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Introduction

We normally classify switching circuits as either synchronous or asynchro-

nous depending on whether or not the signals in the circuit are synchronized

with some source of fundamental frequency (or clock) which regulates the entire

circuit. It is possible to predict the state of a synchronous circuit for any given

clock signal if one knows the initial state of the circuit and its logical character-

istics. However from knowledge of the logical characteristics of the circuit

alone, it is impossible in an asynchronous circuit to predict the next state from

the present one. The state may also depend upon the relative speeds of some of

the logical elements which comprise the circuit. One of the main objectives of

asynchronous theory is to describe the properties of circuits in which their ulti-

mate behavior does not depend on the relative speeds of their elements.

The semimodular circuit theory introduced by D. E. Muller and W. S.

Bartkey had the purpose of developing the techniques for designing asynchronous

circuits [1, 2, 3]. In a series of papers [4, 5, 6], it was reorganized as a theory

of H-dimensional space of lattice points. In this theory a state of a circuit is

specified by a n-tuple z = (zl5..., zn), Zje{0, l,...,p}, and from a sequence of

states z1-^2-*^3->••-, we can construct the sequence of ??-tuples Ml-»M2-*

M3-»---, such that the i-th component MJ of Mk=(M\, MJ,..., Af*), is a non-

negative integer representing the total number of changes of f-th component of

zf-»z2->z3-» >zj during the state change from z1 to zk. For instance, if
2 = (00), z3 = (01), z4 = (ll), z5 = (10),..., then M^OO), M2 = (10),
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M3 = (ll), M4 = (21), M5 = (22),.... With respect to a preassigned sequence

z1^z2-»z3->---, (M1->M2->M3-^---), we can define the mapping h of the
sequence {Mk} into the n-dimensional cube as h(Mk) = zk. If the circuit satisfies

a certain condition, i.e., semimodularity, this /? can be a mapping from a subset

of the 7i-dimensional lattice point space to the n-dimensional cube, where the

image h(Mk) of Mk does not depend on the sequences connecting the origin

(0,...,0) to (Mf,...,M*). Moreover the set of points, which appear in the

sequence {Mk} induced by a sequence {zfe} starting from the preassigned initial

state, makes a semimodular lattice in the w-dimensional lattice point space.

Thus, if the circuits C is semimodular, C determines a pair (F, /i) where Fis a

semimodular lattice and h is a mapping of V into the n-dimensional cube, and

conversely this (V, /?) completely determines the circuit. However, if a pair

(F, h) is given arbitrarily, it does not always determine a circuit. To surmount

this difficulty, we have to resort to a so called "digital extension" (Fe, he) of

(F, h) so that (Fe, he) determines a circuit. Such construction is called "synthe-

sis procedure" [3]. Synthesis procedure for distributive charts was formerly

treated in [3, 8], and that for semimodular charts was first treated in [9]. The

purpose of this paper is to describe a simpler synthesis procedure than that of

[8] for distributive charts by using the approach which was left incomplete in

[3]. We shall briefly discuss on this point at the beginning of Chapter II.

This paper is based on an extensive examination of a finite dimensional

lattice point space, especially of its recurrence property. To make the paper

easy and self-contained, semimodular state chart theory is briefly reviewed with

intuitive examples, and discussions are limited on binary state charts because the

binary case is most practical and other p-ary cases, p^3, may be seen from

analogies. Subsequent to the original publication of the semimodular theory,

there have been considered some mathematical models to evaluate parallelism

of computations. The connection of them have been investigated in [15-18].

This paper treats the distributive case; the subsequent paper will treat the

semimodular case.

Chapter I. The State Chart

In this chapter, we shall briefly refer to the symbols, definitions and theorems

of semimodular state charts theory with a few new counter examples. For more

detailed results, the reader should refer to [1, 2] or [4, 5, 6].
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§ 1. The Similarity Relation

Definition 1.1. We denote the set of all non-negative integers i.e., {0, 1,

2,...} by W. J denotes a finite set of indices, usually J = {1, 2,..., n}9 unless

explicitly defined. The elements of J are called the nodes of J. WJ denotes

the cartesian product whose element M is a n-dimensional line vector (Ml5...,

Mn) where n is the number of integers contained in J. Let M and N be points

in WJ. The expressions MrgAT and M = N are defined as Mj-^Nj and Mj = Nj

respectively for each j of J. WJ is a partially ordered set with respect to g .

M^N but M^N is denoted by M<N. The expressions M + N,M-N (if

M^JV), My N and MA JV represent the points in PFJ defined by:

(M A Afy = min (M,., N,)

for all j of J respectively. We denote <5* and 0J as points in W J such that

(di)j = Sij (the Kronecker delta), and (0J)j =0 for each j of J. Let 7 be a subset

of WJ. A point M in 7 is minimal in 7 if there is no other point L in 7 such

that L<M. We say that JV coders M in 7 if JV, M are in 7, N>M, and there

is no other point L in 7 such that N>L>M.

Lemma 1.2. In any subset Y of WJ the number of minimal points is

finite.

Definition 1.3. A subset F of WJ is said to be semimodular if the follow-

ing conditions are satisfied :

(1) if M and N are in F, then M v N is in F,

(2) if N covers M in F, then N = M + di for one j of J,

(3) 0J is in F

The condition (1) may be changed to (1)* :

(1)* if L, L + dl and L + 6J are in F and i^j, then L + <5f + (5-> is also in F.

Furthermore if F satisfies condition (4), then F is said to be distributive,

(4) if M and JV are in F then M A N is also in F.

The condition (4) may be changed to (4)*:

(4)* if L, L - 5* and L - ^ are in F and i ̂  j, then L - c5* - d* is also in F.



852 TSUYOSHI NAKAMURA

Lemma 1.4. Let V be a distributive subset of WJ. If the set {M; ME V

and Mi = 6} is not empty for a node ieJ and a positive integer 9, then it has a

unique minimum P, hereafter denoted by P<-»[0, i]. Then P^L holds for any

point LEV such that Lt^6.

Lemma 1.5. If P<-+[99 i] and P<-»[<£, j], then i=j and hence 0 = $.

Proof. Since P>0J, we have a sequence {M(k)}9 /c = 0,..., m, such that

M(0) = 0J, M(m) = P and M(k +1) = M(k) + 5*™ for h(k) e J. Let k0 = max {k;

h(k) = i or h(k)=j}. Obviously, fe0^m—1. Assuming h(k0)^j, we get /z(/c0)

= i and Py = M(fc0)y• Since P<-»[#, 7] = [M(fc0)y, j], P ̂  M(/c0). On the other
hand P^M(/c0 + l) = M(/c0) + <5', which is a contradiction to the previous result

based on the assumption. Therefore h(kQ)=j must hold. Similarly h(kQ) = i,

hence i=j.

Definition 1.6. Let {0, 1}J denote the set of mappings from J to {0, 1}.

Let Fbe a semimodular subset of WJ
9 and h: F-»{0, 1}J be a mapping satisfying

the following conditions:

if Mj = Nj9 then h(M)j = h(N)j9

if My = Nj +1, then h(M)y ̂  fc(N)^ -

As we shall deal with the binary case in this paper, h is defined as a mapping to

{0, 1}J. In general, h shall be defined as a mapping to {0, 1,..., p— 1}J in the

case of p-ary. In the binary case h(M)j = h(0J)j + Mj (mod 2) may be easily

verified from 1.6. Thus, it should be noted that all ft(M) are determined if /i(0J)

is specified. The pair (F, h) of Fand such a mapping h is called state chart.

