z_{p-n}}}
\end{aligned}
$$

(to within a factor of a unit in $\mathbb{Z}_{(p)}$). Thus in the range $t<2 p^{2}+2 n-3$, $E_{2}^{1, t}\left(S^{2 n+1}\right)$ is generated by the classes $\left\{v_{1}^{k} y\right\}$ (except when $n=1$, and $k=p-1$, in which case $p v_{1}^{p-1} y$ is the generator). These classes have the orders asserted in (5.14, (i)). Also, in the range $t<2 p^{2}+2 n-2, E_{2}^{2, t}\left(S^{2 n+1}\right)$ is generated by the classes $\left\{v_{1}^{k} z_{1}\right\}$ for $0 \leqq k<p-n-1$, and by $v_{1}^{p-n-1} z_{1} / p$. These classes have the orders asserted in (5.16), (ii).
Q.E.D.

Remarks 5.17. In the range $q<2 p^{2}-5$, the double suspension homomorphism

$$
\pi_{2 n+1+q}\left(S^{2 n+1}\right) \rightarrow \pi_{2 n+3+q}\left(S^{2 n+3}\right)
$$

is the multiplication by p except in the following cases, when the double suspension sends a generator to a generator.
(1) $q=(2 p-2) k-1$ and $0<k<p$, all n, $q=(2 p-2) p-1 \quad$ and $\quad n>1$.
(2) $q=(2 p-2) k-2$, and $n \geqq p-1$.

References

[1] Adams, J. F., Stable homotopy and generalized homology, University of Chicago Press, 1974.
[2] Bendersky, M., Curtis E. B. and Miller, H. R., The unstable Adams spectral sequence for generalized homology, Topology, 17 (1978), 229-248.
[3] Bousfield A. K. and Kan, D. M., Products and pairings in the homotopy spectral sequence, Trans. Amer. Math. Soc., 177 (1963), 319-343.
[4] Curtis, E. B., Simplicial homotopy theory, Advances in Math., 6 (1971), 107-209.
[5] Hazewinkel, M., A universal formal group and complex cobordism, Bull. Amer. Math. Soc., $8 \mathbb{1}$ (1975), 930-933.
[6] Miller, H. R., Some algebraic aspects of the Adams-Novikov spectral sequence, Thesis, Princeton University, 1974.
[7] Mimura, M., Nishida G. and Toda, H., Mod-p decomposition of compact Lie groups, Publ, RIMS, Kyoto Univ., 13 (1977), 627-680.
[8] Toda, H., A topological proof of theorems of Bott, Borel and Hirzebruch, Mem. Kyoto Univ., 32 (1958), 103-119.
[9] -, On iterated suspension I, J. Math. Kyoto Univ., 5 (1965), 87-142.
[10] Wilson, W. S., The Ω-spectrum for Brown-Peterson cohomology, Part II, Amer.
J. of Math., 97 (1975), 101-123.
[11] Zabrodsky, A., Hopf spaces, North-Holland Math. Studies 22, North-Holland Publ. Co., Amsterdam, 1976.
[12] Zahler, R. S., The Adams-Novikov spectral sequence for the spheres, Ann. of Math., 96 (1972), 480-504.

Note added in proof: In order to compute the matrix C in Section 4 it is convenient to use the following observation: For a polynomial $A(Y)=Y+a_{2} Y^{2}+\cdots$ let $[A(Y)]$ be the matrix with the entries in the j-th column given by the coefficients of $(A(Y))^{j}$. Then $[B(Y)]$ $[A(Y)]=[A B(Y)]$.

[^0]: Communicated by N. Shimada, November 21, 1978.

 * Department of Mathematics, University of Washington, Seattle, Washington, 98195 , U.S.A.

 Present address: Department of Mathematics, Rider College, Lawrenceville, N. J. 08648 U.S.A.

 1) Research in part supported by NSF Grant MCS 76-0823.