As briefly stated in the introduction, given a circuit, we get a set F by accumu-

lating the number of signal changes performed in the circuit and ft(M) so as to

represent the exact state of the circuit for each M e F. When a circuit satisfies

a condition so-called "semimodularity", Fis proved to be a semimodular subset

and h is as a mapping from Fto {0, 1}J satisfying the condition of 1.6. Thus,

the order of signal changes in a semimodular circuit can be completely repre-

sented by a semimodular state chart (F, h). In this case, the chart (F, h) satisfies

the condition of "digitalness" (refer to 1.21). Conversely, when a real circuit

is designed, the order of signal changes is given as a condition. That is, a semi-

modular state chart (F, h) is given first, but it does not necessarily satisfy the

condition of "digitalness".
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Definition 1.7. We define the set VM={N-M\N^M and NeV} for

each M of V. If V is semimodular or distributive then VM is semimodular or
distributive respectively.

Definition 1.8. Let (V, h) be a state chart. When VM=VN and h(M)

= h(N)9 two points M and N are called similar, written as M~N. The simi-

larity relation is an equivalence relation in V. The equivalence classes with the

similarity relation are called the similarity classes in (V, ft), written as (F, ft)/~.

We write T^S for similarity classes Tand S if M^N holds for some M e Tand

NeS.

The set FM tells us the order of signal changes from the state ft(M) of a cir-

cuit. Therefore, if (F, H) represents the order of signal changes of a real circuit,

VM = VN should hold whenever h(M) = h(N). However, since (F, h) does not

necessarily represent a real circuit, h(M) = h(N) does not imply VM=VN. In

Figure 2, (200) -(020) but (200)^(220).

Lemma 1.9. Let (K, ft) fee a stare cftarf. // M~N and LeFM tften

-JV + L.

Proo/. Let P e FL+M, then P + L e FM, P + L e FJV and P e FL+]V, therefore

>W. Similarly, FL+NcFL+M. Since h(M) = h(N)9 Mj = Nj(mod2)

for each jeJ, hence (M + L)7- = (AT + L)y (mod 2) for each jeJ and therefore

Lemma 1.10. Let (F, ft) be a state chart and M, N be points in V such

that M~N. Then FMcFMVJV and h(M) = h(MvN).

Proof. Let LeVM=VN, then both M + L and N + L are in F, therefore

(M + L) v (N + L) = (M v N) + L e Fand L 6 FMvjv. Since ft(M) = ft(IV), ft(M v N)

= ft(M).

Theorem 1.11. Let (F, ft) fee a distributive chart and M and N be points

in Vsuch that M~N. Then M~N~MvJV-MAJV.

Proof. This follows from ordinary calculations.

§2B The Cycles

Definition 1.12. Let (F, ft) be a state chart with nodes J. For a point M

of F we define Z(M) as a set of non-zero points Z of PFJ where M + Z covers M
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in the similarity class containing M. The elements of Z(M) are called the

cycles of Z(M), Z(M) can have only a finite number of cycles (1.2). If Z is a

cycle then Zy = 0(mod2) for all jeJ. By 1.9, if M~N then Z(M) = Z(JV).

Thus cycles are the same for any point in the same similarity class T, which are

called the cycles of T, written as Z(T).

Lemma 1.13. Let (V, h) be a state chart and a point M be in a similarity

class T. Then a point N in T such that N^.M is written as the form; N =

M + a(l)Z(l) + a(2)Z(2) + • • • + a(m)Z(m) where a(i) eW and Z(i) e Z(T). Con-

versely, a point N written in the above form is a point in T.

Proof. The former part is proved by taking covering points from M to N

in Tone after another. The latter part is a consequence of 1.9.

Corollary L14. Let (V, h) be a state chart, M and N be points in V such

that M^N and Z be a cycle in Z(M). Then Z = a(l)X(l) + • • • + a(m)X(m) for

the cycles X(j) of Z(N) and a(j) e W.

Theorem 1.15. Let (V, h) be a state chart and T, S be similarity classes

such that T^S and S&T. Then Z(T) = Z(S) holds.

Proof. Let Z(S) = {X(l),..., X(n)} and Z(T) = {7(1),..., 7(ro)}.

Since

(1) 7(0 = a(i, 1)X(1) + - - - + a(i, n)X(n)

for nonnegative integer a's. Similarly,

(2) X(j) = b(j, l)7(l) + - + 6a, m)7(m) .

Assigning (2) to (1) and rearranging,

r(0 = {a(i, 1)6(1, l) + ... + a(i, n)b(n, 1)}F(1) + -

- + {a(i, 1)6(1. m) + - + a(i, n)b(n, m)}Y(m)

for each i. Since Y(i)^Y(j) can not hold unless i=j,

if j = i,
(3) a(i, 1)6(1, i)+- + a(i,n)b(n,j)=

[ 0 otherwise .

Similarly by assigning (1) to (2), we have

( 1 if J = i,
(4) b(j,l)a(l,i) + - + b(j,ri)a(n,i)=\

[ 0 otherwise.

Let us consider a fixed node i. There exists k such that a(i, fc)^0. Then it
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follows from (3) and (4) that

ft(fc,j) = 0 if

and

b(j, 0 = 0 if

Since l = a(i, l)b(l> OH ----- ha(i, m)b(m, 0 = 00"» fc)b(fe> 0» we nave aO'> &) =
b(fc, 0 = 1 and consequently X(k) = b(k, t)Y(i) = Y(i). Thus we may find a cycle

X(k) for each 7(0 such that X(k)=Y(i), and therefore Z(T)=>Z(S). Since Z(S)

=)Z(T) also follows from the similar argument, this completes the proof.

Lemma 1.16. Let (V9 h) be a distributive chart and T be a similarity class

such that Z(T) has two distinct cycles Z and X. Then Z/\X = QJ.

Proof. This follows from 1.11.

Definition 1.17. Let (V, h) be a state chart with nodes J and Z be a cycle

of Z(M) for a point M in V. We write s(Z) = {i; Z^O} and u(Z) = {i; Zt = Q}9

called spanned nodes and unspanned nodes of Z respectively. It is clear that

s(Z)Uw(Z) = J.

Lemma 1.18. Let (V9 h) be a distributive chart, M and N be points in V

such that M^N. Then Z(M)cZ(N).

Proof. Let Z be a cycle in Z(M). Then there exists a cycle X in Z(JV) such

that Z^.X (1.14). There exists an integer m such that (M + mZ) f^JVf for any

i of s(Z). Let P and Q stand for M + mZ and (M + mZ)AJV respectively.

Since M^Q^P and M~P, ZeZ(g) (1.15). Since ((P + Z) A (]V + Jf))/ =

Qi + Xi = (Q + X)i for any i of s(Z), ((P + Z)A(]V + Z)),=Pe

. for any i of w(Z), we have Q + Xe Fbecause P + Ze Fand N + X

eF. Then it follows from a relatively long but natural calculation that Q~

Q + X. Since ZeZ(Q),Z:>X and Q~Q + X9X should be equal to Z and

Z = XeZ(N).

Lemma 1.19. Let (V9 h) be a distributive chart and M9 N be points in V

such that Z(M) and Z(N) have the same cycle Z. Then Z is also a cycle in
Z(MAJV).

Proof. MAN~(M/\N) + Z follows from a simple calculation using the

hypothesis M~M + Z and N~N + Z. Then Z(MAJV) should have a cycle X

such that X^Z. Since Z and X are cycles in Z(M) (1.18) and X/\Z^QJ
9 X

should be equal to Z.
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Theorem 1.20. Let (F, h) be a distributive chart with nodes J. If X and

Z are cycles of (F, /?) which are different, then Z/\X = QJ. For each cycle Z,

the set {M; ZeZ(M)} has the unique minimum point, which will be called as

the minimum point with respect to the cycle Z.

Proof. Let M and N be points in F, and X and Z be cycles in Z(M) and

Z(JV) respectively. Then X and Z are also cycles in Z(M A N) (1.18) and there-

fore X/\Z = QJ (1.16). The set {M; ZeZ(M)} has at most finite number of

minimal points L(l),..., L(m) (1.2), then L(l) A -•• A L(m) also is a point in the

set (1.19) and therefore the set has the unique minimum point.

§ 3. Finiteness and Digitalness

Definition 1.21. A state chart (F, h) is finite if the number of the similarity

classes in (F, h) is finite. A state chart is digital if M^N whenever h(M) =

h(N}. A state chart is orthogonal if X A Z = 0/ whenever X and Z are cycles of

the same similarity class and X^Z. Distributive charts are orthogonal (1.16).

Clearly, digital charts are finite.

The digitalness is a necessary and sufficient condition for a semimodular

state chart (F, h) to represent the order of signal changes of a real circuit. When

a non-digital state chart (F, h) is given to be realized, we shall try to find a "digital
extension" of (F, h) by adding some new nodes and construct a real circuit from

the digital extension. Then we ignore the added new nodes and pay attention

only to the ordinary nodes, whose signal changes coincide with those specified

by (F, h). Finding a digital extension is the synthesis problem. (An algorithm

to construct a real circuit from a digital extension is described in [12, 13].)

Theorem 1.22. A finite state chart (F, /?) is orthogonal.

Proof. Let X and 7 be different cycles of a similarity class T, and let

MeT. Then M + n(X v Y) = (M + nX) v(M + n7)e F for any n^O. Since

(F, h) is finite, M + n(X v 7)~M + m(X v 7) for some m>n. On the other

hand, since

by 1.10, we have VM+n(XvY)= FM+(w+1)(XvF). Since ^ = Yj = 0 (mod 2),

fc(M + 7i(ArvY)) = A(M + (n + l)(JSTvY)), hence M + npf v Y)~M + (n + l)(X v
7). Then, by 1.15,
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~M + n(XvY) + X+Y. Since 7 is a cycle of Z(M + n(X v Y) + X) by 1.15,

X v Y= X + Y should hold. Then we have X A Y= X + 7- (X v 7) = 0J.

§ 4. Extension and Amalgamation

The dimension of a state chart corresponds to the number of elements

contained in a circuit. When some new elements are added to the circuit, then

we obtain a higher dimensional state chart than the first one. Thus, if a given

state chart is not digital, then we may try to find a higher dimensional digital

state chart of which restriction coincides with the given one. This situation is

expressed as follows.

Definition 1.23. Let J, Je be non-empty finite set of indices such that

Je=> J. For a point Me of WJe, we define a point Me \ J of WJ as (Me \ J)j =

Mej for each j of J. For a subset Ve of WJe, we define the subset Ve \ J of WJ

as Ve\ J = {Me\ J; MeeVe}. Ve\J and Me\ J are called the grounds of Ve

and Me in J respectively, which in turn, are extensions of Ve \ J and Me \ J onto

Je respectively. If Ve is semimodular or distributive, then Ve \ J is also semi-

modular or distributive respectively. Correspondingly, for a mapping he from

Ve to {0, l}Je, we define the mapping he\ J from Ve\ J to {0, 1}J as follows:

For a point Me Ve\ J, ((7ie| J)(MJ)j = he(Me)j for all j of J where Me is any

point in Ve such that Me\ J = M. Given a state chart (Fe, /ie) with nodes Je

and Jc= Je, (Fe | J, /ie | J) is a state chart with nodes J, which will be written by

(Fe, he) | J and called the ground of (Fe, he) in J or conversely, (Ve, he) is an

extension of (F, /?) onto Je.

Lemma 1.24. Let (F, /i) foe an extension of a state chart (V, h) with nodes

J. If Me~Ne in (Vejie} then Me\J~Ne\J. Therefore (F, h) is finite

whenever (Ve, he) is finite.

Proof. This immediately follows from the definition.

Definition 1.25. Let Jk be a finite non-empty set of indices where k ranges

over a finite non-empty set K. The system {Jk}9 keK, is co-inter sectional if

Jr n Jm are always the same set J for any distinct r and m in K. Let (Ffc, hk}

be state charts with nodes Jfc, keK. The system of state charts {(Fk, hk)} is

co-interactional when {J&} is co-intersectional and (Fm, hm)\ J = (Vr, hr)\ J

for all r and m where J= n J/c, fceK. Let Je= U Jfc, keK. We define the
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subset ®Vk, keK, of WJe by ® Vk = {Me e WJe; Me\JkeVk for all /ceK},

called the amalgamation of Fk, keK. It is noted that if J is empty then the

amalgamation is equal to the cartesian product. If each Vk is semimodular or

distributive, then ®Vk is also semimodular or distributive respectively. Cor-

respondingly, we define the mapping ®hk, keK, from ®F& to {0, l}Je as

follows: For a point Mee®Vk,(®hk(Me))j = hk(Me\Jk)j if jeJk. Then

(®Ffe, ®/zk) is a state chart with nodes Je, which will be written as ®(Vk, ftfc),

/ceK, and called the amalgamation of (Vk, /zfe)'s. ®(F*, /ik) is an extension

of (7*, /ife) for each fceK.

Theorem 1.26. Let {(Vk, hk)}, keK, be a co-intersectional system of state

charts with nodes {Jk}. If Me and Ne are points in ®Vk, keK, then Me~

Ne if and only i f M e \ Jk~Ne\ Jk for all keK.

Proof. Let Ve and he stand for ®Ffc and ®hk respectively. Since

(Ve, he) is an extension of (Vk, hk) for any keK, "only if part" follows from

1.24. Assume that Me and Ne are points in Ve such that Me\Jk~Ne\ Jk

for all keK. Evidently he(Me) = he(Ne). Suppose that Le + Mee Ve. Then

(Le + Me)\Jk = (Le\Jk) + (Me\Jk)eVk for all keK. Since Me\Jk~Ne\Jk,

(Le \ Jk) + (Ne \ Jk) = (Le + Ne) \JkeVk for all fc e K. Therefore Le + NeeVe.

Thus we have Ve
Me<=.V%e. Similarly V%B^Ve

Me and Me~Ne are proved.

Lemma 1.27. Let {(Vk, hk)}, keK, be a co-intersectional system of state

charts. If each (Vk, hk) is finite or digital then ®(Ffc, hk) is finite or digital,

respectively.

Proof. This follows from 1.26.

Synthesis procedures are procedures to construct digital extensions of given

state charts. A given state chart is, so to speak, an original plan or an outline

of a circuit and a digital extension of it is a complete specification for a logical

design of the circuit.

§ 5. The v-Similarity Relation

Definition 1.28, Let (F, h) be a state chart and M, N be points in F. We

write M~N, read v-similar, ifM~N~MvN. If (F, h) is digital or distribu-

tive then ~ and ~ are equal.

Lemma 1.29* Let (F, h) be an orthogonal state chart, then the v-similarity
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relation is an equivalence relation.

Proof. This follows from 1.13 and 1.15.

By 1.22, the v-similarity relation in a finite state chart is an equivalence

relation. The orthogonality is essential in the previous lemma. To see this,

Figure 1. A binary non-orthogonal state chart (V, h) with V= {(x^ xz, xs)
<=Wx Wx W\ x^+x^Xs] and h(x)i=xi (mod 2).

Figure 2. A binary finite state chart (V, h) with V= {(x^ x2, 0); (xlt xz)^W x W}
U {(xl9 xz, 1); ^j+^2^3] and h(x)i=xi (mod 2).
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examine the binary state chart of Figure 1. Though (000)-(202) and (000) ~

(022), (202) and (022) are not ^-similar because (000)+ (222). The relations -

and — are not necessarily equal even in finite slate charts. In the binary finite

state chart of Figure 2, (200) —(002) but they are not u-similar.

Lemma 1.30 (Teorem 2 of [9]). Let (V9 h) be a finite state chart with

nodes J. Then the fallowings hold.

(1) The number of u-similarity classes in (V, h) is finite.

(2) Let The a v-similarity class and Z be a cycle in Z(T} and Q be the set

of nodes spanned by Z. Then the set {M\0\ MeT}, hereafter denoted by

T\ Q, is a totally ordered set.

(3) Let M and N be points in V so that Z(M) = Z(N) = {Z(1),..., Z(m)},

and let Q(q) be the nodes spanned by Z(q) for each qe {!,..., m}. Then M~N

if and only if both M\Q(q) = N\Q(q)(modZ(q)\Q(q)) for all qe {!,..., m}

and M|Q(0) = AT|Q(0) hold where Q(0) = J-VQ(q).

§ 6. ^-Extension and Digital Extension

In this section, we shall review some of the results of [8]. The ^-extension

defined in this section is, so to speak, an extension between a given state chart

and a digital extension of it.

Definition 1.31. Let (V, h} be a finite state chart and (T(a)}, a=l,..., m,

be the ^-similarity classes. Taking two ^-similarity classes T(a), T(/?), we write

h(T(u)) = h(T(fS)) if h(M) = h(N) for any points Me T(a) and NeT(0), further-

more if M~N then T(a)~T(J}). Let K be the set of unordered pairs (T(a),

T(JI)) where T(a) and T(JS) are both ^-similarity classes such that /i(T(a)) =

h(T(ff)) but T(oO~T(£) does not hold: X = {(r(a), T(ft)\ fc(T(a)) = h(T(/?)) but

T(a)^T(jS)}. The set K is the synthetic class of (V, h) and the elements of

K are the knots of K.

Definition 1.32. Let (V, h) be a finite semimodular state chart with nodes

J and T, S be mutually disjoint subsets of V. The extension (Ve, he) of (V, h}

is called as (T, S)-extension if it satisfies the following conditions.

(1) If Mc, Ne are points of Ve such that he(Me) = he(Ne) and

Me\J~Ne\J, then Me~Ne.

(2) If Me, Ne are points of Ve such that Me \ J e T, Ne \ J e S, then
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Lemma 133. Let (V, h) be a finite semimodular state chart with nodes J,

and let K be the synthetic class of (F, h). If K-extension (FK, /?*) with nodes
J exists for each K of K, then the amalgamation ®(FK, hK), KEK, is a digital

extension of '(V9 h).

Lemma 134. Let (F, h} be a finite state chart with nodes J, and T, S be

mutually disjoint subsets of V which are represented as unions (not necessarily

disjoint) as follows:

r=r ( i )u-ur (m) ,
5 = 5(1) U . . .uS(n)

where m, n are positive integers. Let K(t, s) denote the pair (T(t)9 T(s)) for

each (t, s)e{l,..., m} x {!,..., n}. If there exists a K(I, s)-extension (V(t>s\

/? ( t» s>) with nodes J(t, s) for each (f, s), then ®(V^'S\ /i^'s>), (t, s)e {!,..., m} x
{!,..., n}9 is a (T, S)-extension.

Lemma 135. Let J be a non-empty finite set of indices. For any points

P, Z of WJ, we denote the set {P + rZ; r ranges over integers such that P + rZ

GWJ} by {P; Z}. Let P, P* and Z be points of WJ such that Zt^Q for all ieJ

and P^P* (modZ) i.e., P — P*^kZ for any integer k. Then there exists an

integer k as follows: if we represent {P; Z}, {P*; Z} as unions of mutually

disjoint subsets

{P; Z} = {P; kZ} U {P + Z; kZ} U ••• U {P + (/c-l)Z; kZ}

{P*; Z} = {P*; kZ} U {P* + Z; kZ} U - U {P* + (fc-l)Z; kZ} ,

then for any given {P + tZ; kZ}, {P* + sZ; /cZ}? Q<t, s<k— 1, there exists a

member i of J such that M^N^modkZ) for all points Me{P + rZ; /cZ},

; kZ}.

Let P = (2, 0), P* = (0, 2) and Z = (2, 2) then fc of the lemma is any integer

not less than 3.

Chapter II. Synthesis of Distributive Charts

In this chapter, we shall present a synthesis procedure for distributive charts.

Synthesis procedures are those to construct digital extensions of given state

charts. If digital extensions of given state charts are obtained, then circuits
which are specified by the state charts can be designed using a set of fundamental
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logic elements. The reader who wants to know more about this should refer to

[12] or [13]. The synthesis problem was first dealt with in [3], however, it was

left incomplete. A complete procedure for distributive charts was first given

in [8]. Briefly speaking, the work required for constructing a digital extension

using the procedure of this chapter is proportional to the dimension number n

of (F, /?) but that used in [8] is proportional to the second power of n. One of

the differences between them is that [8] studies the grounds of (F, h) in all the

two dimensional spaces, while, the present one studies the grounds of (F, h) in

the spaces spanned by cycles. The latter approach was the one that [3] tried

and left incomplete. The section 1 gives a fundamental relation between (F, h)

and the grounds of (F, /?) in the spaces spanned by cycles.

§ 1. g-Similarity Relation

Definition 2.1. Let (F, h) be a finite distributive chart with nodes J and

Z(l),..., Z(m) be the cycles of (F, h) where m is an integer not greater than the

number of nodes in J and Z(z)AZ(/) = 0J whenever i^j (1.20). Q(q) denotes

the set of nodes spanned by a cycle Z(q) for each q e {!,..., m} and the set of

nodes not spanned by any cycle is denoted by Q(0), then we have J = Q(0) U Q(l)

U - - - U g ( m ) and 2(Ofi2(J) = 0 whenever zVj. Let ge{0, 1,..., m}, and

V\Q(q) be the ground of Fin Q(q). Two points A* and B« in V\Q(q) are
q

q-similar, written as ~, when there exist points A and B in F such that

A\Q(q)=Aq, B\Q(q) = B* and,4~B. Obviously ~ and = are equal to each

other when g = 0.

Lemma 2.2. Let (F, h) be a distributive chart with nodes J, and Z(q) and

Q(q) be the cycle and the nodes of an element qe {!,..., m} in 2.1. Then two

points A* and Bq in V\Q(q) are q-similar whenever Aq^L\Q(q), Bq^L\Q(q)

and Aq~Bq in (F, h)\Q(q) where L is the minimum point with respect to the

cycle Z(q).

Proof. Let Z and Q stand for Z(q) and Q(q), respectively. It is no loss of

generality that we assume J={1,..., r,..., n} and Q = {r+l3..., /?}. Let Aq and

B« be points in F|Q such that A*^l\ Q, Bq^L\ Q and Aq~Bq. Let A(i),

B(i) denote the points in F such that A(i)++[Af9 /], 5(i)<->[£?, z] in (F, h) for

each i e Q (for «->, refer to 1.4) and let A* = A(r+l)v — v A(n)vL, B* = B(r+l)

v- - -vB(n)vL. We have only to show -A*\Q = A*9 J3* \Q=B« and A*~B*
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to prove the lemma.

(a) Let us prove A*\Q = A* and B*\Q = Bq. Since A(j)^\_Aq
j9 j] in V,

A(j) \Q^Aq. Hence A^^A^A^ for any iJeQ and therefore Af=A(i)t

= A? for all ieg. Thus 4* | Q = Aq and similarly B*\Q = Bq.

(b) Let us prove A*\Q = B*\Q, where g = {l,..., r}. Since Z,^0, there

exists an integer c such that y4fg(L + cZ)f for all f eQ. Then we have ^4(i)^

L + cZ for all ieg because y4(/)<-*[^4?, ?]• Hence L^A(r+l) v ••• v A(n) vL

g(L + cZ) and therefore L|g = A*|g. Similarly L\Q = B*\Q and ^*|g =
B* | Q are proved.

(c) We shall prove A*~B*. Since A*|g = £*|g and A*\Q = A«~B*

=B*\Q,h(A*) = h(B*). To prove F^cF^, let M* be a point in F such

that M*^>4* and let M(f)<-»[Mf, i] for each ieJ. Then we have M* =

M(l) v ••• vM(w) by the similar argument in (a). Let M* stand for M* | Q.

Since Mq^Aq and ^g ~5«, M « -Aq + Bq e F| Q. Let N(i) denote the point in

F defined as N(0<->[(M«-A«+5«)j, /] for each z e Q , and JV* be the point in

F defined by N* = ((L + cZ) v M* — cZ) v JV(r + 1) v • • • v N(ri), where c is a posi-

tive integer satisfying (L + cZ) | g ̂  M« . Clearly ((L + cZ) v M*) - cZ e F be-

cause L~L + cZ and (L + cZ)vM*GF. Let r be a positive integer such that

M«-A« + B«^(L + rZ)lQ. Since AT(i)<->[(M«-^ + 5^, i], JV(i)^L + rZ for

all l e f i and hence (JV(r+l) v ••• v JV(n))| g^(L + rZ)| Q = L| Q. Then N* | g

= (((L + cZ) v M* -cZ) v JV(r+ 1) v -•• v JV(n)) | g = M* | Q = (M*-A* + B*) \ Q

because M*|g^L|Q and A* |g = B*lg. Since (N(r + l)v- vN(w))|Q =
by the similar argument in (a) and Mq-Aq+Bq^Bq^L\Q9WQ have

)vM*-cZ)vi^

= M*-A«+B*=(M*-A* + B*)\Q. Thus we have JV* = M*-^*

+ B*eFand therefore F^dF^ is proved. Since F^*=}FB* is obtained by the

similar argument, VA*=VB* is proved.

Lemma 2.3« Let (F, /?) fre a distributive chart with nodes J, a?iJ Jet Z(q)

and Q(q) be the cycle and the set of nodes of an element q e {!,..., m}9 in 2.1.

Then two points Aq and Bq in V\Q are similar whenever Aq^.L\ Q, Bq^.L\Q

and Aq = Bq (mod Z | g), where L is the minimum point with respect to the cycle

Z.

Proof. Let Z, Q stand for Z(q), Q(q) respectively. Let Aq^L\Q, Bq

^L|Q and Aq = Bq (modZ|Q). It is no loss of generality that we assume

Bq = Aq 4- c(Z | Q) for ceW. Let A be a point in F such that A \ Q = Aq and let
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A* = A v L, £* = A* + cZ. Because A* ̂  L, we have Z e Z(A*) and therefore

B*eFand ,4*~£*. Hence ^*|g-B*|e (1.24). Since A* \ Q = (A vL)| Q =

Aq and B* | Q = >4« + c(Z | Q) = B«, ,4«~B« is proved.

Theorem 2.4. Le? (F, /i) &e # distributive chart with nodes J and Z(q)

and Q(q) be the cycle and the nodes of q e {!,..., m} in 2.1. Then the following

three conditions are equivalent when Aq and Bq are points in V\ Q(q) such that

Aq^.L\ Q(q) and Bq^.L\ Q(q) where L is the minimum point with respect to the

cycle Z(q).

(1) Aq~Bq

(2) A*~B*

(3) A* = B*(modZ(q)\Q(qy).

Proof. Let Z, Q stand for Z(q)9 Q(q), respectively. Since (3)-»(2) and

(2)-»(l) have been proved in 2.3 and 2.2 respectively, we have only to show

(l)-»(3) to prove the theorem. Let Aq~Bq., then there exist A and B in Fsuch

that A\Q = Aq,B\Q = Bq and A~B. Since AvB~A~B (1.11), there exist

integers c(f)'s and d(f)'s such that A v B = A + J£c(f)Z(i) andAvB =

B+^d(i)Z(i)9 where Z(i)'s are the cycles of Z(A) = Z(B). Since the cycles are

mutually orthogonal, we have Bq = Aq (mod (Z | Q)) by taking the ground

(AvB}\Q.

Lemma 2.5. Let (V, h) be a finite distributive chart with nodes J and let

Z(q) and Q(q) be the cycle and the nodes of qe {!,..., m} respectively in 2.1.

Then for any point Aq e F«, the set {Mq e F|^(^); Mq^Aq} has at most finite

points.

Proof. Let Z and Q stand for Z(q) and 2(g), respectively. Supposing that

{MqEV\Q; Mq^Aq} has infinitely many points (M«(s)}, s = l, 2,..., for some

AqeVq, there exist points (M(s)}, s = l, 2,..., in F such that M(s)|Q = M«(s)

for all s. Since (F, /i) is finite, there exists an infinite sequence s(l), s(2),... such

that (M(s(/c))}, fe = l, 2,..., are contained in the same similarity class T. On

the other hand, since M(s(/c))|Q, fc = l, 2,..., are mutually distinct, Z(T) has a

cycle which spans a node in Q and therefore Z e Z(T) (1.20). Then we can easily

prove that there should exist a point M(s(k)) such that M(s(/c))| Q^Aq, be-

cause Z spans the nodes of Q and (M(s(/c)) | Q)'s are mutually distinct. How-
ever this contradicts M(s(/c)) | Q^Aq.

Corollary 2.6. Let (F, h) be a finite distributive chart with nodes J and
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Z(q) and Q(q) be the cycle and the nodes of qe {!,..., m} respectively in 2.1.
q

Then the number of the equivalence classes of (V, h)\Q with respect to ~ is

finite.

Proof. This follows from 2.5 and 2.4.

§ 2. g-Extension

In this section, ^-similar (a finer relation than the ^-similar) is defined and

the problem of finding digital extensions is reduced to the problem of finding

q -extension.

Definition 2,7 a Let (V, h) be a finite distributive chart with nodes J and

Z(q) and Q(q) be the cycle and the nodes of ge {!,..., m] respectively in 2.1.

Let $(q) be the subset of Fig defined as $(q) = {M\Q(q)', M^L}, where L

is the minimum point with respect to the cycle Z(q). By 2.5 <P(q) is a finite set.

Let <P(g) be (Aq(l),..., A«(m)} and £« be the point in V\Q defined by Lq = Aq(l)

V'"vAq(m). It should be noted that if M\Q^Lq then M^L for a point

Me V. Two points Aq and jBQ in V\Q are Q-similar, written as Aq~Bq, when

either X« = B« or X«$£«, B«$£« and ,4* = B« (mod Z | Q). On the other

hand, for 4 = 0, we define Aq ~ Bq if A« = B« for points A*, Bq in V \ 2(0). The

three relations Aq~Bq,Aq~Bq and 4« = J3« (mod Z | Q) are equal when Aq

«$£« by 2.5.

Lemma 2.8. Let (V9 h) be a finite distributive chart with nodes J and let

Z(l),..., Z(m) 6e f/?e cj;c/es of (V, h) which span the nodes Q(l),..., Q(m), re-

spectively, and Q(0) = J— U Q(q) as in 2.1. T/ie« two points A and B in V are

similar whenever A\Q(q) and B\Q(q) are q-similar for all q e {0, 1,..., m}.

Proof. Let L(q) be the minimum point with respect to the cycle Z(q) and

Lq be the point defined in 2.7 for each q e {!,..., m}. Suppose that A and B

are points in 7 such that A \ Q(q)~B\ Q(q). We first prove A v B~A. Since

(^4 v B) | Q(^) ̂  .4 1 Q(q) holds, there exists a non-negative integer c(q) such that

(AvB)\Q(q) = A\Q(q) + <tq)(Z(q)\Q(q)) for each ^e{l,...,m}. Then we

have A v 5 = A + Z c(^[)Z(g) because 04 v 5) | Q(0) = .4 | Q(0). Thus we only have

to show Z(q)eZ(A) for any q such that c(q)^Q to prove AvB~A. Assuming

c(q)^Q for an integer q, (A vB)\ Q(q)^A \ Q(q) and therefore A\Q(q)£t*,

then A ^L(q) and Z(q) E Z(A). Similarly we may prove A v B~B and therefore
A~B is proved.
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Definition 2.9. Let (F, h) be a finite distributive chart with nodes J and

let Q(q) be the nodes in 2.1 for ge{0, 1,..., m}. A digital extension (fa, /j<Q

of (F, h) | Q(g) is called a ^-extension of ((F, /z) | Q(q)) when it satisfies the follow-

ing condition:

(1) If nq(Aq) = fiq(Bq) for points A* and Bq in fa, then A* \ Q(q)~Bq\ Q(q).

Theorem 2.10. Let (F, h) be a finite distributive chart with nodes J and

let Q(q)9s be the nodes in 2.1 for q e {0, 1,..., m}. // there exists a ^-extension

(fa hq) with nodes J(q) for each #e{0, 1,..., m} and J(q)'s are mutually dis-

joint, then the amalgamation ®((fa, hq)®(V9 h))9 ge{0, 1,..., m}, is a digital

extension 0/(F, h).

Proof. Let (Fe, he) stand for the state chart ®((fa, U<0®(F, /z)). In the

first place each (fa, hq)®(V, h) is an extension of (F, /?), and so is (Ve, he).

Assuming he(Me) = he(Ne) for points Me and Ne in Ve,hq(Me\J(q)) =

hq(Ne\J(q)) hold for all q. Then we have Me | J(q)~Ne \ J(q) and Me \ Q(q)~

Ne\Q(ti for all q (2.9). Hence M e | J~JV e | J (2.8) and therefore

Me\JU J(q)~Ne\JU J(q) in (fa, X«)®(7, /z) for all q (1.26). Then it also

follows from 1.29 that Me~Ne.

§ 3. Cumulative Gray Coding

Definition 2.11. Let n be an integer ^2 and k be the integer determined by

fc— I<log2 n^/c. We define the mapping Gn: {0, 1,..., n~l}-»PfJ recursively,

where I1 is a set of k nodes {£(!),..., £(fc)}, as follows.

1. Let G"(0) = 0* = (0,...5 0), G"(1) = 5«1>=(1, 0,..., 0).

2. Assume that for some e, (k>e^l), Gn(m), (0^m<2e —1), have been

defined with Gn(m)W) = 0 for all f>e . Then define G"(m), 2egm<2e+1, as

follows. For all of these integers m, set Gn(m)^(e+1) = l and set Gw(m)(«=0 for

all i > e +1. For each integer (2e + j), 0 ̂  j < 2e, set G"(2e + j\(l} = Gn(2e - 1)W)

+ G-(2«-l)W)-G-(2«-l-^(i) = 2G»(2«-l)W)-G^ for all i£e.

For instance, G5(0) = (000), G5(l)=(100), G5(2)=(110), G5(3) = (210), G5(4)

= (211) and G10(0) = (0000)5 G10(l) = (1000), G10(2) = (1100), G10(3) = (2100),

G10(4) = (2110), G10(5) = (3110), G10(6) = (3210), G10(7) = (4210), G10(8) = (4211),

G10(9) = (5211). The definition of G may remind us of the reflected Gray

code state assignment (refer to 3.3.1 in [14]). We call the mapping Gn the

cumulative Gray mapping for n with nodes I or simply Gray mapping for n
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with nodes I. When n is understood, we will denote G" simply by G.

Let n^2 and G" be Gray mapping for n with nodes {£(!),..., £(k)} where

also k-l<log2n^k. We define the mapping Cn: W-+W1 recursively where

(1) For an integer m, (0<^m<n), we define Cn(m)^(i) = G"(m)^(0 for all

i^k and C"(m)^(fc+1) = 0.

(2) For an integer m, (n:gm<2n), we define Cw(m)^(i) = G"(n — l)^(i) +

Gn(n - 1)W) - Gn(n - 1 - (m - H))W) = 2G"(n - 1)W) - G"(2n - m - 1)4(0 for all i ̂  fc

and Cn(m)5(k+1) = l.
(3) C-(2n)wo = C«(2n - 1)W) for all i g fc and C«(2n)^(&+ 1} = C»(2n - l)«k+ 1}

+ 1=2.

(4) For an integer m>2n, we define C"(m) = ^C"(2n) + Cw(r). Here, q

and r be integers determined by m = 2nq + r, 0^r<2w. For instance, C5(0) =

(0000), C5(l)=(1000), C5(2)=(1100), C5(3)=(2100), C5(4) = (2110), C5(5) =

(2111), C5(6)=(2121), C5(7)=(3121), C5(8)=(3221), C5(9) = (4221), C5(10) =

(4222), C5(ll) = (5222), C5(12) = (5322), C5(13) = (6322),... . We call the map-

ping Cn the periodically cumulative Gray mapping for n with nodes I or

simply the periodical Gray mapping for n with nodes I. When n is understood

we shall denote C" by C.

Lemma 2.12. Let n be an integer greater than one and k be the integer

determined by k — I<log2 n^k. Let G be the Gray mapping for n with nodes

Z ={£(!),..., £(fc)} and C be the periodical Gray mapping for n with nodes

S' = I\J {£(&+!)}. Then we have the following properties:

(1) For any integer m, (n>m>0), G(m) = G(m — l) + (5^(i) for some ieK.

(2) For any integer m, j, (n>w>;^0), G(m)5(0 ̂  G( j)«o (mod 2) for

some IE {I,..., k}.

(3) For any integer m>0, C(m) = C(m — 1) + (5<^') /or some ie{l,...,

fc+1}.
(4) C(2n)W)sO (mod2)/oral/ ie {!,..., k + 1}.

(5) For m^O and j^O, C(m)W) = C(;\0 (mod2) ftoid /or a// ie{l,...5

/c + 1} if and only if m = j (mod 2n).

(6) For any infegfer m and r, C(m + 2nr) - C(2nr) = C(m) - C(0) = C(m) .

Proof. Every property follows immediately from the definition.
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§ 4, Construction of g-Extension

As a consequence of Theorem 2.10 we have only to find a procedure

for getting a ^-extension of (F, h) \ Q(q) for each q e {0, 1,..., m} in order to find

a digital extension of (F, h). Thus hereafter let F«, hq, Zq, Q and Lq denote

V\ Q(q\ h | Q(q\ Z(q) \ Q(q), Q(q) and L(q) \ Q(q\ respectively, where (F, h) is a

finite distributive chart, and Z(q), Q(q) and L(g) are the cycle, the set of nodes

and the minimum point with respect to the cycle Z(q) for q in 2.1, respectively,

unless explicitly mentioned. The following lemma is an extension of 1.33.

Though previously defined terminologies are used, the lemma shows a nature

in the lattice point space.

Lemma 2.13. We define a subset $ of Vq and an integer e as follows:

$ = {M«eV«; Lq^Mq but Lq + Z*^Mq}

a = max{r; (Lq + rZq)f ^Mf for some MqE$ and some ieQ]

allMqe<P andall ieQ}

Since $ is a finite set (2.5), such ft exists.

Then there exists a node ieQ such that A\^E\ (modeZf) for two points

A* and B« in Vq such that A^Lq, B«^L« and Aq^Bq (modZ«). Hereafter

such integer e is called the synthetic number of(Vq, hq).

Proof. Let A«9 B« be points in F« such that Ai^L*, B«^L« and

Bq (mod Zq). Let Mq be the minimum point of the ^-similarity class which has

A* as its member, and JV« be that of B*. Then M«^L« and N*^Lq but M«^

L* + Z* and Nq^Lq + Z* and Mq^N* (2.1 and 2.4). Let r, r(l), s and 5(1)

be the non-negative integers such that

We only have to show (Mq + rZq)i^(Nq + sZq)i (mod^Zf) for some feg in

order to prove the lemma. It is no loss of generality that we assume 0 g r ̂  s < e.

Assuming that (Mq + rZq\ = (Nq + sZq\ (mod eZf ) for all i e Q, Mf + rZf =

JVf + sZf + k(i)eL\ for integers k(i) (not necessarily non-negative). Since

eZf^jSZf^max{Mf, N f } - L f ^ l M f - J V f | = |fc(i)eZf + (s-r)Zf| and Ogs-

r<e, we have -lgfc(i)gO for all ieQ. If fc(i) = 0 for all ieQ or fc(i)= -1
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for all z eQ then Mq + rZq = Nq + sZq or Mq + eZq = Nq + (s - r)Z*, respectively.

In each case Mq~Nq and therefore Aq~Bq, this contradicts the hypothesis.

Hence there exist two nodes z, j such that Mf = JVf + (s — r)Zf,

Nqj + (s- r)Zqj. Since M? = JVf + (s - r)Zf ^ Lf + (s - r)Zf , s - r g a. Then

M'j + eZ(j = N'j + (s-r)Zq
i^Nq

i + aZ<j hold and therefore eZ]^N]

max {MJ, N*}-Ltj + uZ*'<fiZ*- + aiZi} = eZ'}9 and this is a contradiction.

We first construct a special type of extension (F(l), ft*')) for each i e

later the amalgamation of them is proved to be a ^-extension.

Definition 2.14. Let e be the synthetic number of (Vq, hq) and i be an

arbitrarily fixed node in Q. Let G be the Gray mapping for m with nodes I

and C be the periodical Gray mapping for n with nodes $ where m = L? + l,

n = eZqi/2 (since Z? is even, n is an integer) and I = {£(!),..., £(/)}, $ = fa(l),...,

77(fc), ?|(/c;+l)} with the integers / and k determined by /— I<log2 m^f and

k — 1 < Iog2 ?i ̂  /c. Here we assume m ̂  2, n ̂  2 and we shall treat the other

cases later. We define a distributive chart (F', /z7) with nodes {i, I, <i>} as fol-

lows: V' = {(t, 0(0, 0), (f+1, 0(0, 0); O g r < m } U {(t, G(m-l), C^-m + l)),

(r + 1, G(m-l), C(t-m + l)); t^m}. If m = l and n^2 then we don't use the

nodes Z and let

F' = {(09 0*), (1, 0*)} U {(?, C(t-m

If m ̂  2 and n = 1 then we need not 0 and let

V' = {(t, 0(0), 0 + 1, 0(0); 0^<m} U to G(m-l)); t^

If both m = 1 and n = 1 then V = Vq \ {i}.

For a point M'e F', define h'(M')j = Mrj (mod 2) for all jVi, and fc'(M')i
= hq(Mq)t for M« of K« such that Mf = MJ.

The distributivity of F7 may be easily verified. We call the (V, hr) simple

extension of (Vq, h q ) \ { i } with nodes {f, Z9 $}, (Z = (/> and/or <P = ^ depending

on m = l and/or n = l). The amalgamation (V',h')®(Vq, hq) with nodes

{g, T, $} is called f/?e extension of (Vq, hq) with respect to i, written as

Lemma 2.15. Ler (F^), h^) = (Vq, hq)®(V, h1) be the extension of

(Vq, hq) with respect to a node ieQ. Then the following (1) and (2) hold for

points M and N of V™.

(1) // either M^L? and Mt^Ni9 or Nt^Lf and Nt^Mi9 or M^Nt

(modeZf), then
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(2) If M \Q~N\Q and hW(M) = hW(N), thenM~N.

Proof. (1) If Mf^I? and hW(M) = hW(N), then Mt<m and Mj = Nj

(mod 2) for all j eZ. Thus we have Mt = Ni ((2) of 2.12). Secondly, suppose

that M^N^modeZf) and /^>(M) = M%/V). Then M^m and Nt^m

should hold by the previous result. Let M | 4> = C(a — m) and N\<& = C(b — m).

Since M,. = A^ (mod 2) for all je$,a = b (mod eZ?) ((5) of 2.12). Then M£ = Nt

(mod eZf) follows from the facts that M,- equals either a or a + 1, Nt equals either

b or b + 1 and Mt = Nt (mod 2). This contradicts the hypothesis.

(2) Suppose that M | Q&N \ Q and h^(M) = h^(N) for two points M, AT

of 7<*>. Since h<'>(M) = ft<'>(AO, either M^JV, or M^m, N^m and Mf = JV.
(modeZf) holds by (1). In the first place let us assume that Mt = Ni. Then

either M |{i, I, <P} = JV| {i, I, <£>} or M | {i, I, <£>} = N | {i, I, $} + # or Af | (i, I, ̂ P}

= M|{i, T, *} + ̂  for some je{Z,<!>} (2.14). However, only M|{f, Z9 $}

= N\{i, Z, 0} is possible because Mj = Nj (mod 2) for all je{I, cp}. Since

M \Q~N\Q in (7«, ft«) and M|{i, I1, 4>} = N|{f, I, <P}, M-AT in (V«\ h^)

(1 .26). Secondly, suppose that Mi ^m, Nt^ m, M, ̂  JV, and M, = JV, (mod gZ? ).

It is no loss of generality that we assume Mi = Nt+ reZf for r > 0. Since Mt ^ m,

JV^m, Mj>JVj and Mj = Nj (mod 2) for all JG{*, ^}, we have M\Z = N\Z =

G(m~l) and M\$ = C(p + 2nr) (2.13) where we put N\ $ = C(p) (of course p is

either Nt-m or JV^-m + 1). Let M'9N' denote M| {i, Z, <P}, N\ {i, I, ^},

respectively, and we first prove V'M'=*V'N>. Suppose that L'eV andL'^M'.

Let L' =(LJ, G(m), C(g)), here q equals either LJ or L\ - 1. Then L' -M' + AT

= (L; - MJ + N'i9 G(m), C(q) - C(p + 2nr) + C(p)). Since C(q) - C(p + 2nr)-

C(q) = C(q)-C(2nr) = C(q-2nr) by (2) of 2.12, q-2nr = q-(Mi-Ni) = q-

(MJ-NJ) and ^ = L7j or ^ = LJ-1, we have L'-M1 + Nr e V. This proves

F^ , c F^. Similarly we have V'N. c F^ , and therefore M'~N'. Then we have

M-AT in (K«, /i«)®(F/, ft') (1.26).

Theorem 2.16. Let (F(0, ft(i)) be t/ie extension of (Vq, h«) with respect to

i with nodes Jr(0 = {Q, £(0, ^(i)}, (£(i) = 0 awrf/or ^£> = 0 wftew Lf = 0 (3^/or

^Zf = 2 respectively), for each ief i . T/zen t/ie amalgamation (Fe, fte) =

efi, w fl q-extension of(V*9 ft«).

Proof. Let Me and AT6 be points in Fe such that he(Me) = he(Ne). If

Me |Q-]Ve |2 does not hold, then either Me |Q^L« and M e |Q^AT e |Q or

JV e ]QgL*and ]V e ]Q^M e |g or Me ] Q$L«, lYe | Q$L« and Me\Q=£Ne\Q

(mod Z«). Assuming Me \ Q ̂  £« and Me \ Q =£ Ne \ Q, there exists a node i e Q
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such that Mf^Lf and M f ^ N f . Then h^(Me \ J^)^h^(Ne\J^) ((1) of

2.15) and this contradicts he(Me) = he(Ne). The case of Ne \Q^Lq and Ne \ Q

^Me\Q also leads to a contradiction by the same reason. If Me\Q^Lq,

Ne\Q^Lq and M e \ Q •£ Ne \ Q (mod Z«), we get that Me \ Q^Lq, Ne \ Q^Lq

and Me \ Q, Ne \ Q are not ^-similar (2.7 and 2.4). Then there exists a

node ieQ such that Mf =£ JVf (mod eZq
t) (2.13) and therefore h^\Me \ /<*>) ^

/z^(-/Ve|./(0) ((1) of 2.15), this contradicts he(Me) = he(Ne). This proves
Me\Q~Ne\Q. Since ft(<>(Me | J^) = h^(Ne \JV>) and M^g-N^g, we

have Me\J^~Ne\JW in (F< j>, /i(/)) ((2) of 2.15) for all zeg . Therefore

Me~N*(l.26).

This completes the construction of a g-extension of (Vq, ft*) for g^O.
Now we shall construct a ^-extension for g = 0.

Definition 2.17. When q = Q, Vq has its maximum point P because (F, h)

is finite and Q(0) is not spanned by any cycle. Let i be a node in Q(0) and G

be the Gray mapping for m = Pf with nodes £ = {£(!),..., £(/c)}, where fc is the

integer determined by k— I<log2 m^k. Here we assume m^2, and the other

case will be considered later. We define a distributive chart (F'9 h') with nodes

{i, 1} as follows: K' = {(f, G(0), (f+1, G(0); 0^f<m}. For a point M'eF'
we define h'(M')i = hq(Mq)i for M« of 7« such that Mf = M£, and hf(Mf)j = M'j

(mod 2) for any 7 el1, the amalgamation (F', /i')®(^/€
J ^€) with nodes (2, £} is

called ^/?e extension of(Vq, hq) with respect to i, written as (F(f), ft(i)). When

m = l, r is empty and (F«, ft*) itself is

Lemma 2.18. Let f be a node in Q(0) anJ (FCO, ft(0) = (7«> ft«)®(F', ft')

be the extension of(Vq, hq), q = Q, with respect to the node i which has {Q, 1}

as its nodes where Z = {£(1),..., £(&)} for the integer k determined by k—l<

Iog2 m^k. Here, m = Pf for the maximum point Pq of Vq. Then the follow-

ing (1) and (2) hold for M and N of

(1) IfM^N^thenh^MJ^

(2) I f M \ Q = N\Qand h^(M) = h^(N) then M = N where Q stands for

6(0).

Proof, Suppose that M^Nt and h^(M) = h^(N). We can assume Mt

>Nt. Since Mj = Nj (mod 2) for all jeZ,M = (Mi9 G(M£)) and N = (Mi+l,

G(Mf)). Then h^(M)i^h(-^(N)i and this is contradiction. Secondly, suppose

that M\Q = N\Q and fc<*>(M) = &<'>(#). From the previous result (1), ML = Nt
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hold and therefore either M\{i, Z} = N\ {i, Z} or M\{i, Z}=N\{i, I}±dJ for

some j E!. However, only M\ {i, Z} = N\ {z, 1} is possible because h(i\M)

= hW(N). Since M | Q = N \ Q and M | {i, 1} = N \ {i, Z}, we have M = N.

Theorem 2.19, Let (7<*>, fc<*>) be the extension of (F«, fc«), g = 0, wiffc

respect to i with nodes {Q, £<*>} (z/P? = l ffcen r<*> = 0), /or eac/i feQ(O).

/ie amalgamation (Ve, he) = ®(V(i\ h^\ ieg(O), is a q-extension of

Proo/. Let Me, JVC be points in Fe such that he(Me) = he(Ne). Since
Jr(f)) = /i( f)(Are |J(0)5 Mf = JVf for all ieQ(0), hence Me|Q(0) =

JVe|Q(0). Then Me | J^ = Ne \ J(*> for all JeQ(O) ((2) of 2.18) and therefore

Me = ATe.

Lemma 2.20e (When we construct an amalgamation of many state charts,

this lemma may save labour). Let (V, h) be a state chart with nodes J. Here

we assume J = {!,..., n} for the sake of brevity. Let (Vk, hk) be a state chart

with nodes J(k) such that J(k) nJ = {k} for each keJ, J(k) n J(m) = ^> for any

distinct k and m and (Vk
9 hk)\ {fe} = (7, h)\ {k}. Then ®(Vk, hk\ /ceJ,

equals to (-((K, /i)®(F1, h^)®(V\ h2)>-)®(Vn, hn).

Proof. Let Je = J(l) U ••• U J(n). Then both two amalgamations are equal

to the set {Me e W Je ; Me \ J e V and Me \ J(k) e Vk for all fe e J}. The map-

pings will also be easily proved as equal to each an other.

This completes the specification of the procedure for constructing a digital

extension of a binary finite distributive chart.

The sequence of steps in this procedure goes as follows.

(1) Find the cycles Z(l),..., Z(m) of (F, /?) and construct the grounds

(F«, fc«) = (7, h) | Q(q) for all q e {05 1,..., m}.

(2) Construct the extension of (V^\ h(i->) of (Vq, A*) with respect to i for

each z e J.

(3) Make the amalgamation to get a ^-extension (P«, £*)= ®(F(i), /i(*0,

ieQ(q)9 for each ^e{0, 1,..., m}.

(4) Make the amalgamation (Fe, fce)= ®((F, h)®(f«, fi«)), <?e{03 1,...,
m}. Then (Fe, he) is a digital extension.
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